
20
21

 I
E

E
E

/A
C

M
 4

3r
d 

In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

of
tw

ar
e 

E
ng

in
ee

ri
ng

 (
IC

SE
) 

| 9
78

-1
-6

65
4-

02
96

-5
/2

0/
$3

1.
00

 ©
20

21
 I

EE
E

 | 
D

O
I: 

10
.1

10
9/

IC
SE

43
90

2.
20

21
.0

00
43

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

Au t o Tr a in e r : An Automatic DNN Training 
Problem Detection and Repair System

Xiaoyu Zhang*, Juan Z hait, Shiqing M at, Chao Shen*
* School of Cyber Science and Engineering, Xi’an Jiaotong University, Xi’an, China 

t Rutgers University, United States
Email: zxy0927@stu.xjtu.edu.cn, {juan.zhai, shiqing.ma}@rutgers.edu, chaoshen@xjtu.edu.cn

Abstract—With machine learning models especially Deep Neu-
ral Network (DNN) models becoming an integral part of the 
new intelligent software, new tools to support their engineering 
process are in high demand. Existing DNN debugging tools are 
either post-training which wastes a lot of time training a buggy 
model and requires expertises, or limited on collecting training 
logs without analyzing the problem not even fixing them. In this 
paper, we propose Au t o Tr a i n e r , a DNN training monitoring 
and automatic repairing tool which supports detecting and auto-
repairing five commonly seen training problems. During training, 
it periodically checks the training status and detects potential 
problems. Once a problem is found, Au t o Tr a in e r  tries to fix 
it by using built-in state-of-the-art solutions. It supports various 
model structures and input data types, such as Convolutional 
Neural Networks (CNNs) for image and Recurrent Neural Net-
works (RNNs) for texts. Our evaluation on 6 datasets, 495 models 
show that Au t o Tr a in e r  can effectively detect all potential 
problems with 100% detection rate and no false positives. Among 
all models with problems, it can fix 97.33% of them, increasing 
the accuracy by 47.08% on average.

Index Terms—software engineering, software tools, deep learn-
ing training

I. In t r o d u c t i o n

In the new Software Engineering (SE) 2.0 era, software is 
developed with an intelligent component which is usually pow-
ered by Machine Learning (ML) techniques. Recent advances 
in Deep Learning (DL) have already made it possible for end 
users to benefit from the intelligence of software. For example, 
Google has deployed new DL based NLP techniques to help 
improve its search results [1]. Facebook launched Shops which 
bring more businesses online during the COVID pandemic, 
and made it possible to search for clothes using over tens 
of thousands of image attributes. All of these are enabled by 
software created in SE 2.0.

With this new trend of SE 2.0, developing the DL com-
ponent, represented by Deep Neural Network (DNN) models, 
becomes an integral part of the whole process. DNN models 
and other DL methods, just like other programs, also have bugs 
and its own vulnerabilities, which brings many new challenges 
of SE research on debugging and repairing DNN model and 
its development process. New tools that can help the devel-
opment of intelligent components will greatly help developers 
especially for the ones who are new to these techniques. There 
are already some efforts trying to study this problem [2, 3]. 
For example, MODE [4], proposed as a DNN debugging 
technique, identifies faulty neurons that lead to undesirable

behaviors and selects additional training samples to correct 
these neurons behaviors to improve model accuracy. We refer 
to such techniques as post-training techniques, which focuses 
on fixing model problems whose training has been completed. 
However, many existing tools are not automatic and require 
expertises, which makes them difficult to use for developers 
new to this field. More importantly, we observe that many DNN 
problems have been exposed in the training process, and post-
training techniques have a delay in detecting such problems. 
As such, a lot of resources are wasted in training a problematic 
model which can be saved if we can detect the problem early in 
training. Thus, a runtime monitoring and detecting technique 
is highly needed.

Existing DNN training frameworks have provided lim-
ited support for training monitoring and detection. Tensor-
Board [5], known as the default debugger of TensorFlow is a 
toolkit which can record various values and provide the visu-
alization during the training process. For example, it can track 
and visualize metrics like loss, and demonstrate histograms of 
weights as they change over time. There are some other similar 
tools, such as Visdom [6 ], TensorWatch [7], and Manifold [8 ]. 
Just like traditional debuggers (e.g., Microsoft Visual Studio 
Debugger which allow programmers to track variable values 
and operations as well as monitoring the changes of computing 
resources, these tools can facilitate developers in inspecting 
and understanding the model training status. However, they 
lack the capability of analyzing the collected data and provide 
meaningful fixes, which makes them less useful.

Through our analysis, we found that 1) a training problem 
happens or not is random even for the same training script; 2 ) a 
training problem happens randomly during the training whole. 
To be more specific, because of the randomness in training 
(e.g., initialization of weight values, training data sequences), 
running the same training scripts may get different results. As 
such, a training problem may happen in some cases but not 
in other cases. And similarly, a training problem may happen 
in any training iteration (if it happens). We have provided real 
cases in §III. Considering the fact that many DNN training 
tasks may take days or even months, it is infeasible for 
developers to watch the numbers or curves all the time to 
manually detect potential problems which may occur at any 
time. Unfortunately, although these runtime tools can collect 
and exhibit data, they are incapable of analyzing the data to 
diagnose problems, let alone leveraging solutions to alleviate
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these training problems. To address the aforementioned limita-
tions, a tool that relieves developers from manually monitoring 
the training procedure is needed. In addition, the tool will have 
to automatically analyze data, diagnose and resolve problems 
during training, so as to increase productivity and efficiency 
for developers as well as improve the reliability of intelligent 
software systems.

In this paper, we propose Au t o Tr a i n e r , a dynamic 
approach that detects and repairs potential DNN training 
problems. The training problems that Au t o Tr a i n e r  focuses 
on are vanishing gradient, exploding gradient, dying ReLU, 
oscillating loss and slow convergence, and Au t o Tr a i n e r  

is capable of handling various model structures including 
convolutional neural networks (CNNs) and Recurrent Neural 
Networks (RNNs). And these can be easily extended as 
long as a problem definition is provided. Given a model 
with its training configuration (e.g., hyper-parameter, opti-
mizers), Au t o Tr a i n e r  will start training the model and 
record relevant data like loss values. During the moni-
toring, Au t o Tr a i n e r  conducts regular analysis to recog-
nize potential training problems. If a problem is detected, 
Au t o Tr a i n e r  will try to fix it with built-in solutions. These 
solutions are constructed based on the state-of-the-art work, 
which have been demonstrated to work well in solving the 
corresponding problems [9- 12]. During the repair (retraining) 
procedure, if another problem is detected, Au t o Tr a i n e r  will 
regard the old problem as resolved and attempt to repair the 
new problem. If no more problems are detected, it means all 
the problems have been addressed by Au t o Tr a i n e r  and the 
trained model with its configuration is delivered to the user. If 
Au t o Tr a i n e r  fails to solve this problem, it will notify the 
user with complete training log. Our contributions are:

• We summarize and formalize definitions for the symp-
toms of 5 common training problems.

• We propose the first automatic approach to detect and 
repair 5 different training problems during model training.

• We develop a prototype Au t o Tr a i n e r  based on the 
proposed idea, and evaluate it with 6  public datasets 
and 495 models. The evaluation results demonstrate that 
Au t o Tr a i n e r  can effectively detect all 316 problems 
for 262 models and repair 309 problems of them with 
a ratio of 97.78%. On average, the test accuracy can be 
improved from 32.46% to 79.55% (1.5x higher).

• our implementation, collected datasets, configurations, 
and problem solutions are publicly available at [13].

T h r e a t  t o  V a l i d i t y .  We have tried our best to obtain as many 
models as possible. Au t o Tr a i n e r  is currently evaluated 
on 6  datasets and 495 models, which may still be limited. 
Similarly, there are many configurable parameters used in 
Au t o Tr a i n e r , and even though our experiments show that 
they are good enough to achieve high detection and repair 
results, this may not hold when the number of models is 
significantly larger. To mitigate these threats, all the original 
and repaired training scripts, model architecture and training 
configuration details, implementation including dependencies,

and evaluation data (e.g., training logs) are publicly available 
at [13] for reproduction.

