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Deep Learning models have become an integrated component of modern software systems. In response
to the challenge of model design, researchers proposed Automated Machine Learning (AutoML) systems,
which automatically search for model architecture and hyperparameters for a given task. Like other software
systems, existing AutoML systems have shortcomings in their design. We identify two common and severe
shortcomings in AutoML, performance issue (i.e., searching for the desired model takes an unreasonably long
time) and ineffective search issue (i.e., AutoML systems are not able to find an accurate enough model). After
analyzing the workflow of AutoML, we observe that existing AutoML systems overlook potential opportunities
in search space, search method, and search feedback, which results in performance and ineffective search
issues. Based on our analysis, we design and implement DREAM, an automatic and general-purpose tool to
alleviate and repair the shortcomings of AutoML pipelines and conduct effective model searches for diverse
tasks. It monitors the process of AutoML to collect detailed feedback and automatically repairs shortcomings
by expanding search space and leveraging a feedback-driven search strategy. Our evaluation results show that
DREAM can be applied on two state-of-the-art AutoML pipelines and effectively and efficiently repair their
shortcomings.
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1 Introduction
In the Software 2.0 era,Machine Learning (ML) techniques that power the intelligent components
of a software system are playing an increasingly significant role in software engineering. The
development of Deep Learning (DL) brings software intelligence broader prospects with its recent
advances, and DL models are increasingly becoming an integral part of software systems. The global
AI software market is expected to increase from $138 billion in 2022 to $1,094 billion by 2032 [3].
The COVID-19 pandemic also accelerates the application of DL techniques in various industries.
Microsoft Azure Health Bot service helps hospitals classify patients and answer questions about
symptoms [9]. Google and Harvard Global Health Institute have released improved COVID-19
Public Forecasts based on AI techniques to provide a projection of COVID-19 cases [5]. As a growing
trend, DL techniques are studied in a wide range of industries, involving domain experts to use DL
to solve domain or even task-specific problems. Unfortunately, most domain experts have limited
or no knowledge of DL techniques. This raises a great challenge for the software engineering
community.

In response to the challenge, researchers proposed the concept of Automated Machine Learn-
ing (AutoML), which aims to design and build ML models without domain knowledge but only the
provided task. In other words, it takes the user-provided tasks as inputs and automatically builds
an ML model that suits the task. At present, many AI companies and institutions have built and
publicly shared AutoML systems (e.g., AutoKeras [13], NNI [15], and Cloud AutoML [14]) to assist
users with little or no DL knowledge to build high-quality models. The workflow of an AutoML
system is as follows. First, AutoML engines preprocess the data and extract features. Then, they
define the search space and design the search strategy to look for possible model architectures
and hyperparameters. These generated models are then trained and evaluated by the engine. If the
validation accuracy is high enough, the process terminates. Otherwise, it continues to search for
the next possible model architecture and hyperparameter. This process (i.e., generating and training
models, evaluating models) iteratively continues until a model meets the predefined condition,
typically a threshold for validation accuracy. This AutoML design has been used in many fields,
and the existing AutoML systems lower the barrier for novices, improve the productivity of data
scientists, and promote the application of DL models in various fields. For example, the AutoML
system powers healthcare and drastically reduces the processing time of medical diagnosis [7]. It
also supports data-driven publishing and reduces the time overhead of content classification from
years to months [8].

Like other software systems, AutoML pipelines have shortcomings that prevent them from
efficiently searching for and building high-quality models for a given task. The performance issue
(searching for a long time without finishing) and the ineffective search issue (searched architecture
and hyperparameters are useless) are the most common shortcomings in AutoML, which lead
to low effectiveness and poor performance [51, 108, 115]. To understand the root cause of these
shortcomings, we manually debug and analyze AutoKeras [13] and Microsoft NNI [15], two of
the most popular AutoML engines. We find that existing AutoML engines ignore several potential
optimization opportunities, which leads to performance and ineffective search issues. Firstly, the
search space of current pipelines misses some valuable optimization options in training, making it
difficult to find optimal models in the search. That is, values of many searchable parameters are
fixed in existing engines. We find that changing them can benefit the pipeline. Secondly, existing
search strategies can still be improved. They often have a low probability of predicting the optimal
architecture/hyperparameter change and require a large number of search trials to obtain a model
with the desired performance. This directly leads to the waste of time and resources in search.
Last but not least, existing AutoML engines leverage validation accuracy as the only feedback to
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guide the search, which is insufficient to evaluate the quality of previous searches. This also makes
it impossible to identify potential problems in existing models. As a result, the existing AutoML
pipeline requires hundreds of trials to search for a model even on simple datasets, and the obtained
model can have far lower accuracy than expected.

In this article, we propose and implement DREAM to repair the performance and ineffective
search issues in the AutoML pipeline. Specifically, DREAM supplements three mechanisms on the
AutoML pipeline to repair these shortcomings, namely the search space expansion, the feedback-
driven search, and the feedback monitor. DREAM first expands the search space and adds effective
training options for the model search, such as weight initializers and learning rate scheduling
strategy, whose positive effects on model performance have been demonstrated in existing research
[49, 61, 74, 88]. DREAM also leverages a novel feedback-driven search strategy to effectively search
for model architectures and hyperparameters. Unlike the simple feedback in the existing pipeline
that ignores training traces and the model itself, the feedback monitor in DREAM records many
types of feedback (e.g., model training loss, gradients) from the model training and evaluation. Our
search will leverage such observations to determine optimal actions, i.e., how to modify the model
architectures and hyperparameters (in the expanded search space). By doing so, DREAM effectively
fixes performance and ineffective search issues. In summary, our contributions can be categorized
as follows:

—We debug the existing AutoML pipelines and identify the root causes of two common and
severe pipeline shortcomings (i.e., the performance issue and the ineffective search issue).

—We propose and design the three mechanisms, i.e., search space expansion, feedback-driven
search, and feedback monitor, to repair AutoML pipeline shortcomings and conduct effective
model searches.

—We develop a prototype DREAM based on the proposed ideas and evaluate it on six public
datasets and two AutoML pipelines. The results show that, on average, searches repaired by
DREAM achieve an accuracy of 82.99% on image datasets, improving the best AutoKeras
baseline results within the same search budget by 50.84%. DREAM also improves the best NNI
search results by 21.34%.

—Our implementation and data are publicly available at [16].

Threat to Validity. DREAM is currently evaluated on four image datasets and two text datasets,
including classification and regression tasks, which may be limited. This evaluation is a months-
long effort (i.e., over 600 GPU days) on powerful hardware. Although our experiments show that
the mechanisms in DREAM can efficiently and effectively conduct the model search on diverse
tasks and data types, their effect may not hold on some datasets with unseen data distributions
or tasks. In addition, although DREAM don’t encounter an uncovered combination of conditions
in experiments Section 5.2, it is still possible that the pre-built action distribution in DREAM
can’t cover not all possible conditions. To mitigate these threats, the search results (e.g., model
architectures and hyperparameters), implementations including dependencies, and evaluation
data are publicly available at [16] for reproduction. All the necessary information that can be
used to reproduce our experiments and the code of the prototype DREAM will be released in our
repository [16].

2 Background
Designing DL models can be challenging. In response, researchers propose AutoML to build DL
models for given datasets without human intervention. The main goal of AutoML is to search for
the most promising actionA to improve the model" based on the collected feedback � , and it can
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Fig. 1. The basic steps of the AutoML pipeline.

be expressed as follows:

argmax
A

P(A|", � ),

where the search action A indicates one operation that can be applied to modify the DNN archi-
tecture, training setting or hyperparameter, and � represents the feedback data of model training.

In AutoML, a search refers to one attempt to find models for the given task, and each trial in a
search finds potential search actions and constructs a new model to train and evaluate [51]. AutoML
engines evaluate every trained model with a score, which in most cases is the accuracy of the
model. Moreover, we use GPU hours and GPU days to measure search efficiency, which are similar
concepts to person-month. The AutoML pipeline contains a series of steps [51] (shown in Figure 1):
data preparation and feature engineering, model generation, model training, and model evaluation.
A trial consists of the latter three steps. The whole process is iterative until the maximum number
of trials is reached or a model with the desired accuracy is found.

Data preparation and feature engineering prepare training data and extract features (if necessary)
for searches and model building. The former collects data from users, cleans and normalizes it, and
performs data augmentations if needed [52, 56, 91, 110, 111].The latter conducts feature engineering,
e.g., correlation coefficient, SVM-REF, and principal component analysis [47, 54, 60].
Model generation undertakes the main task of searching and generating models in the AutoML

pipeline. There are two important components in an AutoML system design, search space and
search strategy. The search space describes all possible model architectures, hyperparameters, and
other configurable and searchable optimization options. AutoML engines then leverage different
heuristics or statistical methods, namely search strategies, to search for models. There are two tasks
in this step: Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO).
NAS searches for suitable network architectures for given tasks, and HPO optimizes all configurable
parameters [94] such as learning rates. Existing search strategies are typically gradient- or surrogate
model-basedmethods [28, 32, 37, 39, 48, 57, 77, 86, 106, 112].They keep all search history and conduct
gradient descent or train surrogate models (e.g., Gaussian processes) to optimize towards the desired
goal [59, 73, 83]. For example, the Bayesian search strategy in AutoKeras [57] builds a surrogate
Gaussian process model. It fits the Gaussian process model with all previous training results to
search for the next neural architecture. The Greedy method uses greedy strategies to start new
trials from the current best result [13]. Hyperband [71] optimizes this method by adding dynamic
resource allocations and early-stopping to these trials. The Grid search implemented by Microsoft
NNI iteratively divides the current search spaces into a grid and performs an exhaustive search.
Tree-Structured Parzen Estimator (TPE) [23] search method in NNI is an advanced Bayesian
optimization method which models the probability distributions of good and bad hyperparameters.
Note that AutoML pipelines do not search for duplicate models. If the search budget is infinite, any
search strategy can obtain an optimal model after traversing the entire search space.
Model Training and model evaluation start after completing the model generation. The pipeline

first trains the generated model. Subsequently, the model evaluation component evaluates the
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Fig. 2. Motivation cases of AutoML shortcomings.

models and the corresponding training results and provides feedback for future trials. In most
implementations, the evaluation criterion is model accuracy. Modern AutoML engines [13, 38,
62, 63] also leverage early-stopping mechanisms to improve search efficiency.

