2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE) | 978-1-6654-0296-5/20/$31.00 ©2021 IEEE | DOL: 10.1109/ICSE43902.2021.00043

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

AUTOTRAINER: An Automatic DNN Training
Problem Detection and Repair System

Xiaoyu Zhang*, Juan Zhai', Shiging Ma, Chao Shen*
*School of Cyber Science and Engineering, Xi’an Jiaotong University, Xi’an, China
TRu‘[gers University, United States
Email: zxy0927 @stu.xjtu.edu.cn, {juan.zhai, shiqing.ma} @rutgers.edu, chaoshen @xjtu.edu.cn

Abstract—With machine learning models especially Deep Neu-
ral Network (DNN) models becoming an integral part of the
new intelligent software, new tools to support their engineering
process are in high demand. Existing DNN debugging tools are
either post-training which wastes a lot of time training a buggy
model and requires expertises, or limited on collecting training
logs without analyzing the problem not even fixing them. In this
paper, we propose AUTOTRAINER, a DNN training monitoring
and automatic repairing tool which supports detecting and auto-
repairing five commonly seen training problems. During training,
it periodically checks the training status and detects potential
problems. Once a problem is found, AUTOTRAINER tries to fix
it by using built-in state-of-the-art solutions. It supports various
model structures and input data types, such as Convolutional
Neural Networks (CNNs) for image and Recurrent Neural Net-
works (RNNs) for texts. Our evaluation on 6 datasets, 495 models
show that AUTOTRAINER can effectively detect all potential
problems with 100% detection rate and no false positives. Among
all models with problems, it can fix 97.33% of them, increasing
the accuracy by 47.08% on average.

Index Terms—software engineering, software tools, deep learn-
ing training

I. INTRODUCTION

In the new Software Engineering (SE) 2.0 era, software is
developed with an intelligent component which is usually pow-
ered by Machine Learning (ML) techniques. Recent advances
in Deep Learning (DL) have already made it possible for end
users to benefit from the intelligence of software. For example,
Google has deployed new DL based NLP techniques to help
improve its search results [1]. Facebook launched Shops which
bring more businesses online during the COVID pandemic,
and made it possible to search for clothes using over tens
of thousands of image attributes. All of these are enabled by
software created in SE 2.0.

With this new trend of SE 2.0, developing the DL com-
ponent, represented by Deep Neural Network (DNN) models,
becomes an integral part of the whole process. DNN models
and other DL methods, just like other programs, also have bugs
and its own vulnerabilities, which brings many new challenges
of SE research on debugging and repairing DNN model and
its development process. New tools that can help the devel-
opment of intelligent components will greatly help developers
especially for the ones who are new to these techniques. There
are already some efforts trying to study this problem [2, 3].
For example, MODE [4], proposed as a DNN debugging
technique, identifies faulty neurons that lead to undesirable

behaviors and selects additional training samples to correct
these neurons behaviors to improve model accuracy. We refer
to such techniques as post-training techniques, which focuses
on fixing model problems whose training has been completed.
However, many existing tools are not automatic and require
expertises, which makes them difficult to use for developers
new to this field. More importantly, we observe that many DNN
problems have been exposed in the training process, and post-
training techniques have a delay in detecting such problems.
As such, a lot of resources are wasted in training a problematic
model which can be saved if we can detect the problem early in
training. Thus, a runtime monitoring and detecting technique
is highly needed.

Existing DNN training frameworks have provided lim-
ited support for training monitoring and detection. Tensor-
Board [5], known as the default debugger of TensorFlow is a
toolkit which can record various values and provide the visu-
alization during the training process. For example, it can track
and visualize metrics like loss, and demonstrate histograms of
weights as they change over time. There are some other similar
tools, such as Visdom [6], TensorWatch [7], and Manifold [8].
Just like traditional debuggers (e.g., Microsoft Visual Studio
Debugger which allow programmers to track variable values
and operations as well as monitoring the changes of computing
resources, these tools can facilitate developers in inspecting
and understanding the model training status. However, they
lack the capability of analyzing the collected data and provide
meaningful fixes, which makes them less useful.