II. Ba c k g r o u n d

A. DNN Model Training
A DNN model is a parameterized function Fg : X  n- Y , 

where x  e  X  is an m —dimensional input (i.e., x  e  Rm) and 
y e  Y  is the corresponding output label. It usually composes 
of several connected layers. Formally, an n-layered DNN can 
be written as F  =  li o l2 o ■ ■ ■ o ln, where l represent a 
layer. Each l can be expressed as a function whose output is 
Fi = a(9l * Fl_ i +  bl) where 9i and b are the weight and 
bias values of layer l. a  is known as the activation function 
(§II-C). The input layer li takes raw inputs and passes them 
on to the subsequent layer. Hidden layers extract the features 
of the input, and the output layer ln is trained to predict 
the output based on the extracted features. The links between 
consecutive layers are represented using a set of matrices. The 
numerical values in such matrices are referred to as weight 
parameters. Given a large set of input-output pairs (xj,yj), 
training a DNN model is to update all weight parameters 9 
to minimize the differences between a predicted result Fg (x) 
and the corresponding ground truth label y. Such differences 
are measured by a loss function L(F g(x),y). Thus, training a 
DNN essentially is to minimize the value of L.

Specifically, training a DNN model consists of the following 
phrases. The first step is initialization which initializes the 
weight matrices. Then starting from the input layer, the for-
ward propagation step uses existing weight values to predict 
output labels for the training samples, and calculates the 
value of L based on predicted output and ground truth labels. 
Afterwards, the backward propagation step tweaks the weight 
values from the output layer all the way back to the input 
layer, trying to minimize the difference using an optimization 
method which is usually a gradient descent algorithm or its 
variants. The forward propagation and backward propagation 
steps will be repeated until the difference converges to a 
minimum value meaning reaching the stopping criteria, or has 
reached the maximal number of training iterations allowed.

B. Gradient Descent
In DNN model training, a loss function evaluates the 

prediction ability of a DNN model, and a smaller value of the 
loss function means a better model. Thus, the training goal is 
to obtain weight values which result in a minimum loss value. 
Gradient descent algorithm and its variants are commonly used 
to solve this optimization problem. It works by tweaking the 
weights in the opposite direction to the gradient of the loss 
function. Specifically, each weight has an update proportional 
to the partial derivative of the loss function with respect to the 
current weight. The gradients are usually calculated by auto 
differentiation (AD) techniques leveraging the chain rule. As 
such, computing the gradient for a weight has an effect of 
multiplying many numbers (from subsequent layers).

Normally, a neural network is designed to have many layers 
to improve its capacity. Increasing the number of layers can
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enable a neural network to train on a large-scale training 
dataset and efficiently learn more complex mapping functions 
from inputs to outputs. However, the addition of layers can 
have negative impacts on training. The common problems are 
vanishing gradient and exploding gradient.

P r o b l e m  1  (Vanishing Gradient Problem). In backward prop-
agation, when the gradient is computed by multiplying many 
small number, the gradient can be vanishingly small, espe- 
ciallyfor layers that are close to the input layer. Consequently, 
the weights can hardly be changed and the loss function can 
end up with a very large value, meaning the trained model 
would have a low accuracy. Such a problem is referred to as 
vanishing gradient (VG).

S y m p t o m s  o f  V G .  The gradient decreases exponentially from 
layer to layer and is close to zero in the layers close to the 
input layer, and the training accuracy remain low.

P r o b l e m  2  (Exploding Gradient Problem). In contrast to 
VG, the gradient can grow exponentially as it is propagated 
backwards. This also leads to NaN or unexpected large values, 
which results in bad model accuracy. Such a problem is 
referred to as exploding gradient (EG).

S y m p t o m s  o f  E G .  The gradient increases exponentially from 
(output) layer to (input) layer during backward propagation 
and can become large or even NaN  value in the layers close 
to the input layer, and the training accuracy is low.

C. Activation Function

Intuitively, each neuron in a DNN can be regarded as one 
special feature to differentiate between the given inputs. Given 
a set of inputs, each neuron computes the weighted sum and 
then adds a bias to the sum. After that, an activation function 
takes the computed sum as input and produces an output for 
the neuron. Specifically, the activation function determines 
how much the input is relevant for the following stage, guiding 
the neural network to leverage important features and suppress 
irrelevant features.

ReLU (Rectified Linear Unit) is a widely-used activation 
function in a neural network [14- 16], which outputs the 
same value if the input is positive and outputs zero if the 
input is non-positive (i.e., ReLU (x) = m ax{x , 0}). Existing 
work [17] has demonstrated its excellent training effect. It 
effectively improves the sparsity of the model, achieving better 
training convergence and accuracy. However, using ReLU has 
its own limitations, among which dying ReLU is the most 
common and serious one.

P r o b l e m  3  (Dying ReLU). When a ReLU neuron receives a 
non-positive input, it will output zero, making the neuron inac-
tive. In such cases, the neuron is very likely to remain inactive 
forever since a gradient-based optimization algorithm will not 
tweak the weights for an inactive neuron. Consequently, such 
neurons cannot be leveraged to distinguish between the inputs 
and ground truth, and if  there are many such neurons, we may 
end up with a large part o f the neural network contributing

nothing to the prediction task. This is known as the dying 
ReLU (DR) problem.

S y m p t o m s  o f  D y i n g  R e L U .  When training a DNN with ReLU 
as the activation function, the gradients of a large percentage 
of the neurons are zero and the training accuracy is low.

D. Convergence

The training goal is to reduce the loss value converge to 
a minimum. To determine the point of convergence, there 
are usually two conditions. one is that the training time has 
reached the maximal allowed iteration ( defined by the user). 
And the other one is that the training accuracy has reached 
desired values. In some training cases, we may end up with a 
set of low accuracy models even after the maximal number 
of training iterations, and they are usually caused by two 
problems: oscillating loss and slow convergence.

P r o b l e m  4  (oscillating Loss). It is inevitable for the loss value 
to go up and down during the training procedure. But if  there 
are large changes without decreasing trend, the training may 
not converge in a very long time which should be enough for  
training the model. We refer to such a problem as oscillating 
loss (OL).

S y m p t o m s  o f  O L .  The training accuracy keeps fluctuating in 
a large range for a long time.

P r o b l e m  5  (Slow Convergence). The loss value has a high 
value and decrease so slow that no significant accuracy 
improvement has been made, and it may end up with low 
accuracy even when the maximal number of training iteration 
is finished. We refer to such a problem slow convergence (SC).

S y m p t o m s  o f  S C .  The training accuracy holds a low value 
for a long time even though the loss is decreasing slowly.

III. Id e n t i f y i n g  DNN Pr o b l e m s  Du r i n g  Tr a i n i n g

As far as we know, there is no existing tool that can 
help users identify the aforementioned DNN problems during 
training. TensorFlow provides a TensorBoard Debugger [5] 
tool to help users inspect program variables (e.g., loss value) 
and inserting assertions. PyTorch also allows users to do the 
same thing by using PyTorch Hooks [18]. However, it requires 
expertises to perform the required analysis and patching to 
solve this problem. While many of these problems are common 
problems in DNN training, their symptoms and solutions 
have been studied and analyzed. In this paper, we propose 
Au t o Tr a i n e r , a DNN training tool that can automatically 
monitor DNN internal values (i.e., neuron activations and 
gradients), loss values and training accuracy values during the 
training procedure and inspect possible problems. If a problem 
is identified, Au t o Tr a i n e r  will try to automatically fix it. 
Au t o Tr a i n e r  is designed to be a training time monitoring 
and fixing tool because of the following:

•  T r a i n i n g  p r o b l e m  o c c u r r e n c e  i s  h i g h l y  r a n d o m .  When 
training a model using the same configuration and training 
dataset for multiple times, whether a problem occurs or not
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■ Dying ReLU Not Happened: 
20 cases Avg ACC: 85.34%

■ Dying ReLU Happened:
80 cases Avg ACC: 11.35% 
Repaired ACC: 93.23%

29% 0~9: 50 cases Avg A
10—19: 9 cases AvgA 
20~29: 8 cases AvgA 
30—49: 4 cases AvgA 
No 29 case Avg A 
Repaired Acc: 97.65%

90.36%
89.82%
86.89%
85.99%
90.47%

(a) Occurrence (b) Time of Occurrence

Figure 1. Problems Occurrence and Time of Occurrence are Random

in a training procedure is random. This is because there are 
many random values used in DNN training. For example, the 
weight values are usually initialized with random values. In 
some cases, one problem will occur because of these random 
values while it will not happen in some other cases.