3 Motivation
Existing AutoML pipelines have shortcomings, preventing them from efficiently searching for
high-quality models. There are two general and server shortcomings in existing AutoML engines:
performance issue and ineffective search issue.The former, performance issue indicates that an AutoML
engine can take too much time to reach the desired goal, which leads to high carbon footprints,
waste of energy, and inefficient use of resources. Due to the high cost of modern AI model training,
this problem is more severe in AutoML than in other systems. The latter, ineffective search issue
refers to the problem that AutoML engines are not able to find optimal model architectures or
hyperparameters to improve the current search result, which is a typical example of functional
errors. Even after numerous search trials, the AutoML pipeline still cannot obtain a model with good
performance on the given task. Unlike traditional logic-based programs where testing methods
can identify functional errors by formally describing the logic of the given program, the results
of AutoML have no ground truth, and determining if the result is optimal or not is challenging.
Thus, repairing AutoML systems is inherently challenging. In this article, we focus on two types of
AutoML shortcomings.

3.1 Motivating Examples
Here, we use AutoKeras (AK) [13] and Microsoft NNI (NNI) [15], two of the most popular AutoML
engines with over 9k and 13K stars on GitHub, to illustrate how common and severe the shortcom-
ings of AutoML pipelines are. Specifically, we use two pipelines to search on the CIFAR-100 dataset
with five search strategies they provide, i.e., Greedy, Bayesian, Hyperband, TPE, and Grid search.

Case I: Performance Issue. In this experiment, we set the goal of validation accuracy to 75%. Each
strategy starts from the same seed and runs for no less than 24 hours if it has not achieved the
goal. We use the default values of AutoML pipelines for all other configurable parameters. The
result in Figure 2(a) illustrates how the performance issue severely impacts the searches of AutoML
pipelines. For the AutoKeras pipeline, except for the Bayesian search strategy, which uses 9.5 hours
and meets the goal, the other two methods (i.e., Greedy and Hyperband) cannot reach the target in
searches. After 24 hours and 242 trials, Hyperband obtains 71.2% accuracy; and Greedy reaches
70.8% after searching for over 72 hours. The TPE and Grid search methods implemented by NNI
also fail to achieve the target score, ending with scores of 66.52% and 39.07% respectively in the
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24-hour search. As a comparison, the search repaired by DREAM achieves the target accuracy
within 95 minutes, which is one-sixth the time used by the Bayesian strategy. Compared with the
best of AutoKeras, DREAM saves 7.92 GPU hours and 2.80 kWh electricity and emits 1.21 KG less
CO2 and carbon footprints [67].
Case II: Ineffective Search Issue. The ineffective search issue causes the AutoML pipeline to

continuously try useless hyperparameters and architectures in search trials, failing to improve
search results. To illustrate the impact of this issue on existing pipelines, we compare different
search strategies with the same search budget (i.e., 25 trials). Figure 2(b) shows results of using
different search strategies. Hyperband improves the accuracy in 4/25 trials and achieves 68.21%
accuracy. Each effective search trial boosts the accuracy by 16.41% on average. Bayesian, Greedy,
and TPE have three fruitful trials and respectively achieve the accuracy of 67.51%, 34.23%, and
59.40%. The Grid method experiences only two accuracy increases in the search. Suffering from the
ineffective search, the Grid method fails to find an optimal architecture and hyperparameters to
improve the search results in the next 20 trials and finally achieves an accuracy of 39.49%. This
data demonstrates that most of the trials in existing AutoML pipelines are ineffective, and it is
difficult for their random or statistical model-based search methods to effectively predict actions
that improve the model performance. Even for successful trials, the accuracy improvement is not
significant. As a comparison, the search conducted by DREAM gains 82.66% accuracy with five
productive trials. Notably, its accuracy keeps increasing even after getting to 80% (outperforming
any methods of existing pipelines).

3.2 Analysis of AutoML
To understand the root causes of the shortcomings, we study the AutoML results and state-of-the-art
manually crafted models, log detailed training information, and make three key observations.

Observation I: Existing AutoML engines overlook valuable search spaces, which makes it difficult to
find optimal models. The search space has significant impacts on the performance of the AutoML
pipeline [109]. Existing AutoML engines have implemented common model architectures and data
augmentation techniques, which have shown high effectiveness in practice, to guide the search
engine to find optimal models. Such designs improved the performance of AutoML by prioritizing
expert knowledge chosen search space. Unfortunately, existing engines overlook a set of other
possible optimizations, i.e., training configurations such as weight initializers, optimizers, and
learning rate scheduling strategies, which also have remarkable impacts on the output of AutoML
[34, 44, 74, 85]. In many trials, we find that changing one of the training configurations will lead
to a significant accuracy boost. Specifically, we collect 200 different models from the searches
conducted by three AutoKeras methods on the CIFAR-10 [66] and STL-10 [35] datasets, of which
54 have achieved an accuracy improvement of more than 10% after only modifying the training
configurations such as the learning rate scheduling strategy and optimizers. This demonstrates that
expanding the search space and introducing valuable search actions can benefit AutoML engines.
Observation II: Existing search strategies ignore useful feedback and have a low probability of

predicting the optimal action, which causes ineffective search issues. To predict the next action (i.e.,
how to change the model or hyperparameters), existing AutoML engines leverage random walk
or statistical models. Considering the huge search space of AutoML, random methods have low
probabilities of choosing an optimal action, which leads to ineffective searches. We use the Greedy
method in AutoKeras to perform 10 searches of 30 trials each on the CIFAR-100 dataset [4]. Detailed
training settings are consistent with Section 5.1. On average, each search only contains 3.1 effective
trials that can improve model accuracy. Affected by the ineffective search trial, the average final
search results are only 63.94%. Statistical methods (e.g., Bayesian) typically require training tens
of thousands of models to fit the statistical models before making good predictions, which is not
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Fig. 3. Overarching design of DREAM.

practical. Moreover, whether these statistical models can accurately model the AutoML search
procedure is questionable. Existing methods get non-optimal action predictions due to the lack
of samples and doubtable models, which cause ineffective search issues. In software engineering
research, prior works [78, 113] have observed that methods that leverage feedback data (e.g., the
provenance of computing, loss values) can achieve better results. Such feedback is dynamic and
context-aware, making it suitable for identifying the root causes of observed issues.
Observation III: Existing model evaluation component completely ignores the training procedure,

which makes effective and efficient search infeasible. In existing AutoML pipelines, such as AutoKeras,
Auto-Pytorch, and NNI, model evaluation calculates the validation accuracy or loss of the trained
model as the score for the corresponding search trial and returns it to the model generation. Such
a score from validation measures whether the search is successful and can be finished, and it is
essential for AutoML evaluation. However, such a single metric is not sufficient to reflect the issues
in the current search trial and provide the necessary information to repair AutoML shortcomings.
Adding detailed feedback is critical for automatically repairing AutoML processes. Moreover, model
evaluation always happens at the end stage of a trial, which makes it impossible to identify potential
problems and provide timely feedback. Existing works [113] have shown that integrating model
evaluation in training can help resolve training problems. The lack of detailed and timely feedback
prevents the pipeline from effectively finding search actions to improve the model search, ultimately
leading to performance and ineffective search issues.

4 Design
In this article, we present DREAM, an automatic repairing tool for the AutoML engines. It focuses
on fixing performance and ineffective search issues. Figure 3 presents the overview of our design.
It follows the original design of AutoML and adds three new mechanisms: search space expansion
(enlarging the search space to allow finding optimal models), feedback-driven search (a novel search
algorithm), and feedback monitoring (providing detailed and useful feedback of model training and
evaluation, rather than validation accuracy only). We will introduce search space expansion in
Section 4.1, and discuss the other two components in Section 4.2.

4.1 Search Space Expansion
The search space defines all feasible search actions in the AutoML pipeline in modifying the model
architecture and hyperparameters, e.g., changing kernel size, optimizer, and architecture type. As
discussed in Section 3.2, existing AutoML engines overlook many useful actions. In DREAM, we
extend the search space by adding 36 feasible actions. Table 1 shows the added search actions and

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 95. Publication date: April 2025.



95:8 X. Zhang et al.

Table 1. Newly Added Actions

Category No. Actions Description Action Search Space

Model
hyperparameters

1 Using other initializer (e.g., He Uniform) as substitution [“He Uniform”, “Lecun Uniform”, “Glorot uniform”]
2 Using other activation function (e.g., SELU) as substitution [“SELU”, “Tanh”, “ReLU”]

Optimization
configurations

3 Changing the value of momentum in SGD optimizer [“0.0”, “0.1”, “0.5”, “0.9”, “0.99”]
4 Changing the value of end learning rate in AdamW optimizer [“1e-4”, “1e-5”, “2e-6”, “1e-6”, “0.0”]
5 Changing the value of weight decay rate in AdamW optimizer [“0.001”, “0.005”, “0.01”, “0.05”, “0.1”]

Fine-tune
strategy

6 Fine-tuning the pre-trained model with two-step training [“True”, “False”]
7 Fine-tuning the pre-trained model with three-step training [“True”, “False”]
8 Changing the epoch of different steps in training [“0.1”, “0.2”, “0.3”, “0.4”, “0.5”]
9 Changing the learning rate of different steps in training [“1.0”, “0.1”, “0.01”]

10 Freezing the pre-trained model in training [“all”, “no”, “bn”]

their feasible search space. The full action table can be found in our repository [16]. These new
search actions can be categorized as follows:

—Model hyperparameters: Most AutoML engines use fixed model hyperparameters. For example,
all searches in AutoKeras use the ReLU activation function and Xavier initializer. However,
the same activation function and initializer can not work effectively on all models. Existing
works have demonstrated that other activation functions and initializers have the opportunity
to improve model performance [49, 61]. DREAM provides six new actions as additional
optimization opportunities in the search that substitute the model activation functions and
initializers to different ones, e.g., using He Uniform [49] and the SELU activation function
(Rows 1 and 2 in Table 1).