We train a DNN model with 34 layers (650,000 parameters) 
on the MNIST [19] handwritten digit dataset (50,000 training 
and 10,000 testing samples). In this model, we also use ReLU 
as the activation function, Adam as our optimizer, and set our 
learning rate to be 0 .0 0 1  and the maximal number of epoch to 
50 (see [13]). We train the model for 100 times. Figure 1(a) 
shows the distribution of the appearance of the dying ReLU 
problem. We can see that the dying ReLU problem occurs in 
80% of the training processes but not in the remaining 2 0 %, 
which demonstrates that whether a problem occurs or not is 
random. The average training accuracy when the DR problem 
happens is only 11.35% while the value reaches 85.34% when 
there is no DR problem. With Au t o Tr a i n e r , we are able 
to detect all these DR problems and fix them, improving the 
accuracy to 93.23%.

•  T h e  t i m e  w h e n  a  t r a i n i n g  p r o b l e m  o c c u r s  i s  r a n d o m .

Similar to the randomness of problem occurrence challenge, 
the time when the problem actually happens is also random 
during training. We use a model which has the oscillating loss 
problem as an example. It is a DNN model with 20 layers and 
uses ReLU as activation function, Adam as optimizer, and we 
set the learning rate to be 0 .0 0 1  and the maximal number of 
iterations is 50. Details of the training scripts is also available 
in our repository [13]. The distribution of the stages (epoch 
number) when the problem occurs is shown in Figure 1(b). In 
29% of the cases, the oscillating loss problem is not triggered. 
In half cases, the problem is detected in the first 10 epochs, 
and the percentages of detecting the problem in other stages 
are separately 9%, 8 % and 4%. It demonstrates at which stage 
a particular problem occurs is random.

Since our system enforces real-time surveillance, it is 
able to perform timely detection and repair. For this model, 
Au t o Tr a i n e r  can detect the problem at early stage (i.e., 
before 20 epochs out of 50) in the wide majority of cases (i.e., 
more than 80% of the cases where the problem occurs). After 
the detection, our system attempts to resolve the problem 
by leveraging four solutions (i.e., substituting initializer, in-
creasing batch size, decreasing learning rate and substituting 
optimizer. See §IV). Based on our experiments, the problem is 
successfully alleviated in all cases, and improves the accuracy 
to 97.65%. In contrast, existing post-training methods do not 
collect real-time data, making them unable to detect problems 
during the training.

Model

Problem Detection Automatic Repair
RepairedNew Solution / No

Training Monitor
l

More Solution Signal

E
Recorded Data

l
Problem i

Problem Recognizer j

Solution Scheduler

Failed

Well-
trained
Model

f l
Problem
Report

Figure 2. Overarching Design of Au t o Tr a i n e r

IV. Sy s t e m  De s i g n

Figure 2 gives the overarching design of our system, which 
consists of the problem detection module (left) and the au-
tomatic repair module (right). The whole system starts by 
training a model with an initial training configuration and 
using the problem recognizer to monitor the training. When 
a problem is detected, the system will launch the automatic 
repair module trying to retrain the model with new settings 
until the training can finish without any problem (repaired) or 
a detected problem cannot be solved (failed). Notice that if 
there exist several problems, our system will attempt to solve 
the detected problems one by one in the order of exposure.

Au t o Tr a i n e r  takes a training configurations (i.e., the 
original training scripts including model architecture, loss 
function, optimizer etc.), and user preferences as in-
puts. The user preferences are configurable parameters for 
Au t o Tr a i n e r , which includes preferred repair solutions and 
so on. Au t o Tr a i n e r  has a set of default values for them, and 
user can replace them. Details will be presented in §IV-B. The 
problem detector monitors training information like loss value. 
During this, the problem recognizer is triggered on a timely 
basis to analyze the recorded data to recognize symptoms and 
determine whether a training problem exists. If a problem is 
detected, the automatic repair module will be leveraged to 
address it. otherwise, the training monitor will output the 
trained model with its training configurations to the user.

For each problem, Au t o Tr a i n e r  has a few built-in so-
lutions to fix them. However, one solution may or may not 
work. If the detected problem is the same as before (if any), it 
means the applied solution cannot solve the problem for this 
particular case. Hence, the solution scheduler will retrieve the 
next one, apply it and restart training. If a new problem is 
detected, the solution generator will select the corresponding 
solutions to it. The order of solutions can be reorganized by 
users. If none of the solutions can fix the problem, the solution 
scheduler will report a failed case with the whole training log.

A. Training Monitor

The training monitor starts a training procedure and records 
data which is used to recognize symptoms and retrain the 
model when a problem is detected. The recorded data includes:
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• Model definition including layers and their configurations 
(e.g., kernel sizes in convolutional layers).

• Optimization method definition and its parameters.
• Training accuracy and loss values.
• Calculated gradients for each neuron.
• Hyper-parameters and other necessary variables used in 

training, such as the batch size and learning rate.

Note that the data of each training procedure will be 
recorded separately and can be queried by the user.

B. Problem Recognizer
The problem recognizer regularly conducts analysis on the 

recorded data to recognize training problems. The symptoms 
leveraged to detect problems are formalized and shown in 
Table I. The first column lists the training problems and the 
second column specifies the symptoms involving gradient and 
training accuracy. If the depicted condition is met, our system 
regards the corresponding symptom as observed. The last 
column presents the built-in solutions in Au t o Tr a i n e r .

V G .  We formalize the symptom of the VG problem as 
two conditions. Firstly, there has not been a trained model 
whose accuracy is good enough to terminate the training 
(max(Acc) <  ©). This check is by default enabled and 
checked by all existing DNN training platforms already. If 
there is such a model, the training should have terminated. 
Secondly, in the recent a \  training iterations, the gradient has 
been drop from layer to layer in the backward propagation and 
the gradient becomes to be very small (smaller than a threshold 
value $2). To measure the change and value of gradients, we 
use the 12 -norm, which is borrowed from existing literature in 
the AI research community [20- 22].

E G .  The definition of EG symptoms are very similar to that 
of VG except that the gradient is growing from layer to layer 
in backward propagation or it has already become NaN values 
in some layer (meaning that it cannot propagate back to the 
input layer already).

D R .  Dying ReLU means that there has been a set of neurons 
whose gradients have been 0 in the recent a few iterations 
([k — a 3,k]) and this set is large forms a large portion of 
the whole DNN (more than a threshold value 7 ) while the 
accuracy of the neuron net work is still low.

O L .  Intuitively, the symptom of an OL problem is that there 
has been a lot of oscillating loss values from the start till 
now. To measure if there are oscillating loss values, we first 
extract two lists of loss values, A  and B  representing the 
maximum optimal and minimal optimum loss values (in time 
order) respectively. Then, we calculate the degree of oscillation 
by computing the differences of a consecutive pair of elements 
in A  and B. If the oscillation is larger than n, we think this is 
a significant oscillation, and if such oscillation happens very 
frequently, we think there is an o L  problem.

S C .  By definition, SC means the accuracy of trained models 
is growing slowly. To check this problem, Au t o Tr a i n e r  

checks the training accuracy change for the past iterations. 
If the change has been small, it indicates that the training

has been trapped into a local optimal point, and the training 
process has failed to improve it. Based on this, Au t o Tr a i n e r  

determines that the SC problem happens.

C. Solution Scheduler
The main role of the solution scheduler is to pick one 

solution to fix the problem and restart the training procedure. 
For the same problem, it will try each possible solution one by 
one based on the default order if users do not specify preferred 
orders. If one solution can fix the problem, the scheduler will 
not be triggered by the same problem. otherwise, it will try 
a new solution. And if none of these solutions can fix it, 
Au t o Tr a i n e r  fails to resolve this problem and will report 
this to the user to determine what to do next.

D. Existing Solutions
There has been some study on how to solve training prob-

lems. Unfortunately, there is no silver bullet and one solution 
cannot be guaranteed to work for all cases. For each problem, 
Au t o Tr a i n e r  collects a few possible solutions which have 
been shown to be effective in prior study and uses them to fix 
detected training problems, and these solutions include:

•  S 1 :  A d d i n g  B a t c h  N o r m a l i z a t i o n  L a y e r s .  Batch normal-
ization is a method used to normalize the neuron values 
of a layer by re-centering and re-scaling them. This helps 
remove the unexpected gradient and neuron activation values. 
Specifically, the normalization will squeeze the values into a 
specific range, and as such, small gradient updates will not 
diminish or explode during the backward propagation, mean-
ing that the vanishing and exploding gradient problem can be 
alleviated [9, 26]. In addition, such value range enforcement 
reduces the possibility of getting an inactive neuron and help 
resolve the Dying ReLu problem.

Regarding to the problem of where to add batch nor-
malization layers, authors of this method [9] has performed 
analysis and demonstrated that adding batch normalization 
before activation function layers gives the best result. We 
follow this guidance and implemented our solution.

•  S 2 :  S u b s t i t u t i n g  A c t i v a t i o n  F u n c t i o n s .  As aforementioned, 
ReLu is a commonly adopted activation function. The gradient 
of ReLu activation is 1 when the input is greater than 0, 
meaning the gradient will remain the same without decreasing 
or increasing dramatically (if used with the proper optimizer 
and learning rate). Hence, substituting the current activa-
tion function with ReLU and its variants (e.g., SELU [10], 
LeakyReLu [27]) can mitigate both the vanishing gradient 
problem and the exploding gradient problem.

•  S 3 :  A d d i n g  G r a d i e n t  C l i p p i n g .  Gradient clipping clips 
gradient values that exceed a specified range, which essentially 
limits the update of a weight value to a limited region. unlike 
batch normalization and other normalization methods, this 
method clips the gradient values based on a threshold. By 
removing obviously large gradient values, it can be used to 
alleviate the exploding gradient problem [28- 30].

Bengio et al. [30] and many others [29] have studied and 
evaluated the concrete values to use in gradient clipping, and
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TABLE I: Problem Symptoms and Repair Solution Candidates

T r a in in g  P r o b le m S y m p to m S o lu t io n

Vanishing Gradient 
[20- 22]

Gradient: Vi G [k — a i , k], 

Accuracy: m a x ( A c c )  < ©

G Ì
l 2 G Ì

l n - 1
S1: Adding Batch Normalization Layers 
S2: Substituting Activation Functions

G Ì
l 3

||G f n  I < ß1 | Gl2  1 < ß2

Exploding Gradient 
[20- 22]

Gradient: Vi G [k — a 2 , k], 

Accuracy: m , a x ( A c c )  < ©

G Ì
l 2 G Ì

l n - 1
S1: Adding Batch Normalization Layers 
S2: Substituting Activation Functions 
S3: Adding Gradient ClipG Ì

l 3
H n  I

Dying ReLU 
[23]

Gradient: Vi G [k — a3 , k], ■ 
Accuracy: max(Acc) < ©

{ j e N  U G
j = 0 } U „ , S1: Adding Batch Normalization Layers

|N  | S2: Substituting Activation Functions 
S4: Substituting Initializer

oscillating Loss |{ i € [ 1 , m i n ( |A | , |B |) ] |A [ i ] - B [ i ] > < } > n

S4: Substituting Initializer 
S5: Adjusting Batch Sizes

[24] S6: Adjusting Learning Rate 
S7: Substituting Optimizer

Slow Convergence 
[25] Accuracy: V i  G [1, k], |Acc[i] — Acc| — 1]| < s

S4: Substituting Initializer 
S6: Adjusting Learning Rate 
S7: Substituting Optimizer

1 G  a , the gradient o f layer a  in iteration b
2 n ,  the number of layers of a DNN
3 N ,  all neurons of a DNN
4 k, the current training iteration
5 a i / Q 2 / a 3 ,  thresholds for iterations

6 3 l / 3 2 / 3 3 ,  thresholds for gradients
7 © , the training accuracy threshold
8 y , the threshold for the percentage ofneu- 

rons with 0 gradients
9 5, the threshold for accuracy difference

10 Z, the threshold for the difference of max-
imum and minimum optimal

11 n , the threshold for the percentage o f times 
of large loss fluctuation

12 A c c ,  accuracy arry for each iteration
13 m a x ,  the maximum function
14 A / B ,  arraies of maximum/minimum op-

recommend to clip the gradient of each layer to [—1 0 , 1 0 ] 
which is adopted by Au t o Tr a i n e r .

•  S 4 :  S u b s t i t u t i n g  I n i t i a l i z e r s .  Initializers set a starting point 
for the optimizers during model training. Thus, inappropri-
ate initialization can cause disasters in training deep neural 
networks. Xavier initialization [31] was proposed solve the 
oscillating loss and slow convergence problem by initiating the 
weight values to a proper range. Lu et al. [11] have shown that 
the popular initialization schemes like He Initialization [32] 
suffers from the Dying ReLU problem. In §III, we also showed 
a case where the initialization values can affect the model 
training. Thus, we also try to substitute the used initializers 
when a model encounters the Dying ReLu, slow convergence 
or oscillating loss problems.

•  S 5 :  A d j u s t i n g  B a t c h  S i z e s .  Batch size is the number of 
training samples used in one iteration to estimate the error 
gradient, which is an important hyper-parameter. A too large 
batch size might make the loss value trap into a poor local 
minimum, leading to low accuracy, while a too small batch 
size might make the loss bounce around a lot, leading to 
oscillating loss [12, 33]. In practice, increasing the batch size 
appropriately has the potential to improve the stability of the 
training and solve the oscillating loss problem.

Setting the proper batch size is not easy for DNN training, 
and various researchers have performed analysis and evalu-
ation and this [12, 29, 30]. Based on our study, LeCun et 
al. and Bengio et al. suggest using 32 as the starting point. 
Following this, we try to initialize the batch size to be 32. 
If the accuracy is too low, we try to descries the batch size 
by a factor of 2 until it reaches 8 . If the o L  occurs, we will 
increase the batch size also by doubling until it reaches 2 5 6  

(according to Masters et al. [12]).

•  S 6 :  A d j u s t i n g  L e a r n i n g  R a t e s .  Learning rate is a hyper-
parameter that determines the amount of change to the model

in each update (i.e., each backward propagation). If the learn-
ing rate is too large, the weights are likely to have fluctuating 
update and the loss value will oscillate and even increase over 
training epochs [28]. Given this, decreasing the learning rate 
can be helpful to tackle the oscillating loss problem.

Generally, a small learning rate makes it possible for the 
model to learn more optimal or even globally optimal weights 
with the risk of taking a very long time to finish the training. 
At one extreme, the training may never converge to a low loss 
value even after the maximal number of training epochs. As 
such, the slow convergence problem might be resolved if the 
learning rate is increased [28].