—Optimization configurations: The appropriate optimizer configuration and learning rate sched-
ule can play a positive role in model training [44, 74, 85]. Existing AutoML engines use fixed
configurations for all searches, which may lead to poor search results. DREAM adds 15 search
actions that modify the optimization setting (e.g., optimizer momentum) for different opti-
mizers. For example, the momentum parameter in the SGD optimizer (Row 3 in Table 1), end
learning rate (Row 4) and weight decay rate (Row 5) in the AdamW optimizer referring
to the existing works [74, 88].

—Fine-tuning strategy: Multi-step fine-tune strategy is a commonly used fine-tune strategy for
the pre-trained model, and its effectiveness has been verified in existing works [6, 10, 34].
DREAM supplements 15 search actions in five categories to search space to implement the
multi-step fine-tuning. Specifically, DREAM adds the two-step and three-step fine-tuning
strategies in training, as shown in Row 6 and Row 7 of Table 1. In addition, three actions are
supplemented in the search space to control the transfer learning parameters, i.e., number of
epochs, learning rate, and frozen status of the pre-trained model. These actions are shown
from Rows 8 to 10.

4.2 Monitoring and Feedback-Driven Search
The feedbackmonitor in DREAM collects the feedback data from bothmodel training and evaluation,
and the feedback-driven search is a novel search algorithm leveraging such feedback. Similar
to existing AutoML, model search, training, and evaluation are iterative. Algorithm 1 shows
the process.

The input to search and repair components of DREAM is the same with existing AutoML: a
dataset � , the maximum number of trials )< , the target score (C , and the seed model " . Lines 3
to 10 of Algorithm 1 show this iterative process. Firstly, in Line 4, the feedback monitor collects
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Algorithm 1: Search and Repair

Input: � − the training dataset; )< − the maximum number of search trials;
(C − the target score in search; " − the seed model in a trial

Output: "2 − the selected model in search;

1: procedure SearchAndRepair(�,)<, (C , ")
2: C ← 0
3: while C < )< do
4: �C ← 5 443102:">=8C>A (�," ) ⊲ Monitor Training Feedback
5: "2 , �2 , (2 ← D?30C4 (", �C , (C ) ⊲ Update Search Result
6: if (2 ≥ (C then
7: return"2 ⊲ Early Stop
8: A ← B4;42C�2C8>= (�2 , "2 ) ⊲ Select the Optimal Action Based on Feedback
9: " ← 1D8;3">34; ("2 ,A)

10: C ← C + 1
11: return"2

feedback data �C and model score (C from the model training and evaluation in the Cth trial. The
feedback data will be used to repair the performance and ineffective search issues and conduct
effective searches. In Line 5, DREAM update the candidate model "2 , corresponding feedback �2
and score (2 based on monitoring results to select the ones with the highest scores. If DREAM finds
a satisfactory model before using up all budgets, it will stop the search and return the best model
(Line 7). This is a typical early-stopping mechanism to optimize the search time. If not, DREAM will
continue the feedback-driven search. DREAM first analyzes the feedback data �2 (Line 8), and then,
based on the analysis, the search strategy dynamically selects the optimal action A that has the
most probability to improve the candidate model "2 . Subsequently, model generation will leverage
A and"2 to build the model for the next trial, as shown in Line 9 and the number of search trials C
will increase by one (Line 10). The above process will continue until the number of trials C reaches
)< if early-stopping is not triggered.

4.2.1 Feedback Monitoring. Different from the simple feedback of the validation accuracy in
the AutoML engines, the feedback monitor in DREAM collects various feedback data from the
model training and evaluation. Detailed feedback data can help the feedback-driven search fix
the shortcomings and conduct effective model searches. Referring to the existing work [113], the
feedback monitor combines the model evaluation into each epoch in training to implement detailed
and timely feedback in the pipeline, which helps repair shortcomings and improve model searches.
The feedback in DREAM includes many aspects, which are shown as follows:

—Model architectures and configurations (e.g., model depth, activation functions, initializer).
—Training accuracy, loss value, and other training histories.
—Model gradients of each layer during training.
—Model weights and updates during training.

4.2.2 Feedback-Driven Search. The feedback-driven search leverages given feedback to select
the optimal actions to improve the search effect, corresponding to Line 8 of Algorithm 1.

Extracting useful information from the massive feedback data � is the key to performing an
effective search. The search process first summarizes � into four categories, i.e., architectures (A),
convergence status (C), gradients (G), and weights (W ) to describe model training and evaluation
from four different angles. Then, this search process can be formalized as finding the optimal action
based on givenA-C-G-W observations which are extracted from the model" and the corresponding
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feedback � . And finally, the fomular mentioned in Section 2 can be convert into:

argmax
A

P(A|", � ) = argmax
A

P(A|�,�,�,, ).

We solve the search problem by calculating the conditional probability, P(A|�,�,�,, ) for
observed architectures, convergence status, gradients, and weights.
Architectures. The DNN architecture has a significant influence on the model performance. For

example, the residual block in ResNet can effectively speed up the convergence of the training
and help deepen the model [50, 102]. Currently, DREAM supports text and image datasets on
AutoKeras and NNI, and related model architectures in their search space can be roughly classified
into six types, namelyResNet Architecture (RA), EfficientNet Architecture (EA),XceptionNet
Architecture (XA), Ngram Architecture (NA), Transformer Architecture (TA), and Other
Architecture (OA). The first three are widely used DNN architectures for image classification and
regression tasks [33, 50, 98]. The following two are commonly used in various language models to
process text data [27, 101], and the last one refers to the models without specific architectures.
Convergence Status. We categorize the convergence status of a model based on its validation

accuracy and loss value into two types: Slow Convergence (SC) and Normal Convergence (NC).
SC is a typical root cause of poor performance in searching models. The model meets SC when the
accuracy changes of two contiguous epochs in training are less than 0.01 [113], and we classify the
remaining conditions as NC.

Gradients. Abnormal gradients in training can implicitly explain failed trials. We group gradients
into four types based on existing works [20, 53, 81, 97], i.e., Vanishing Gradient (VG), Exploding
Gradient (EG), Dying-ReLU Gradient (DG), and Normal Gradient (NG). When the ratio of
gradients from the input layer to the output layer is smaller than 14 − 3, DREAM considers it as a
VG case. In contrast, if this ratio is over 70, DREAM treats it as EG. DG happens when the number
of neurons with zero gradients is 70% of the total [113]. The occurrence of VG, EG, and DG can
cause various training problems, which could lead to ineffective searches.

Weights. Once model weights overflow (or implementation bugs happen), the model performance
will be severely impacted. Therefore, the weight condition is divided into ExplodingWeight (EW)
and Normal Weight (NW). When model weights contain NaN values, the model is considered
as EW.

4.2.3 Conditional Probability Calculation. Based on the summarized observations from feedback
data, DREAM selects an optimal action that is the most possible to improve the current search by
calculating the conditional probability P(A|�,�,�,, ). In this process, we calculate the distribution
of each search action for different A-C-G-W conditions so that the actions that help to improve
the model performance can be directly selected in the search. Although the existing studies have
mentioned that several actions can improve the model performance in some situations [45, 61, 76],
it is still difficult to directly measure the actual effect of each action under different conditions.

To solve this problem, we construct large-scale experiments to calculate the conditional proba-
bility and evaluate the search priority of each action under different conditions in searches. We
randomly generate and train a large number of models on image and text datasets and record
the conditions summarized from the feedback of these models. We record the model accuracy in
training as �22>A8 . Next, we search all feasible actions on each model one by one and generate new
models to evaluate these actions. Each search action can be written as $ −+ , where $ represents
an object such as model architecture or hyperparameter this action will change, and + represents
the new value assigned to the object. Then we train these new models and record accuracy as
�22$−+ . All the training processes mentioned here include 15 epochs, and the batch size is 32. After
these training processes are finished, we calculate the change of accuracy from the pair $ −+ ,
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Table 2. Partial Search Priority of Actions

Conditions
Search Priority

1st 2nd 3rd 4th

EA-NC-DG-NW trainable=True imagenet size=True block type=xception optimizer=adam weight decay
EA-NC-EG-NW trainable=True block type=xception imagenet size=True version=b7
EA-SC-DG-NW trainable=True imagenet size=True block type=xception momentum=0.1
EA-SC-EG-NW trainable=True learning rate=0.01 imagenet size=True block type=xception
RA-NC-NG-NW block type=xception trainable=True imagenet size=True optimizer=adam weight decay
RA-SC-NG-NW learning rate=0.01 trainable=True learning rate=0.1 learning rate=0.001
OA-NC-DG-NW block type=xception filters=256 optimizer=adam weight decay end learning rate=1e=5
OA-NC-NG-NW block type=xception separable=False optimizer=adam weight decay end learning rate=1e=5
OA-SC-DG-NW block type=xception learning rate=0.01 learning rate=0.001 optimizer=sgd
OA-SC-EG-EW num blocks=3 block type=xception num layers=2 separable=True
XA-NC-NG-NW pretrained=True trainable=True imagenet size=True optimizer=adam weight decay

which is written as Δ�22$−+ = �22$−+ −�22>A8 . Finally, we calculate the conditional probability
P(A|�,�,�,, ) as follows,

P(A|�,�,�,, ) =
∑=

8=0 Δ�22
8
$−+

=
,

where = represents the amount of models under the same A-C-G-W condition. Note that, a larger
P(A|�,�,�,, ) means that the action with the object $ and value + have more possibility to
improve the current search performance (i.e., model accuracy). Therefore, we give such search
action $ −+ higher priority in the search process. We apply the evaluated search priority as the
default setting in the search method of DREAM to guide the pipeline to search effectively. In each
trial, our system automatically chooses the action with the highest conditional probability (under
observed conditions A-C-G-W ) to help generate new models.