The values we set for learning rates depend on different 
optimizers they use. We follow the suggestions made by 
their original authors (e.g., Adam [34]) and existing empirical 
evidence [35, 36]. Specifically, we choose 0.01 for SGD based 
optimizers,and 0.001 for Adam and other adaptive optimizers. 
If the slow convergence problem still exists, Au t o Tr a i n e r  

increases it 1 0  times; and if the oscillating loss problem still 
exists, Au t o Tr a i n e r  decreases it by a factor of 10.

•  S 7 :  S u b s t i t u t i n g  O p t i m i z e r s .  Optimizers are algorithms 
used to update weights to reduce the loss value. An optimizer 
can have different performance in different scenarios. Practi-
cally, a substitution of an optimizer can help address various 
training problems. Stochastic Gradient Descent (SGD) [37] 
is a variant of the basic gradient decent algorithm, which 
computes an estimated gradient on a randomly selected small 
subset of data samples instead of computing an actual gradient 
on the entire dataset. Based on the rationale, the weights are 
updated more frequently in SGD which can speed up the 
convergence. However, the high variance in weights may result 
in fluctuations in the loss value.

Momentum [38] is a method introduced to speed up SGD 
and dampen loss oscillations. It works by adding a fraction 
of the update in the past time step to the current update.
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Usually the value of momentum is set as 0.9 or a similar 
value. The value 0.9 means the weights will update based on 
90% of the previous gradient and 10% of the new gradient. 
Such a mechanism achieves a faster convergence and fewer 
oscillations compared with SGD. However, if the momentum 
is too much, we may swing back and forth near the local 
minimum without hitting the minimum. Adaptive Moment Es-
timation (Adam) [34] is a widely adopted optimizer that uses 
momentum and adaptive learning rates. The adaptive learning 
rate allows us to start with large learning rate and finish with 
small learning rate. As the learning rate is decreasing, we will 
take smaller and smaller steps, which can prevent us from 
missing the local minimum and accelerate the convergence.

In a nutshell, we can use algorithms with momentum like 
SGD+Momentum or Adam to alleviate the oscillating loss 
problem, and randomly use a different optimizer to alleviate 
the slow convergence problem.

V. Ev a l u a t i o n

The prototype of Au t o Tr a i n e r  is implemented on top of 
Keras 2.3.1 [39] and TensorFlow 2.1.0 [40]. In the evaluation, 
we aim to answer the following research questions:

R Q 1 :  How effective is Au t o Tr a i n e r  in detecting and fixing 
training problems?

R Q 2 :  How efficient is Au t o Tr a i n e r  in detecting and fixing 
training problems?

R Q 3 :  What is the impact of different configurable parameters 
in Au t o Tr a i n e r ?

A. Setup

We performed our experiments on six popular datasets: Cir-
cle [41], Blob [42], MNIST [19], CIFAR-10 [43], IMDB [44] 
and Reuters [45]. Circle and Blob are two datasets from 
SKLearn [46] for classification tasks. MNIST is a gray-scale 
image dataset used for handwritten digits recognition. CIFAR- 
1 0  is a colored image dataset used for object recognition. 
IMDB is a movie review dataset for sentiment analysis. 
Reuters is a newswire dataset for document classification. 
In total, we collected 495 models and their training scripts 
with various DNN models structures (CNN, RNN and fully 
connected layers only) for these six datasets. Among them, 
262 of them have training problems and the rest are normal 
models, which have been confirmed by model authors. Most 
models are collected from reported buggy models on GitHub, 
Stackoverflow, existing papers and personal blogs, and some 
of them are gathered from machine learning experts within 
our organization. The training scripts of these models and all 
experiment results are all public at our repository [13].

If not specified, all experiments in this section are conducted 
on a server with Intel(R) Xeon E5-2620 2.1GHz 8 -core 
processors, 130 GB of RAM and a NVIDIA TITAN V GPU 
running ubuntu 18.04 as the operating system.

E x p e r i m e n t  D e s i g n :  To evaluate the effectiveness of 
Au t o Tr a i n e r , we run our collected 495 model training 
scripts to test the effectiveness of Au t o Tr a i n e r . Due to 
the randomness in performing these experiments, we run the 
training multiple times to ensure that the problem have been 
exposed, and collect the experiment results of such cases. To 
measure the effectiveness of Au t o Tr a i n e r , we start two 
parallel trainings for the same model. To reduce the effects 
of randomness, we enforce them to share the usage of the 
same random number including the initialization weights. 
They also share the same set of training hyper-parameters and 
optimization methods. During training, we collected training 
logs including gradient, loss values, etc., to help us verify 
the whole process. At the end, we manually verify them 
and confirm them with the details provided by buggy model 
providers (i.e., online posts and machine learning experts).

R e s u l t s :  For all 262 buggy trainings, we detect 316 training 
problems as some models have more than one. Table II 
demonstrates partial results. The first column lists the six 
datasets. The second column shows the model status and the 
corresponding number of models. “Repaired” status indicates a 
model is successfully repaired if any target problem is detected 
and “Failed” indicates that the problem still exists even after 
Au t o Tr a i n e r  has tried all built-in solutions. Lastly, we 
use the “Normal” status to denote models without training 
problems. The third column lists model identification numbers, 
and the fourth column shows the number of detected problems 
of each model. The following columns denote the accuracy, 
the training time and the memory consumption (efficiency 
results, see §V-C). Column “Original” shows the information 
for the original model training (without Au t o Tr a i n e r ) while 
column “AT” (short for Au t o Tr a i n e r ) shows that of the re-
paired models. Column “Ratio” gives the ratio between the val-
ues of a repaired model and the corresponding original model. 
Column “Improve” shows the absolute accuracy improvement 
that our system achieves. The cells in purple separately corre-
spond to the models with the highest accuracy improvement, 
maximum training overhead and maximum memory overhead 
while the cells in grey separately correspond to the ones 
with least accuracy improvement, minimum training overhead 
and the minimum memory overhead. All detailed experiment 
results can be found at our repository [13].

Notice that the same problem may get repaired using differ-
ent solutions, and after Au t o Tr a i n e r  repairs the model, its 
accuracy may not be improved. To evaluate the repair effects, 
we also calculated the number of problems that are fixed 
by individual solutions and the change ranges in accuracy. 
The results are separately shown in Table III, Table IV and 
Figure 3. In Table III, the first column shows the datasets, and 
the following columns present the problem and corresponding 
solutions. The solutions are (from left to right) ordered by their 
default priority used for repairing in Au t o Tr a i n e r . Each 
number in the top half of the table denotes the number of 
problems that are repaired successfully by the corresponding

B. E ffec tiven ess o f  Au t o Tr a i n e r
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TABLE II: Overall Results of Au t o Tr a in e r

D a ta se t S ta tu s M o d e l # P r o b le m
A c c u r a c y T r a in  T im e A v e r a g e  M e m o r y

O riginai (%) A T  (%) Im prove (%) R atio O rig inai (s) A T  (s) R a tio O rig inal (M B ) A T  (M B ) Ratio
1 20.33 86.00 65.67 4.23 18.53 44.35 2.39 1580.68 1571.75 0.99

2 1 85.33 84.67 -0.67 0.99 31.06 65.06 2.09 1554.12 1552.32 1.00

Repaired: 46
3 3 30.67 85.00 54.33 2.77 15.86 586.63 36.98 1564.95 1565.12 1.00
4 1 40.33 83.67 43.33 2.07 17.99 24.03 1.34 1550.91 1554.17 1.00

5 1 53.00 84.67 31.67 1.60 21.00 33.04 1.57 1575.69 1582.19 1.00

Blob
6 1 50.33 83.67 33.33 1.66 12.99 30.99 2.39 1282.06 1258.63 0.98

Ave 1.13 43.31 81.04 37.73 1.87 13.67 51.78 3.79 1505.91 1505.24 1.00
47 1 33.67 33.67 0.00 1.00 16.03 109.56 6.84 1576.94 1574.19 1.00

Failed: 2 48 1 33.67 33.67 0.00 1.00 6.89 86.64 12.57 1574.70 1573.95 1.00
Ave 1 33.67 33.67 0.00 1.00 11.46 98.10 8.56 1575.82 1574.07 1.00

49 - 67.67 - - - 1 5 6 T - 17.74 1.14 1505.91 1486.04 0.99

N orm al: 39 50 - 70.67 - - - 15.71 16.94 1.08 1514.26 1509.71 1.00
Ave - 76.27 - - - 16.36 17.68 1.08 1562.39 1561.12 1.00

88 1 n.a 88.33 88.33 n.a 18.00 28.44 1.58 1320.03 1321.28 1.00

89 1 87.33 86.33 -1.00 0.99 22.98 71.85 3.13 1325.53 1326.22 1.00
Repaired: 71 90 2 49.67 78.00 28.33 1.57 3.50 57.18 16.35 1332.55 1332.32 1.00

Circle
91 1 54.33 87.67 33.33 1.61 60.88 74.27 1.22 1358.89 1358.89 1.00

Ave 1.10 46.97 83.56 36.60 1.78 28.05 67.60 2.41 1336.85 1336.12 1.00

159 - 76.67 - - - 16.20 16.94 1.05 1305.43 1302.58 1.00

N orm al: 36 160 - 68.00 - - - 29.14 30.53 1.05 1313.31 1306.58 0.99
Ave - 81.43 - - - 28.01 29.29 1.05 1342.73 1342.25 1.00

195 2 10.00 71.73 61.73 7.17 73.48 1180.53 16.07 4477.29 3774.16 0.84

196 1 57.72 69.46 11.74 1.20 73.80 139.98 1.90 4359.05 3655.91 0.84

Repaired: 45
197 2 10.00 65.67 55.67 6.57 409.89 431.13 1.05 3021.97 3004.28 0.99

198 1 8.12 65.44 57.32 8.06 93.24 129.31 1.39 3744.07 5034.64 1.34

CIFAR-10
199 1 10.00 67.82 57.82 6.78 214.44 295.44 1.38 3589.40 2817.81 0.79

Ave 1.02 13.11 66.80 53.69 5.10 248.96 522.22 2.10 3679.23 3513.32 0.95
Failed: 1 240 1 10.00 10.00 0.00 1.00 382.79 492.60 1.29 3777.13 3777.13 1.00

241 - 65.37 - - - 342.88 319.32 0.93 4452.32 3749.12 0.84

N orm al: 35 242 - 56.56 - - - 236.45 244.89 1.04 3749.78 3753.79 1.00
Ave - 63.48 - - - 145.63 146.39 1.01 3946.77 3826.03 0.97

276 1 9.33 99.17 89.84 10.63 148.82 212.36 1.43 3084.37 3083.77 1.00

277 1 88.44 99.12 10.68 1.12 267.11 401.37 1.50 3226.07 3188.81 0.99
278 2 9.80 99.20 89.40 10.12 365.55 2294.69 6.28 3283.42 3283.67 1.00

Repaired: 38 279 1 35.08 98.89 63.81 2.82 331.44 365.42 1.10 3475.25 3286.04 0.95

m n i s t
280 1 9.50 99.21 89.71 10.44 123.55 225.97 1.83 3143.98 3356.33 1.07

281 1 16.14 99.11 82.97 6.14 65.40 123.88 1.89 3347.91 3138.69 0.94

Ave 1.13 16.22 98.88 82.66 6.10 220.74 493.14 2.23 3085.09 3026.66 0.98
314 - 98.79 - - - 173.85 173.47 1.00 3203.96 3198.19 1.00

N orm al: 78 315 - 86.54 - - - 135.93 136.42 1.00 3168.69 2925.68 0.92
Ave - 96.89 - - - 228.43 228.79 1.00 3251.75 3203.40 0.99

392 1 4.19 66.74 62.56 15.93 645.01 1023.98 1.59 2247.90 2361.28 1.05

393 1 56.86 57.30 0.45 1.01 855.34 2844.38 3.33 2413.77 2481.97 1.03

Repaired: 31
394 1 47.91 52.45 4.54 1.09 1278.41 4778.25 3.74 2312.99 2360.14 1.02

395 1 n.a. 62.91 62.91 n.a. 1316.38 1321.00 1.00 1859.90 1869.22 1.01

Reuters
396 1 n.a. 58.46 58.46 n.a. 2591.11 4363.19 1.68 1823.66 1758.23 0.96
Ave 1 21.37 59.23 37.87 2.77 1411.38 2894.73 2.05 2214.09 2250.93 1.02

Failed: 1 423 1 36.02 36.02 0.00 1.00 1484.00 1460.37 0.98 1881.61 1820.14 0.97
424 - 47.13 - - - 1466.05 1510.32 1.03 1912.03 1927.08 1.01

N orm al: 32 425 - 46.15 - - - 1400.59 1471.97 1.05 1901.38 1930.53 1.02
Ave - 51.75 - - - 1222.65 1249.35 1.02 2307.96 2347.96 1.02

456 1 n.a 87.08 87.08 n.a 3982.20 8876.97 2.23 1998.46 2069.23 1.04

457 1 82.04 80.53 -1.51 0.98 2078.05 5961.56 2.87 2251.86 2285.11 1.01
458 1 49.33 86.03 36.70 1.74 670.69 6925.99 10.33 2256.18 2342.93 1.04

Repaired: 24 459 1 49.12 85.95 36.83 1.75 1069.43 1307.58 1.22 2258.64 2345.51 1.04

460 1 49.78 86.68 36.90 1.74 1306.62 5478.55 4.19 2138.05 2317.73 1.08
461 1 50.00 86.11 36.11 1.72 3703.41 9246.12 2.50 2057.98 1854.65 0.90

IM DB
Ave 1 45.29 84.39 39.10 1.86 2871.01 6499.83 2.26 2153.72 2195.81 1.02
480 1 50.00 50.00 0.00 1.00 1062.77 1480.36 1.39 2182.29 2349.58 1.08

Failed: 3
481 1 n.a n.a 0.00 n.a 2089.21 1451.98 0.69 2184.26 2044.23 0.94
482 1 n.a n.a 0.00 n.a 1300.46 2257.56 1.74 2261.88 2348.53 1.04

Ave 1 16.67 16.67 0.00 1.00 1484.15 1729.97 1.17 2209.47 2247.45 1.02
483 - 87.38 - - - 1951.87 1984.37 1.02 2260.38 2347.84 1.04

N orm al: 13 484 - 83.14 - - - 2022.07 2036.59 1.01 2191.92 2088.60 0.95
Ave - 84.54 - - - 1828.85 1844.67 1.01 2224.19 2280.91 1.03

N orm al Ave - 79.14 - - - 375.37 380.57 1.01 2591.48 2565.53 0.99
R epaired Ave 1.07 32.46 79.55 47.08 2.45 515.66 1141.79 2.21 2224.98 2195.30 0.99

Failed Ave 1 23.34 23.34 0.00 1.00 906.02 1048.44 1.16 2205.54 2212.54 1.00
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TABLE III: The Problem Repaired Results

D a ta s e t
V G E G D R S C O L

T ota l
S2 S I S2 S I S3 S2 S I S 4 S 7 S 6  S 4 S 7  S 6 S5 S 4

Blob 10 2 10 0 0 4 3 1 29 0 0 4 0 0 0 63
Circle 9 1 9 1 0 6 3 0 43 1 0 7 1 0 0 81

CIFAR-10 5 0 7 1 0 2 1 0 27 1 0 2 0 0 0 46
M N IST 6 2 10 0 0 4 0 0 20 1 0 7 1 0 0 51
Reuters 0 3 6 0 0 - - - 19 7 0 0 4 0 0 39
IM DB 5 2 5 0 1 - - - 9 3 0 0 4 0 0 29