We display part of the search priority under different conditions in Table 2 and the whole priority
table with hundreds of actions can be found in our repository. The first column lists all A-C-G-W
conditions in the experiments. The following columns respectively show the search actions with
the highest priority under these conditions. It is worth noting that the action that is more likely to
improve the search performance should be prioritized in the search. In the table, the left side of the
equal sign for each action is the object, that is, the hyperparameter or model architecture that will
be changed, and the right side is the newly assigned value.

During the search, if the action with the highest priority has already been applied in the current
model, DREAM will select the action with the next highest priority, and so on. We provide a
running case in “Example 1” that detailedly explains how the priorities specified by the condi-
tional probabilities guide the searches in DREAM. Additionally, although there are 96 possible
combinations of A-C-G-W mathematically, a considerable portion of these combinations cannot
be encountered in practice due to the conflicts between some conditions. For instance, the NaN
weights will cause the model to not update properly in the backward propagation when the EW
condition is met. At this time, the model gradient will also be affected and produce NaN, and
the model will fail to converge during training. Therefore, the NC and NG conditions cannot
occur with EW simultaneously. Moreover, benefiting from the model architecture design, such
as residual block, the NaN weight (i.e., EW) can hardly occur under EA, RA, and XA conditions.
Finally, we have evaluated and constructed priority for 27 sets of A-C-G-W conditions through
the large-scale experiments. In Section 5, we evaluate DREAM on four image datasets and two
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Fig. 4. The priority guides the search for actions to improve the model performance.

text datasets with diverse data content (e.g., news text, food images, car images) and tasks (i.e.,
regression and classification) to illustrate that these pre-calculated probabilities can effectively
guide search and be generalized on a variety of data and tasks. In addition, the 27 sets of A-C-G-W
condition combinations we constructed and evaluated have effectively covered all search trials in
experiments (over 5,000 models), and no uncovered conditions are encountered. For those con-
ditions not covered in our search priority, DREAM will choose random actions in the search. How
to uncover new conditions and further update and refine the search priority of actions will be our
future work.

Example 1. The case in Figure 4 provides an example of the feedback-driven search of DREAM
and illustrates how the search in DREAM performs with the search priorities. For the “Model 1”
with an initial score of 0.52 and the combination of conditions extracted from the internal feedback
as “OA-NC-NG-NW,” as shown in the 8th line of Table 2, the action with the highest priority is
“block type=xception,” which indicates that the object in this action is “block type” and the new
value for it is “xception.” It means that changing the value of “block type” of the current model
to “xception” has the most potential to improve the model’s performance. Therefore, DREAM
applies this action and generate a new model “Model 2.” After training, the search score of “Model
2” has increased to 0.78, and the combination of the conditions has turned to “XA-NC-NG-NW,”
whose priority is listed in the last line of Table 2. The action with the highest priority in current
conditions is “pretrained=True.” Since “pretrained” has already been set to “True” in “Model
2,” this action is skipped and the second action “trainable=True” is selected, which increases
the score of “Model 3” to 0.82. At this time, the current conditions keep “XA-NC-NG-NW,” and
the next action to be searched is “imagenet size=True.” The search process described above is
highlighted in Figure 4. The feedback-driven search in DREAM selects the actions one by one
based on the conditions and the built-in priorities until the search is terminated. DREAM collects
and extracts feedback and selects the search action that is the most potential to improve the
model performance according to the conditions and search priorities. Compared with the existing
methods, DREAM can use less time to find suitable actions in a huge search space to improve the
model accuracy.

5 Evaluation
In this section, we aim to answer the following ResearchQuestions (RQs).

RQ1: How effective is DREAM in fixing AutoML shortcomings?
RQ2 : How effective is each design in DREAM?
RQ3: What is the impact of different action priorities in searching models?
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5.1 Setup
Datasets. We perform our experiments on four popular image datasets (i.e., CIFAR-100 [4], Food-
101 [26], Stanford Cars [65], TinyImageNet [70]) and two text datasets (i.e., Reuters [17] and
Text Retrieval Conference Question Classification dataset (Trec) [72]) to observe the effectiveness
and generalizability on diverse tasks, data content and data types. CIFAR-100 is a widely-used
colored image dataset used for object recognition and contains 100 categories. Food-101 is an image
classification dataset with 101 food categories and a total of 101k images. In the experiments,
we resize all images in the Food-101 dataset to the size of 300 ∗ 300. Stanford Cars is an image
dataset with 16,185 images of 196 classes of cars. These images of cars are resized to 360 ∗ 240.
TinyImageNet dataset consists of 100k colored images of 200 classes, and all images have been
downsized to 64 ∗ 64. We use this dataset for both image classification and regression tasks. Reuters
is a newswire dataset for document classification with 46 classes. The Trec dataset contains 5,952
labeled questions with 50 fine class labels. For a fair comparison, all strategies in experiments use
the same data preprocessing procedures.

Baseline and Metric. We mainly compare DREAMwith three implemented strategies in AutoKeras
on six datasets for comparison, i.e., Greedy, Bayesian, and Hyperband. In addition, we compare
DREAM with the TPE and Grid search methods implemented by Microsoft NNI [15] on three image
and text datasets (i.e., CIFAR-100, TinyImageNet, and Reuters) to illustrate the commonality of
AutoML pipeline shortcomings and the generalization of DREAM. Detail descriptions about each
strategy are shown in Section 2, and we directly used configurations recommended by AutoKeras
and NNI for these baseline methods. In the experiments, we use Validation Accuracy as the Score to
evaluate the model performance on text and image classification tasks and use Validation Loss as
the Score on the regression tasks (reducing loss in such tasks). We use Hours to refer to the GPU
Hours in searches. To ensure that the models can be fully trained, the maximum epoch in training
is set to 200. In addition, we enable the early stopping setting to speed up the training process. It is
also the default setting in the AutoKeras engine to terminate each training process in advance and
improve search efficiency.

Implementation. The prototype of DREAM implements on top of AutoKeras 1.0.12 [13], NNI 3.0
[15] and TensorFlow 2.4.3 [18], and can be applied to alleviate and repair the shortcomings on the
AutoKeras and NNI pipelines. To obtain the conditional probability, we randomly generate and
train 300 different models on three image and text datasets different from those used in experiments
(i.e., CIFAR-10 [66], STL-10 [35], and IMDB [2]) and record the conditions summarized from the
feedback of these models. All searches in the experiments of this section start with the same code
recommended by AutoKeras and NNI. The batch size is set to 32 in training. All experiments are
conducted on a server with Intel(R) Xeon E5-2620 2.1GHz 8-core processors, 130 GB of RAM, and
an NVIDIA RTX 3090 GPU running Ubuntu 20.04 as the operating system.

5.2 Effectiveness of DREAM
Experiment Design. To evaluate the effectiveness and generalization of DREAM in fixing AutoML’s
ineffective search and performance issues on diverse datasets and tasks, we conduct experiments
with three AutoKeras search strategies andDREAMon four image datasets and two text datasets.The
dataset tasks include image classification, text classification, and image regression. We perform five
sets of searches on each dataset. In addition, to illustrate the severity of the AutoML shortcomings
and the generalization of DREAM, we conducted experiments using two representative search
methods from NNI on three image and text datasets and compared the search results repaired
by DREAM. These searches are used to observe whether DREAM can effectively alleviate the
shortcomings of AutoML pipelines and guide the searches to perform more effectively. To make a
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Table 3. Comparison between AutoKeras Searches and DREAM on Image Classification Tasks

Best Score in Search (%) Time to Reach Target (hours) Score in Same Trials (%) Score in Same Time (%)
Dataset No.