Total 35 10 47 2 1 16 7 1 147 13 0 20 10 0 0 309

R epaired 45 50 24 160 30 309
F ailed 3 4 0 0 0 7
Total 48 54 24 160 30 316

TABLE IV: The Accuracy Improvement of Problems

D a ta set
# R ep a ired A vg Im p rove(% )

VG EG D R SC OL VG EG D R SC OL
B lo b 12 10 8 29 4 38.78 30.40 24.78 43.01 -0.50

C ircle 10 10 9 44 8 30.08 82.92 28.10 33.64 10.20
C IF A R -10 5 8 3 28 2 56.17 58.50 59.81 52.72 11.74

M N IS T 8 10 4 21 8 87.72 87.68 86.74 82.93 56.97
R eu ters 3 6 - 26 4 20.12 50.30 - 37.58 20.77
IM D B 7 6 - 12 4 36.43 85.94 - 33.43 -0.55

T otal/A verage 45 50 24 160 30 45.04 66.87 46.91 46.05 16.00

solution (i.e., column name). The bottom half summaries the 
number of problems of different status. The pie chart in 
Figure 3 demonstrates the distrubution of change ranges in 
accuracy with corresponding numbers of models.
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Figure 3. Accuracy Change After Model Training Repair.
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Figure 4. Runtime Overhead vs. Problem Check Frequency.

whose accuracy has slight reduction after repaired. For the 
worst case, the model accuracy decreases from 82.04% to 
80.53%. We manually analyzed them, and found that it is 
mainly because they have other problems that are not covered 
by Au t o Tr a i n e r , such as floating point bugs. How to detect 
and repair such problems will be one of our future directions.

C. Efficiency o f Au t o Tr a i n e r

A n a l y s i s .  The experiment results demonstrate the effectiveness 
of our system. Firstly, Au t o Tr a i n e r  can effectively detect 
the defined training problems with a 1 0 0 % success rate on 
all 495 model trainings, and none of the normal trainings are 
mis-classified as problematic. Secondly, Au t o Tr a i n e r  can 
effectively repair the buggy training procedures. After success-
ful repairing, it can improve the accuracy by 47.08% with the 
maximum improvement as 89.84%. Overall, Au t o Tr a i n e r  

achieves around 46% accuracy improvement which is 2.43 
times that of training without Au t o T r a i n e r . Notice that 
when EG happens, it may result in NaN values in the model, 
leading to NaN output results for all inputs. In such cases, 
we do not measure the prediction accuracy and directly report 
them as “n.a.” in Table II

From Table III, we observe that Au t o Tr a i n e r  is able to 
respectively repair 93.75%, 92.6%, 100%, 100% and 100% 
of VG, EG, DR, SC and OL in buggy trainings. And Ta-
ble IV shows the detailed average accuracy improvement 
of Au t o Tr a i n e r  on different problems, which is 45.04%, 
66.87%, 46.91%, 46.05% and 16.00% of VG, EG, DR, SC and 
OL in repairing, respectively. Table III and Table IV demon-
strate that Au t o Tr a i n e r  is capable of handling different 
types of datasets, model problems and model architectures. 
Regarding SC and OL, we find that only two solutions can 
effectively address all the problems we encountered in our 
evaluation.

Figure 3 shows that model accuracy increase distrubution. 
Specifically, over 40.78% of the models get an increase of 
50% and over 50% has an increase between 10% and 30%. 
It demonstrates that Au t o Tr a i n e r  has the advantage of 
effectively increasing accuracy by repairing training problems. 
We also notice that there are 6  models (out of all 255 models)

E x p e r i m e n t  D e s i g n  a n d  R e s u l t s :  To evaluate the efficiency 
of Au t o Tr a i n e r , we run all 495 model trainings with and 
without Au t o T r a i n e r  enabled. During training, we collected 
the time used to train the model and the memory usage 
for both the original training and Au t o Tr a i n e r . Notice 
that experiments for run-time overhead and memory overhead 
are conducted individually to avoid influencing each other. 
The experiments are conducted 5 times, and the overhead is 
calculated as the average of these 5 runs. The results are shown 
in Table II. Results and analysis are presented below.

R u n t i m e  O v e r h e a d  A n a l y s i s :  For normal training, the run-
time overhead is purely from problem checker, which is about 
1%. From Table II, we observe that the runtime overhead on 
smaller datasets is usually larger (e.g., Blob 8 % vs. almost 
0% for MNIST). This is because the total time for training on 
small datasets is relatively short, making the runtime overhead 
ratio larger. For buggy trainings, Au t o Tr a i n e r  takes 1.19 
more training time on average. We performed a deeper analysis 
to understand the overhead of individual components, and 
found that retraining takes over 99% and the rest two parts 
(i.e., problem checker and repair) takes less than 1%. It 
means that Au t o Tr a i n e r  only costs little time (< 1% total 
overhead) in automatically searching a suitable solution for 
the problems, which requires lots of manual operations and 
time-consuming in existing strategies. As discussed in §IV, 
to repair a problem, it may try several times, which leads 
Au t o Tr a i n e r  training several models.

C h e c k i n g  F r e q u e n c y  v . s .  R u n t i m e  O v e r h e a d .  More frequent 
problem checking causes higher runtime overhead. Suppose 
that one training iteration and one checking separately take t\  
and t 2 time, then the overhead of Au t o Tr a i n e r  is roughly
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TABLE V: Check Frequency vs. Delay in Problem Detection

P r o b le m
D e te c tio n  D e la y

1 /q = 2 1 /q = 3 1 /q = 4 1/q = 5 1 /q = 9 1 /q = 1 5
VG 0.33 1.12 1.48 1.78 3.22 6.22
EG 0.38 1.38 2.38 3.38 7.38 13.38

DY 0.43 1.15 2.15 2.29 8.01 8.01
OL 0.40 1.60 1.60 2.40 3.40 6.40

SC 0.32 1.06 1.25 2.13 2.74 6.09

q x t2/ t \ ,  where q is the checking frequency. Figure 4 presents 
the corelations between checking frequency and runtime over-
head on Circle and MNIST. The X-axis is the number of 
iterations between two checks (1/q), and Y-axis is the runtime 
overhead. The solid line represents the collected data and the 
dashed curve is the theoretical results (i.e., q x t 2/ t \ ) .  As we 
can see, shapes of experiment data conform to our theoretical 
analysis. By comparing the two figures, we observe the smaller 
dataset has the higher runtime overhead, which is consistent 
with our data in Table II. By default, Au t o Tr a i n e r  checks 
the problem every 3  iterations, which causes less than 5 % 
overhead even for small datasets like Circle.

Lower frequency checking can reduce the overhead, but may 
cause longer delay in detection. Table V shows the effects of 
different check frequencies. Each row represents one problem 
type, and each column denotes a different check frequency. 
Numbers in cells show the delayed iterations between the 
occurrence of the problem and the detection of the problem. 
Considering VG, if Au t o Tr a i n e r  performs the checking 
every 1 5  iterations, it needs 6  extra iterations to detect it 
compared with checking problems every the other iteration. 
In a nutshell, a lower checking frequency may result in the 
delay in problem detection, which further leads to wasting 
time on a buggy training.

M e m o r y  O v e r h e a d  A n a l y s i s .  Au t o Tr a i n e r  has very lim-
ited memory overhead (-1% to 1%) since Au t o Tr a i n e r  

reuses data which has been collected. To detect problems, 
Au t o Tr a i n e r  requires the current gradient values, and his-
torical loss and training accuracy values. The gradient infor-
mation is stored as part of the tensor data for training purpose 
(used in backward propagation), and the historical loss and 
training accuracy values are automatically collected by all 
major frameworks. The overhead caused by Au t o Tr a i n e r  

are mostly due to program variables, which are negligible 
compared with neuron and gradient values and even the 
overhead introduced by the memory profiling tool itself.

D. Effects o f Configurable Parameters
Au t o Tr a i n e r  leverages configurable parameters to deter-

mine if a problem is happening or not. We classify them into 
three categories and evaluated each of them in this section.