Initial
Score(%) AKG AKB AKH DREAM AKG AKB AKH DREAM AKG AKB AKH DREAM AKG AKB AKH DREAM

1 10.59 63.04 65.77 79.19 83.32 - - 1.63 0.92 63.04 65.77 78.78 83.32 63.04 52.51 79.19 83.32
2 20.74 65.38 78.88 81.57 85.85 - 47.52 2.45 2.34 65.38 78.88 36.35 85.85 59.51 45.29 81.57 83.55
3 2.58 77.79 67.79 80.21 82.66 18.32 - 5.45 1.80 34.23 67.79 68.21 82.66 77.79 67.79 80.21 82.66
4 8.19 42.57 76.52 78.89 82.62 - 17.97 1.36 0.53 37.63 64.49 73.15 82.62 42.57 76.52 78.89 82.62
5 4.81 64.82 46.92 77.01 83.03 - - 20.49 0.53 64.82 46.92 54.30 83.03 63.61 33.03 77.01 83.03

CIFAR
-100

Avg. 9.38 62.72 67.18 79.37 83.50 - - 6.28 1.22 53.02 64.77 62.16 83.50 61.30 55.03 79.37 83.04

6 8.37 72.67 57.47 59.42 83.13 40.35 - - 21.66 72.67 57.47 51.59 83.13 61.68 57.47 59.42 71.56
7 2.30 61.44 41.37 58.74 78.23 - - - 45.04 61.44 41.37 50.16 78.23 13.57 31.93 58.74 65.74
8 8.48 68.80 75.72 55.61 82.62 - 82.24 - 13.34 68.80 75.72 55.61 82.62 13.54 35.94 55.61 72.03
9 7.57 69.22 59.24 55.98 81.33 - - - 23.56 69.22 59.24 55.98 81.33 14.03 54.21 52.56 70.33
10 6.73 64.83 57.32 56.22 80.61 - - - 30.33 64.83 57.32 51.26 80.61 50.93 33.29 56.22 66.10

Food
-101

Avg. 6.69 67.39 58.22 57.19 81.18 - - - 26.79 67.39 58.22 52.92 81.18 30.75 42.57 56.51 69.15

11 0.74 30.76 79.64 55.57 85.02 - 9.48 - 4.03 24.75 79.64 48.33 85.02 30.76 77.60 55.57 83.79
12 0.56 71.53 81.99 46.66 83.66 16.87 8.38 - 7.85 42.70 81.99 24.44 83.66 71.53 81.99 46.66 83.35
13 0.80 60.33 16.40 40.72 83.48 - - - 17.57 60.33 16.40 20.17 83.48 7.61 16.40 40.72 70.61
14 0.62 44.06 46.23 58.17 83.42 - - - 7.06 44.06 46.23 32.86 83.42 14.79 46.23 58.17 83.42
15 0.68 81.31 8.29 43.01 84.10 19.57 - - 5.33 39.42 8.29 16.58 84.10 81.31 8.29 43.01 84.10

Stanford
Cars

Avg. 0.68 57.60 46.51 48.82 83.94 - - - 8.37 42.25 46.51 28.48 83.94 41.20 46.10 48.82 81.05

16 21.57 29.34 21.57 76.98 83.80 - - 1.71 2.60 29.34 21.57 71.51 83.80 27.38 21.57 76.98 77.67
17 9.44 62.86 42.29 80.26 79.90 - - 4.17 2.85 62.86 42.29 44.70 79.90 62.78 42.29 80.26 76.66
18 4.84 47.44 66.39 80.09 83.95 - - 10.00 2.54 47.44 66.39 61.04 83.95 42.13 41.70 80.09 77.02
19 7.68 37.89 46.74 76.61 83.60 - - 13.50 4.41 37.89 46.74 53.59 83.60 35.24 46.74 76.61 77.22
20 8.54 63.20 75.89 77.10 85.41 - 39.35 7.63 2.44 63.20 75.89 67.14 85.41 63.20 38.28 77.10 85.41

Tiny
ImageNet

Avg. 10.41 48.14 50.57 78.21 83.33 - - 7.40 2.97 48.14 50.57 59.59 83.33 46.15 38.12 78.21 78.79

Avg. 6.79 52.70 55.02 65.73 82.99 - - - 9.84 52.70 55.02 50.79 82.99 44.85 45.45 65.73 78.01

fair comparison, we randomly generated the initial model and ensured that each search strategy
started with the same initial model. In our experiments, we set the same search budget for each
method for a fair comparison. Specifically, each method searches for at least 24 hours and 25 trials
on the image datasets. Due to the smaller size of the text datasets and model parameters, the
training of the text model is significantly faster than that of the image model. Therefore, we allocate
them a smaller time budget of 2 hours of searches, during which all methods perform at least 50
trials. The target score is set to 70% for the classification tasks. The experiments record the search
results of all the strategies in the same trials and the time cost of each search strategy reaching the
search accuracy target in the whole search process to evaluate the efficiency of DREAM. Other
settings are described in Section 5.1.

Results. Tables 3, 4, 5, and 6 separately show the detailed results of the effectiveness in repairing
AutoML shortcomings with the same search trials and the same time budgets on diverse image
and text tasks. The first column shows the datasets and the second column lists the serial numbers
of the searches so that we can specify the searches and analyze them. The third column shows
the score of the initial model for all search strategies. The column “Best Score in Search” denotes
the best score each method achieves in the whole search. The column “Time to Reach Target”
signifies the time cost of each search strategy to achieve the target accuracy of 70%. The “-” in
this column represents that the corresponding search strategy fails to reach the target score in
the entire search. Since the regression task has no accuracy, the corresponding cells are all “-”.
When we calculate the average time to reach the target score on one dataset, we only consider
the cases where all searches have reached the target accuracy. We use the above two metrics to
capture and assess the ineffective search and performance issues of each method. In addition, we
provide two metrics to fairly compare different methods and demonstrate the improvement of
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Table 4. Comparison between AutoKeras Searches and DREAM on Image Regression Tasks

Dataset No. Initial
Score

Best Score in Search Score in Same Trials Score in Same Time

AKG AKB AKH DREAM AKG AKB AKH DREAM AKG AKB AKH DREAM

21 3,315.44 3,123.58 3,091.24 1,562.03 1,309.26 3,123.58 3,091.24 3,005.70 1,309.26 3,143.82 3,153.15 1,562.03 1,410.08
22 3,284.05 3,112.14 3,169.87 2,571.74 1,520.78 3,112.14 3,169.87 2,571.74 1,520.78 3,137.12 3,169.87 2,571.74 1,520.78
23 3,310.87 2,551.09 2,681.96 2,323.93 1,336.47 2,551.09 2,681.96 2,323.93 1,336.47 3,065.81 2,682.46 2,323.93 1,459.76
24 6,209.52 2,194.84 3,213.25 2,547.23 1,403.24 2,194.84 3,213.25 2,585.86 1,403.24 3,138.34 3,213.25 2,547.23 1,408.79

Tiny
ImageNet

(Regression)
25 3,317.44 2,255.18 3,230.37 1,768.35 1,283.09 2,255.18 3,230.37 2,582.02 1,283.09 2,396.53 3,230.37 1,768.35 1,370.39

Avg. 3,887.46 2,647.36 3,077.34 2,154.66 1,370.57 2,647.36 3,077.34 2,613.85 1,370.57 2,976.33 3,089.82 2,154.66 1,433.96

Table 5. Comparison between AutoKeras Searches and DREAM on Text Classification Tasks

Best Score in Search (%) Time to Reach Target (minutes) Score in Same Trials (%) Score in Same Time (%)
Dataset No.

Initial
Score(%) AKG AKB AKH DREAM AKG AKB AKH DREAM AKG AKB AKH DREAM AKG AKB AKH DREAM

26 61.67 82.04 80.47 82.38 82.77 2.77 3.23 5.64 6.41 82.04 80.47 81.37 82.44 81.14 80.47 82.38 82.77
27 59.32 80.13 75.93 79.97 81.99 3.50 42.05 4.98 5.57 80.13 75.93 79.97 81.48 80.13 70.03 79.97 81.99
28 56.79 80.47 82.04 81.48 83.17 7.04 4.96 2.21 5.55 80.47 82.04 81.48 82.15 80.47 82.04 81.48 83.17
29 59.99 79.46 80.86 81.65 83.05 9.91 14.77 6.62 4.54 78.28 80.86 81.65 82.60 79.46 80.86 81.65 83.05
30 62.12 77.95 80.02 80.98 83.22 12.67 3.15 6.60 5.84 77.95 80.02 79.97 83.22 77.05 80.02 80.98 83.22

Reuters

Avg. 59.98 80.01 79.87 81.29 82.84 7.18 13.63 5.21 5.58 79.78 79.87 80.89 82.38 79.65 78.69 81.29 82.84

31 27.06 71.72 76.78 72.00 79.31 32.24 20.56 10.74 2.92 71.25 76.78 72.00 77.62 71.72 72.57 72.00 79.31
32 27.25 79.49 78.09 71.63 79.49 3.49 2.53 7.27 7.07 79.40 78.09 71.63 79.49 79.49 78.09 71.63 79.49
33 25.56 79.12 78.65 76.12 79.40 20.97 30.63 2.39 6.98 75.84 78.65 76.12 79.40 79.12 78.65 76.12 79.40
34 26.50 78.28 79.96 69.29 79.31 10.98 26.56 - 7.90 77.90 79.87 66.29 79.31 78.28 79.96 69.29 79.31
35 26.12 79.21 77.81 74.81 79.49 19.43 1.64 18.72 5.85 79.21 77.81 74.81 79.49 79.21 77.81 74.81 79.49

Trec

Avg. 26.50 77.57 78.24 72.77 79.40 17.42 16.38 - 6.14 76.72 78.24 72.17 79.06 77.57 77.42 72.77 79.40

Avg. 43.18 79.37 79.21 77.11 81.13 10.82 14.59 - 6.19 78.80 79.20 76.55 80.87 79.19 78.54 77.11 81.13

DREAM over existing pipelines. The column “Score in Same Trials” denotes the best score each
method achieves within the same search trials (i.e., 25 trials for image datasets and 50 trials for text
datasets). “Score in Same Time” indicates the best search score of each method within the same time
budget in searches (i.e., 24 hours for image datasets and 2 hours for text datasets). In addition, the
cells in blue separately correspond to the searches with the highest score reached in the given trials,
the maximum improvement, the least time cost to reach the target, and the highest score in the
given time budget. The columns “AKG,” “AKB,” and “AKH” refer to the abbreviation of the search
strategies implemented in the AutoKeras pipeline, i.e., Greedy, Bayesian, and Hyperband. The
columns “TPE” and “Grid” refer to the search strategies implemented in the Microsoft NNI pipeline.
The column DREAM shows the search results of our system. To directly illustrate the effectiveness
of DREAM in repairing the ineffective search issue of the AutoML pipeline, Figure 5 shows the
comparison between search strategies of No. 4, No. 17, and No. 30 searches in the same search
trials. We use “AK” and “NNI” in legends to represent the AutoML pipeline of each search strategy,
namely AutoKeras and Microsoft NNI. The X-axis in the figure shows the number of the searched
trials, and the Y-axis is the best score in searches. In addition, Figure 7 displays the comparison
chart between the results of search strategies in No. 8, No. 13, and No. 37 searches within the same
time budget to demonstrate the effectiveness of DREAM in repairing the performance issue. The
X-axis in these figures is the search time, and the Y-axis is the best score during searches.
Analysis. The experiment results illustrate the effectiveness of DREAM in repairing the short-

comings of the AutoML pipelines and conducting effective model searches.
From Tables 3, 4, and 5, we can observe that the searches guided by internal training feedback in