T y p e - A : Type-A parameters include aq, a 2 and a 3 in Table I, 
which are used to determine the time window used to detect 
the occurrence of VG, EG and DR problems. For these 
problems, the same symptoms will also be observed in the 
rest iterations once they happen in one iteration. We comfirmed 
this with 50 models and 3 runs on each model. This is also 
supported by others [20]. Thus, we set aq, a 2 and a 3 to 0.

T y p e - B : Au t o Tr a i n e r  has only one Type-B parameter, 
the expected accuracy threshold ©, which is a training task 
dependent parameter. If not, we will adopt the value which is 
used to determine if the training should be early stopped, and 
it is provided by Keras and TensorFlow.

T y p e - C  : Parameters in this category include ^ i, fi2 , and f33 for 
VG and EG; 7  for DR; 5 and Z for OL; and n for SC (defined 
in Table I). The values of these parameters determine whether 
Au t o Tr a i n e r  can successfully capture the real problem or 
not. To measure their effects on Au t o Tr a i n e r , for each 
problem, we use different values (or value pairs if a problem 
involves multiple such parameters) to investigate how they 
can affect the detection effectiveness. All experiments are 
performed on 100 models, and they are repeated 5 times. 
Figure 5 reports the final averaged results.

•  V G : The values of fii  and f32 affect the detection results 
of VG. If fii  or f32 is too large, it will introduce a lot of 
false positives (i.e., normal trainings are identified as VG). If 
they are too small, it will reduce the detection accuracy (i.e., 
true positives). Figure 5(a) demonstrates how precision and 
recall are changed as the parameter values change. It confirms 
the aforementioned analysis and suggests the default values 
in Au t o Tr a i n e r  (i.e., fii . 1e-3 , fi2 : 1e-4 ) can achieve high 
precision and recall.

•  E G : Figure 5(b) presents the relationship between precision/ 
recall and the value of f33 . Larger f33 implies that EG becomes 
more obvious, but it also means many EG cases which are 
less serious will be missed. Hence, precision gets higher but 
recall becomes very low. Luckily, when f33 is between 40 
and 100, Au t o Tr a i n e r  can get 100% precision and recall 
simultaneously. By default, Au t o Tr a i n e r  sets fi3 to 70.

•  D R : The detection results of DR is highly affected by the 
value of y  (see Figure 5(c)). With larger 7 , Au t o Tr a i n e r  is 
able to remove obvious False Positive (FP) cases (i.e., detected 
as DR, but is not DR) increasing the precision, but also may 
ignore not so serious DR problem causing low recall. When 7  

is set in range [60%, 90%], Au t o Tr a i n e r  achieves the best 
result in precision (100%) and recall (100%). By default, 7  is 
set as 70% in Au t o Tr a i n e r .

•  O L : Detecting OL requires two parameters, Z and n, and its 
relationships with precision and recall in detection are shown 
in Figure 5(d). It is consistent with our intuition that larger Z 
and n values will lead to higher precision and lower recall. in 
Au t o Tr a i n e r , the default values for Z and n are 0.03 and 
2 0 %, which results in 1 0 0 % precision and 1 0 0 % recall.

•  S C : The only threshold in detecting SC is 5. Very small 5 
results in very low precision and recall. o n  one hand, such 
low accuracy change are not common during training (hence, 
low recall), and on the other hand, many of them with such 
low accuracy change are due to randomly initialized weights 
(hence, low precision). With no-so-large 5 values, the detection 
precision and recall can grow sharply. However, larger 5 values 
may result in the ignorance of many buggy training cases, 
leading to low precision. Figure 5(e) shows such a change
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curve. Based on our sampling, to achieve the best in precision 
(100%) and recall(100%), 5 should be from 0.004 to 0.014. 
In Au t o Tr a i n e r , we set the default value of 5 as 0.01.

VI. Re l a t e d  w o r k

Machine learning techniques are widely adopted in various 
SE tasks [47- 61]. Au t o Tr a i n e r  can facilitate software en-
gineering researchers in repairing their buggy DNN models 
automatically. It is highly related with DNN model debugging 
and testing, and automatic program repair.

D N N  M o d e l  D e b u g g i n g  a n d  T e s t i n g .  In addition to what we 
have discussed in §I, there are some other efforts devoted on 
debugging DNN models [62- 66]. Ribeiro et al. [62] produced 
adversarial examples as training data to debug natural language 
processing models. Others [63, 64] cleaned up training data 
that are wrongly labeled to debug RNN models. LAMP [67] 
utilizes gradient information as data provenance to help debug 
graph based machine learning algorithms. Ma et al. [4] pro-
posed differential analysis on inputs to fix model overfitting 
and under fitting problems. TRADER [65] analyzed how 
problematic word embeddings affect the model accuracy by 
comparing the model execution traces of correctly-classified 
samples and incorrectly-classified samples.

A great number of testing methods have been proposed 
to test machine learning models, such as fuzzing [68- 75], 
symbolic execution [76- 79], runtime validation [80, 81], fair-
ness testing [74, 78, 82], etc. DeepXplore [83] introduced 
the neuron coverage metric to measures the percentage of 
activated neurons or a given test suite and DNN model, 
and generates new test inputs that can maximize the metric 
to test DL systems. Many others [70, 84- 88] extended the 
coverage concept and proposed to use them on many different 
scenarios. Model testing has also been leveraged for many 
other domains such as image classification [79, 89], automatic 
speech recognition [90], text classification [74], and machine 
translation [91, 92]. Recently, Yan et al. [93] have studied 
many coverage criteria and measured their correlations with 
model quality (i.e., model robustness against adversarial at-
tacks), and empirical results show that existing criteria can 
not faithfully reflect model quality.

A u t o m a t i c  P r o g r a m  R e p a i r .  The aim of automatic program 
repair is to automatically derive patches to correct bugs in 
programs, which normally includes fault localization, patch 
candidates generation and patch candidates validation. Many 
different kinds of methods have been employed in automated 
program repair. The researchers in [94- 99, 99] proposed 
search-based approaches to generate patches. There are some

other semantics-based methods which construct patches using 
synthesis techniques [100, 100- 104]. Specifications were also 
utilized to guide the repair process [105- 109]. More program 
repair work can be found in the survey [110]. Different from 
these research efforts, our work is to repair DNN models which 
are not uninterpretable rather than the interpretable code. 

A u t o m a t e d  M a c h i n e  L e a r n i n g  ( A u t o M L ) .  AutoML focuses 
on automatically design models for given training tasks. Var-
ious kinds of neural architecture search (NAS) algorithms 
have been design to find efficient models, such as Bayesian 
optimization [111, 112], deep reinforcement learning [113, 
114], evolutionary algorithms [115, 116], and gradient based 
methods [117, 118]. These methods acquire impressive results 
in their experiments. Additionally, open-source AutoML tools, 
such as AutoSKLearn [119- 121], Microsoft NNI [122], and 
AutoKeras [123], also show remarkable model searching re-
sults in actual application.

Although AutoML can automatically generate models 
from the training tasks, these models may still face train-
ing problems when training. Comparing with AutoML, 
Au t o Tr a i n e r  focuses on improving the training process. It 
can provide timely monitoring facing the training process and 
facilitates SE researchers in repairing buggy models automat-
ically. In summary, the goal of AutoML and Au t o Tr a i n e r  

are different, and these two are complementary solutions 
which can be intergraded with each other.

VII. Co n c l u s i o n

This paper presents Au t o Tr a i n e r , a DNN monitoring and 
auto-repairing system. It monitors the model training status 
and automatically fix them once a problem is detected. By 
doing so, it can prevent problems from happening at the ear-
liest convention which saves a lot of time and resources. Our 
evaluation results show that Au t o Tr a i n e r  can effectively 
and efficiently detecting and repairing our targeted five training 
problems (i.e., vanishing gradient, exploding gradient, dying 
ReLU, oscillating loss and slow convergence).
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