DREAM can search effectively on the datasets and obtain outstanding performance. The repaired
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Table 6. Comparison between NNI Searches and DREAM

Best Score in Search (%) Time to Reach Target (minutes) Score in Same Trials (%) Score in Same Time (%)
Data
Type

Dataset No.
Initial

Score(%) TPE Grid DREAM TPE Grid DREAM TPE Grid DREAM TPE Grid DREAM

36 45.29 67.26 45.38 82.43 - - 139.80 67.26 45.38 82.43 61.29 45.38 82.43
37 33.29 67.05 39.07 85.63 - - 81.83 67.05 39.07 85.63 66.52 39.07 83.25
38 22.82 67.51 39.49 80.64 - - 82.37 67.51 39.49 80.64 61.82 39.49 80.64
39 35.73 67.45 38.66 85.61 - - 73.20 67.45 38.66 85.61 61.30 38.66 85.61
40 31.12 66.39 42.30 83.57 - - 59.40 66.39 42.30 83.57 61.31 42.30 83.57

CIFAR
-100

Avg. 33.65 67.13 40.98 83.58 - - 87.32 67.13 40.98 83.58 62.45 40.98 83.10

41 26.82 70.60 29.16 82.51 642.60 - 156.76 70.60 29.16 82.51 70.60 29.16 77.07
42 27.23 70.33 29.60 83.86 647.28 - 158.49 70.33 29.60 83.86 70.33 29.60 83.70
43 4.79 70.53 29.47 84.41 447.29 - 166.29 70.53 29.47 84.41 70.53 29.47 83.41
44 26.70 70.57 30.10 83.67 458.92 - 149.24 70.57 30.10 83.67 70.57 28.82 74.26
45 31.01 72.10 36.51 84.73 377.49 - 289.50 72.10 36.51 84.73 70.55 36.51 77.44

Tiny
ImageNet

Avg. 23.31 70.83 30.97 83.83 514.72 - 184.05 70.83 30.97 83.83 70.52 30.71 79.18

Image

Avg. 28.48 68.98 35.97 83.70 - - 135.69 68.98 35.97 83.70 66.48 35.85 81.14

46 65.32 68.92 69.28 81.84 - - 9.79 68.92 69.28 81.84 68.92 69.28 76.31
47 63.62 70.44 68.43 88.46 8.88 - 5.33 70.44 68.43 80.43 70.44 68.43 88.46
48 62.96 68.70 69.37 82.19 98.31 124.92 7.55 68.70 69.37 82.19 68.12 69.28 81.33
49 63.22 68.70 68.66 81.04 - - 6.53 68.70 68.66 81.04 67.94 68.25 72.26

Reuters

50 65.63 69.50 69.99 80.12 128.07 - 5.96 69.50 69.99 80.12 68.03 69.06 76.46
Text

Avg. 64.15 69.25 69.15 82.73 - - 7.03 69.25 69.15 81.12 68.69 68.86 78.96

Fig. 5. Evaluation results in the same search trials.

searches of DREAM achieve an average score of 82.99% on image classification tasks in the searches,
which is significantly better than the score of other AutoKeras baselines (i.e., 52.70%, 55.02%, 65.73%).
Figure 5(b) provides the search results of DREAM and AutoKeras methods on the Tiny ImageNet
dataset within 25 trials to intuitively demonstrate the search effect of DREAM.The search in DREAM
achieves a score of about 76% in the second trial. Then it continues to improve the performance in
the 5th, 12th, and 23rd trials and finally reaches the score of 79.90%. By contrast, the best search
strategy implemented in AutoKeras only achieved 62.86% in all 25 trials, and after the 16th trial, it
couldn’t improve anymore. In Figure 5(c), the baseline methods in AutoKeras improve the search
score by up to 17.90% in 50 search trials but still fail to achieve a score exceeding 80%. In contrast,
the search repaired by DREAM has exceeded 80% score in the 3rd trial and ultimately reached
83.22% accuracy after three fruitful trials. The feedback-driven search in DREAM can also conduct
effective searches on image regression tasks. As shown in Table 4, the searches repaired by DREAM
achieve a validation loss of 1370.57 in search, which is 36.39% lower than the best baseline method
Hyperband. DREAM can also obtain better search results (i.e., 81.13%) than AutoKeras baselines on
the text classification tasks, which are improvements of up to 4.02% compared to the AutoKeras
methods. These results further demonstrate the effectiveness and generalizability of DREAM on

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 95. Publication date: April 2025.



DREAM: Debugging and Repairing AutoML Pipelines 95:17

Fig. 6. The search results by DREAM after 10 trials’ history.

diverse tasks, data types, and data contents. Note that compared with the repair results on the
Stanford Cars dataset, DREAM has achieved smaller improvements on datasets such as Reuters
and Trec. Our analysis shows that this is because the latter datasets are relatively simple, and the
local optimal model searched by the AutoML pipeline can still achieve high accuracy, leading to a
small improvement from DREAM’s repair.

To further present the effectiveness of DREAM in repairing AutoML shortcomings, we repair
some searches that are suffering from the ineffective search issue. These searches are guided by
AutoKeras search strategies, but their performance cannot improve significantly after 10 search
trials. DREAM takes their 10th trials as starting points and then repairs and conducts the searches
for another 15 trials. Figure 6 shows a comparison of the searches improved by DREAM and the
original searches on the CIFAR-100 dataset, where the purple dotted line represents the starting
point of the repaired searches of DREAM. We can observe that the effectiveness of the repaired
search is significantly improved. It can quickly improve the accuracy by over 75% within a few
trials, far exceeding other search strategies in the AutoKeras pipeline. This observation further
illustrates that DREAM is equally effective across different search starting points and has significant
advantages over the baseline methods.

The column “Time to Reach Target” in Tables 3 and 5 show that all searches repaired by DREAM
achieve the target accuracy of 70% in the search process. However, only 20/60 searches performed by
the three search strategies in AutoKeras achieve the target accuracy, which suffers from poor search
performance. Among them, the Hyperband search strategy with the best search performance only
achieves the target score in 10/20 searches. The last column further demonstrates the effectiveness
of DREAM in improving search performance. AutoKeras search strategies separately achieve an
average accuracy of 44.85%, 45.45%, and 65.73% on image classification tasks within 24 hours, which
are lower than the search results of DREAM within the same time budget (78.01%). In contrast,
DREAM improves by 12.28% compared with the best AutoKeras method and takes only 9.84 hours
on average to reach the target score. The improvement of DREAM in search efficiency can also
be observed in text datasets. As shown in Table 5, the time cost of DREAM to reach the target
score is reduced by 42.79% and 57.57% compared with Greedy and Hyperband in AutoKeras. In
addition, DREAM separately improves the best score AutoKeras methods achieve in the given time
budget by 1.94%, 2.59%, and 4.02%. Take Figure 7(a) for example, we can notice that the search
repaired by DREAM reaches an accuracy of nearly 70% within 6 hours after starting searching and
further improves and reaches the target score in 13.34 hours. Hyperband strategy with the best
performance of the AutoKeras search strategies only achieves an accuracy of 55.61% in about 15
hours and ultimately fails to meet the search target. Bayesian search strategy, which solves the
model searching as an ML problem and learns from the search histories, only obtains an accuracy
of 35.94% in 24 hours and finally spends 82.24 hours to reach the target score. Compared with
the Bayesian strategy, the efficiency of the search repaired DREAM improves by 5.16 times, and
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Fig. 7. The search results in the same time budget.

DREAM saves 24.14 kWh of electricity and emits 10.43 kg less CO2 and carbon footprints in this
single search. The above results prove the effectiveness of DREAM in searching models in the given
time budget, and the searches in DREAM have significantly higher search performance and search
efficiency.

Furthermore, the search results in Table 6 demonstrate that the ineffective search and performance
issues are common shortcomings of the AutoML pipelines, and the mechanisms of DREAM can
be generalized to other pipelines and effectively repair shortcomings. Even after using up all the
search budget, the TPE and Grid searches in NNI can only achieve an average score of 68.98%
and 35.97% on two image datasets and 69.25% and 69.15% on the text datasets. Only TPE can
achieve the target accuracy of 70% in searches on the TinyImageNet dataset, which takes 514.72
minutes on average. In contrast, the repaired searches of DREAM have achieved a score of 83.70%
on image datasets, showing an improvement of 14.72% over the search results of the best NNI
method. Moreover, the searches of DREAM can achieve the target accuracy in all searches on
image and text datasets with a time cost of 135.69 and 7.03 minutes, respectively. Take the No. 37
search in Figure 7(c) as an example. The TPE and Grid methods in NNI separately achieve scores
of 66.52% and 39.07% after 24 hours of search, and none of them reaches the target. In contrast,
the search repaired by DREAM achieves 76.44% at the second hour and then continuously searches
for potential actions to improve the model and finally achieves 83.25% after four effective trials
within 24 hours.

Answer to RQ1: AutoML pipelines suffer from ineffective search and performance issues. DREAM
can effectively mitigate these shortcomings and search for a model with excellent performance
on image and text datasets of different tasks and content within several search trials or hours,
ultimately achieving search results that outperform baseline methods. Especially on large-scale
datasets such as Stanford Cars and Tiny ImageNet, the repair effect of DREAM is more prominent.

5.3 Ablation Study
Experiment Design. DREAM provides three mechanisms to repair the performance issue and
ineffective search issue in the AutoML engines, which are the search space expansion, the feedback-
driven search, and the feedback monitoring. To understand the contribution of the solutions in
DREAM, we conduct two ablation experiments on the CIFAR-100 and TinyImageNet datasets to
study the performance of the search space expansion and the pre-built feedback-driven search in
repairing. Considering that the feedback-driven search fixes the shortcomings together with the
feedback monitoring, we treat these two mechanisms as one solution in the experiments. The first
experiment uses the three search methods of the AutoKeras pipeline to search on the expanded
search space to study whether the search space expansion in DREAM helps improve the search
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Table 7. Ablation Study Results of Search Space Expansion

Best Score in Search (%) Score Improvement (%) Time to Reach Target (hour) Score in Same Time (%)
Dataset

Search
Method

Initial
Score (%) Ori. Exp. Ratio Ori. Exp. Ratio Ori. Exp. Ratio Ori. Exp. Ratio

AKG 20.73 34.23 83.66 2.44 13.50 62.94 4.66 18.32 7.62 0.42 77.79 83.66 1.08
AKB 22.26 67.79 80.47 1.19 45.53 58.21 1.28 - 14.30 - 67.79 80.47 1.19
AKH 4.68 68.21 82.70 1.21 63.53 78.03 1.23 5.45 4.00 0.73 80.21 82.70 1.03

CIFAR-100

Avg. 15.89 56.74 82.28 1.45 40.85 66.39 1.63 - 8.64 - 75.26 82.28 1.09

AKG 21.58 29.34 81.40 2.77 7.76 59.82 7.71 - 15.43 - 27.38 81.40 2.97
AKB 22.24 22.24 78.07 3.51 0.00 55.84 - - 47.05 - 21.57 21.81 1.01
AKH 19.94 71.50 81.28 1.14 51.56 61.34 1.19 1.71 3.44 2.01 76.98 81.28 1.06

Tiny
ImageNet

Avg. 21.25 41.02 80.25 1.96 19.77 59.00 2.98 - 21.98 - 41.97 61.50 1.47

Avg. 18.57 48.88 81.27 1.66 30.31 62.70 2.07 - 15.31 - 58.62 71.89 1.23

performance. In the second experiment, we use the original search space in all searches and only
compare the search strategy in DREAM with three AutoKeras search methods to explore whether
the feedback-driven strategy can conduct more effective and efficient searches. All experiments
search for at least 25 trials and 24 GPU hours.

Fig. 8. Ablation study of feedback-driven search on two datasets.

Results. Table 7 shows the ablation
experiment results of the search
space expansion. The first three
columns in this table show the
dataset, search methods, and the
score of the initial models. The col-
umn “Best Score” lists the best score
each search reaches in the com-
plete search, and “Score Improve-
ment” shows the absolute accuracy
improvement that the best score
achieves. “Time to Reach Target” and
“Score in Same Time” separately show the time cost to achieve the target score of 70% and the best
score each method achieves in 24 hours. Columns “Ori.,” “Exp.,” and “Ratio” separately display the
search results on the original and the expanded search space, and the ratio between the two results.
Blue cells mark the best results between different search methods. In addition, Figure 8 shows the
ablation experiment results of the feedback-driven search. The X-axis shows the searched trials,
and the Y-axis is the best score during searches.
Analysis. The experiment results illustrate the effectiveness of each solution in DREAM in

searching on given tasks. Table 7 shows that the expanded search space can lead to much better
models on the given datasets. It achieves an average accuracy of 81.27% on the six searches with
three search strategies of the AutoKeras pipeline, which is significantly better than the 48.88%
accuracy of the searches on the original search space. For instance, on the TinyImageNet dataset,
the search on the expanded search space improves the initial score by 59.00%, which is 2.98 times
the improvement of the original search space. In addition, we can observe that it is difficult for
the search strategies to achieve the target accuracy rate of 70% in the original search space, let
alone 80%. In contrast, after implementing the search space expansion, almost all methods reach
80% accuracy within the same search trials and search time, illustrating the role of the additional
search actions in fixing search performance problems. The last two columns of Table 7 show that
after expanding the search space, the search methods take an average of 15.31 hours to reach the
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target accuracy. On average, the search results within 24 hours can reach a score of 71.89%, which
is an increase of 22.63% compared to the score before expansion. This shows that expanding the
search space can help improve the search efficiency and performance of the AutoML pipeline. We
have manually analyzed the optimal models found in the expanded search space. The analysis
results indicate that all these models use additional training optimization search actions, such as
fine-tuning with two-step training and three-step training. These expanded search actions greatly
improve the model performance and help the models achieve accuracy far exceeding those of the
models on the original search space.

Figure 8 shows that the feedback-driven search has significant improvement in the effectiveness
and efficiency of searching models. This search method can quickly improve the accuracy to about
80% within several trials, while the baseline search strategies are difficult to achieve 70% accuracy
during the whole 25 trials. Take Figure 8(a) as an example, the feedback-driven search process
first searches for the actions that change the model architectures to XceptionNet and enables the
trainable setting of the pre-trained model, which improves the model accuracy to 68.77%. Then it
changes the value of imagenet size parameter in the model and applies other actions according
to the priority under the current conditions to further improve the search score, and finally breaks
the 80% accuracy in the fourth trial. Notably, the feedback-driven search takes 0.61 hours to reach
70% accuracy, while Hyperband, the best-performing search strategy in AutoKeras, requires 5.45
hours. The Bayesian search strategy doesn’t even reach the target score in 43 hours of search.

In addition, the results in Table 7 further highlight the contribution of the feedback-driven search
to solving the shortcomings of the AutoML pipelines and improving search efficiency. Replacing
the feedback-driven search in DREAM with other search strategy leads to a significant decrease in
search performance. Taking the results on the TinyImageNet dataset as an example, we can observe
that compared with the search effect of DREAM in Table 3, replacing feedback-driven search with
other baseline methods results in a 6.53× decrease in search efficiency (i.e., the time to reach the
target is improved from 2.97 hours to 21.98 hours), and the best score within 24 hours decreases
from 78.79% to 61.50%.

Answer to RQ3: The two solutions implemented in DREAM can effectively solve the shortcomings
in the existing AutoML pipelines and have significant contributions to conducting effective
searches. Specifically, the search space expansion can assist the search method to find a model
architecture with much better performance. The feedback-driven search method can drasti-
cally improve the efficiency of the model searching process so that the models with excellent
performance can be found in the early stage of the searches.

5.4 Effects of Different Priorities
Experiment Design. DREAM leverages a built-in search priority to determine the optimal action to
improve the search under different conditions. To verify the effect of the search priority, we conduct
a comparative experiment with different priority settings on four datasets. In the experiment, we
randomly generate three different search priorities to compare with the built-in search priority in
DREAM. Each search contains 25 trials, and the other configurations follow Section 5.1. The initial
models and training configurations of the searches with different priorities are the same.

Results. The search results of different priorities on four datasets are shown in Figure 9. The red
line represents the search results of the built-in search priority of DREAM, while the green, blue,
and orange lines show the random search results.

Analysis. As shown in Figure 9, the search effect of DREAM is significantly better than the effect
based on random priorities. Additionally, DREAM can often obtain outstanding search results
within the first ten trials. In contrast, the searches with random priority are always difficult to
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Fig. 9. The search results with different priorities on different datasets.

improve the training effect of the models. They often fail to achieve 60% accuracy in dozens of
hours of searching. This significant difference illustrates the effectiveness of the built-in search
priority of DREAM in repairing searches.

To further analyze the impact of priority on search performance, we manually analyze the
searches in Figure 9 to understand how the priority in DREAM guides the search process. Taking
Figure 9(d) as an example, the summarized feedback of the initial model is “RA-NC-NG-NW.” Based
on the built-in priority in Table 2, the search process in DREAM searches for “block type=xception”
and “trainable=True” actions first. These actions change the model architecture and the trainable
hyperparameter and significantly improve the model performance from 21.49% to 74.19% in the
second trial, and the summarized conditions of the feedback turn to “XA-NC-NG-NW.” Then
DREAM tries to change the value of imagenet size hyperparameter and applies the actions that
change the AdamW optimizer configuration, increasing the search score to 77.67%. At this time, the
searches with random priorities attempt to search for actions such as adjusting the learning rate to
0.01, but only slightly improving the scores, no more than 50%. Subsequently, DREAM continues to
search for actions such as changing the model architecture to EfficientNet and finally reaches 83.60%
accuracy in the 18th trial. In contrast, the random priority-driven search with the best performance
(i.e., “Random C” in Figure 9(d)) only obtains the best score of 56.54% by adjusting the learning rate
of Adam optimizer to 0.001.

Answer to RQ4: The priority of the search actions has a significant impact on the search process
in DREAM, and inappropriate priority can degrade the search results. The built-in search priority
in DREAM which is evaluated and summarized from large-scale experiments can reasonably
select actions in the search space based on the current conditions. Therefore, the search process
in DREAM can conduct effective and efficient searches on the given tasks.

6 Related Work
In this article, we provide a search method based on the internal feedback and search action
distribution to repair the shortcomings in AutoML pipeline and conduct an effective search on the
given tasks. It is highly related to AutoML, debugging and optimizing AutoML, and DNN training
and optimization.

AutoML. For ML tasks, researchers propose various tools, such as Auto-WEKA [99], hyperopt-
sklearn [64] and autosklearn [1, 40, 42]. Their optimization methods mainly contain Bayesian
optimization and evolutionary algorithms [41, 93]. These works mainly focus on traditional ML
models while DREAM focuses on searching DNN models. With the development of DNN, Common
NAS algorithms include Bayesian optimization [37, 57, 59, 84, 106, 112], deep Reinforcement
Learning (RL) [22, 87, 115, 116], evolutionary algorithms [46, 90, 96, 108], and gradient-based
methods [28, 39, 48, 73, 77, 107]. HPO algorithms mainly based on Bayesian Optimization method
[23, 24], gradient-based method [32, 86]. Based on the existing optimization methods on searching
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models, the open source AutoML pipelines for DNN are implemented, such as AutoNet [80], Auto-
Pytorch [114], Microsoft NNI [15], and AutoKeras [13]. The most popular among them are Microsoft
NNI and AutoKeras. NNI provides an AutoML toolkit for practitioners with certain expertise,
including NAS and model compression AutoKeras is based on TensorFlow and implements 3 search
algorithms (i.e., Greedy, Bayesian [57], Hyperband [71]) besides Random search. It provides a
simple operation interface and implements a highly automated model search pipeline, making it
easy for users without any professional knowledge to use. In this article, we choose to compare
DREAM with AutoKeras because it provides a highly automated model search pipeline and an
easy-to-use interface. DREAM is currently implemented on top of TensorFlow and AutoKeras. How
to generalize and implement the search method of DREAM in other pipelines will be one of our
future directions.

Debugging and Optimizing AutoML. Researchers have comprehensively studied the application
of AutoML pipelines and systems as well as the problems and challenges faced therein [25, 29, 36,
100, 104]. Wang et al. [104] conduct an in-depth empirical study on a series of AutoML systems,
such as AutoKeras and NNI, and build a taxonomy of challenges they faced, including search space
customization, model reproduction, and data adaption. To overcome these challenges and optimize
the AutoML pipelines, researchers have proposed a variety of methods [31, 43, 84, 92]. Nguyen
et al. [84] propose a novel NAS method to mine and select the initial models from the GitHub
repositories. In contrast, DREAM focuses on selecting the suitable search action to improve the
current optimal model based on the training feedback. These two approaches are orthogonal and
have the potential to be used in combination.
DNN Training and Optimization. To improve DNN training efficiency and performance,

researchers have proposed various training strategies [30, 75], optimization methods [68, 82],
etc. Lai et al. [68] propose a novel method that converts the weights of a trained model to initialize
and warm up the training of a new model, thereby accelerating model convergence and reducing
the total amount of training needed. This solution has the potential to work with the AutoML
pipelines to accelerate the training of each search trial. In addition, the researchers also propose
modifying the given model’s activation, initializer, and architecture to improve model performance
and results [49, 61, 77, 89]. The existing work has provided valuable inspiration for the search
space expansion of DREAM. Luo et al. [77] use an encoder to embed/map the neural network
architecture into a continuous space and then perform gradient-based optimization to find the
optimal architecture. Their approach focuses on searching for the model architecture rather than
building a comprehensive pipeline for both model architectures and hyperparameters like NNI
and AutoKeras.

7 Discussion
AutoML Pipelines’ Shortcomings. ¶ DREAM focuses on ineffective search and performance issues,
which are common and serious shortcomings in the AutoML pipelines. In addition to the NNI and
AutoKeras, other AutoML pipelines such as Auto-Pytorch [114] and AutoSklearn [1] also have issue
reports related to inefficient search and failure to improve models [11, 12]. As we have discussed
in Section 3.2, the root cause of these issues lies in the shortcomings in pipeline design, that is,
the neglect of valuable search space and useful feedback from the training procedure. Existing
pipelines (e.g., Auto-Pytorch and AutoKeras) generally use the basic structure in Figure 1 and
leverage simple feedback (i.e., score) to guide the search of model architecture and hyperparameters.
Moreover, they rely on random walks or statistical models in searches, which makes it difficult
to effectively predict optimal search actions to improve models. To fix the AutoML shortcomings
and conduct effective searches, DREAM has designed repair mechanisms on the top of the basic
stages of AutoML pipelines, namely search space expansion, feedback-driven search, and feedback
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monitoring, which can be universally applied to different pipelines. · Existing AutoML pipelines
have other shortcomings, such as the lack of optimization and support for domain-specific tasks
[104], which limits their usability. Specifically, some AutoML pipelines (e.g., NNI [15], TPOT [69])
require users to define the search space and the modules in the pipeline for downstream tasks.
Such a design requires users to have certain knowledge of DL techniques, which violates the design
intention of the AutoML pipeline. How to further improve the usability of AutoML systems, such
as automatically generating search space based on the given dataset and task, will be a potential
future direction.
DREAM Enhancement. ¶ DREAM currently supports repairing NNI and AutoKeras, which are

two of the most popular AutoML pipelines. Note that the mechanisms implemented in DREAM
are built on the AutoML basic pipeline rather than designed for a specific pipeline. How to extend
DREAM to support more AutoML systems will be our future work. · To improve the AutoML
search results, DREAM focuses on the search space and search strategy and designs improvement
mechanisms. Researchers have pointed out that optimization in model training, such as using the
weights of existing models to warm up the new model training [68], is of great help to model
performance, which has been overlooked in AutoML pipelines. How to integrate the existing model
training optimization scheme into DREAM and further improve the search performance will be one
potential enhancement direction of DREAM. ¸ Based on prior work [20, 53, 76, 81, 113], DREAM
has designed 14 conditions from four angles to summarize and describe current model training,
which roughly covers various situations encountered by the model during searches. More diverse
angles and detailed conditions can help calculate and design corresponding priorities and more
effectively guide the search. Expanding the conditions and refining the search priority will be a
future direction. Note that adding new conditions does not require restarting the entire experiment
in Section 7. It only requires obtaining several models with new conditions, then applying different
search actions to modify the model and recording and measuring the impact on the training results
(e.g., score) of the modified models.
Another Strategy in DREAM. DREAM utilizes the search space expansion and feedback-driven

search to conduct effective searches based on greedy methods. These mechanisms in DREAM can
also be applied to other search methods, such as beam search, which is a common heuristic greedy
search strategy and widely used in NLP and speech recognition models to choose the best output
[79, 95]. It builds the search tree with a breadth-first search over the search space and generates all
successors of the states at each level of the tree and sorts them by their performance. The number
of the stored states is equal to the width of the beam, which means that the larger the beam width,
the fewer states to prune and the higher the search overhead. When the beam width is 1, the search
process will be equivalent to the greedy search. To understand the actual effect of beam search as
an alternative search method, we construct a comparative experiment on the CIFAR-100 dataset.
The beam width is set to 3. We implement two kinds of beam searches in the experiments, namely
a search trained directly on the full dataset without the subset and a search trained in two steps.
For the latter, in the first step, we train nine searched models with the highest priorities, which are
generated from the previous search, on a 10% subset of the CIFAR-100 dataset. Then in the second
step, the three models with the best performance in the first step are reserved for the complete
training. All hyperparameters in the models in searches have a chance of 0.01 to randomly mutate.
We observe that the search performance of greedy search usually outperforms two-step beam
search and complete beam search. Our analysis shows that the root cause of the performance
difference is that the beam search trains more models, and most of them help little in improving
the search performance. This results in that the search efficiency of beam search is worse than that
of greedy search in the case of the same search space and search priorities. Even for the search
that most of the models are trained on the subset, the time spent on beam search to reach 80%
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accuracy is still much larger (e.g., nearly 6 hours) than the time spent on greedy search due to
the time overhead of training additional models. Therefore, for the consideration of efficiency and
effectiveness in search, we select the greedy method as the default strategy of DREAM.

DREAM and RL. RL is a family of ML that focuses on how to take actions based on the environment
to maximize rewards [55, 58]. RL has been widely used in software engineering and software testing
[21, 103].The overall process of RL can be represented as follows. Given a state ( in the environment,
an agent selects an action 0 based on a state transition %0 ((, ( ′) and enters a new state ( ′, receiving
the reward A . The optimization problem is to find a reward model that maximizes the cumulative
reward during the process. The high-level approach of DREAM is similar to RL. The best model
in the search history of the AutoML pipeline and its corresponding feedback conditions can
be considered as the state ( . DREAM implements search space expansion and feedback-based
search to select the search action 0 for ( and obtain a new model and its corresponding training
feedback ( ′. The reward 0 is the score improvement of the new model relative to the historical best
model. DREAM utilizes pre-calculated search priorities as the reward model to guide the search
and maximize the accumulation of rewards in the search process. Therefore, how to obtain and
calculate search priority is vital for DREAM. As shown in Section 5.4, ineffective search priority
can lead to poor search performance, with the search process failing to improve after dozens of
search trials. We recommend that users follow to evaluate each search action on diverse datasets
before deploying DREAM. In addition, RL techniques provide potential enhancement directions for
DREAM. Currently, the search priorities in DREAM do not change based on rewards during the
search process, and the greedy search it implemented emphasizes short-term rewards. Advanced
RL methods (e.g., Q-learning [19, 105]) provide a feasible direction to dynamically adjust search
priorities based on the given dataset during the search and further improve DREAM’s performance.

8 Conclusion
This article presents DREAM, an automatic repair system for AutoML pipelines shortcomings,
namely the performance issue and ineffective search issue. DREAM collects detailed feedback from
the model training and evaluation. Then it repairs the shortcomings by expanding the search space
and conducting a feedback-driven search. Our evaluation results on six image and text datasets and
two AutoML pipelines show that DREAM can effectively and efficiently fix AutoML shortcomings,
and the repaired search obtains better results than state-of-the-art AutoML pipelines.
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