Through our analysis, we found that 1) a training problem
happens or not is random even for the same training script; 2) a
training problem happens randomly during the training whole.
To be more specific, because of the randomness in training
(e.g., initialization of weight values, training data sequences),
running the same training scripts may get different results. As
such, a training problem may happen in some cases but not
in other cases. And similarly, a training problem may happen
in any training iteration (if it happens). We have provided real
cases in §III. Considering the fact that many DNN training
tasks may take days or even months, it is infeasible for
developers to watch the numbers or curves all the time to
manually detect potential problems which may occur at any
time. Unfortunately, although these runtime tools can collect
and exhibit data, they are incapable of analyzing the data to
diagnose problems, let alone leveraging solutions to alleviate

978-1-6654-0296-5/21/$31.00 ©2021 IEEE 359
DOI 10.1109/1CSE43902.2021.00043

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

these training problems. To address the aforementioned limita-
tions, a tool that relieves developers from manually monitoring
the training procedure is needed. In addition, the tool will have
to automatically analyze data, diagnose and resolve problems
during training, so as to increase productivity and efficiency
for developers as well as improve the reliability of intelligent
software systems.

In this paper, we propose AUTOTRAINER, a dynamic
approach that detects and repairs potential DNN training
problems. The training problems that AUTOTRAINER focuses
on are vanishing gradient, exploding gradient, dying Rel.U,
oscillating loss and slow convergence, and AUTOTRAINER
is capable of handling various model structures including
convolutional neural networks (CNNs) and Recurrent Neural
Networks (RNNs). And these can be easily extended as
long as a problem definition is provided. Given a model
with its training configuration (e.g., hyper-parameter, opti-
mizers), AUTOTRAINER will start training the model and
record relevant data like loss values. During the moni-
toring, AUTOTRAINER conducts regular analysis to recog-
nize potential training problems. If a problem is detected,
AUTOTRAINER will try to fix it with built-in solutions. These
solutions are constructed based on the state-of-the-art work,
which have been demonstrated to work well in solving the
corresponding problems [9-12]. During the repair (retraining)
procedure, if another problem is detected, AUTOTRAINER will
regard the old problem as resolved and attempt to repair the
new problem. If no more problems are detected, it means all
the problems have been addressed by AUTOTRAINER and the
trained model with its configuration is delivered to the user. If
AUTOTRAINER fails to solve this problem, it will notify the
user with complete training log. Our contributions are:

o We summarize and formalize definitions for the symp-
toms of 5 common training problems.

« We propose the first automatic approach to detect and
repair 5 different training problems during model training.

« We develop a prototype AUTOTRAINER based on the
proposed idea, and evaluate it with 6 public datasets
and 495 models. The evaluation results demonstrate that
AUTOTRAINER can effectively detect all 316 problems
for 262 models and repair 309 problems of them with
a ratio of 97.78%. On average, the test accuracy can be
improved from 32.46% to 79.55% (1.5x higher).

« Our implementation, collected datasets, configurations,
and problem solutions are publicly available at [13].

Threat to Validity. We have tried our best to obtain as many
models as possible. AUTOTRAINER is currently evaluated
on 6 datasets and 495 models, which may still be limited.
Similarly, there are many configurable parameters used in
AUTOTRAINER, and even though our experiments show that
they are good enough to achieve high detection and repair
results, this may not hold when the number of models is
significantly larger. To mitigate these threats, all the original
and repaired training scripts, model architecture and training
configuration details, implementation including dependencies,

360

and evaluation data (e.g., training logs) are publicly available
at [13] for reproduction.

II. BACKGROUND
A. DNN Model Training

A DNN model is a parameterized function Fy : X — Y,
where = € X is an m—dimensional input (i.e., x € R™) and
y € Y is the corresponding output label. It usually composes
of several connected layers. Formally, an n-layered DNN can
be written as F' = [oly o ol,, where [represent a
layer. Each [can be expressed as a function whose output is
Fy = o(0, % Fy_1 + b;) where 6, and b are the weight and
bias values of layer [. o is known as the activation function
(8II-C). The input layer I; takes raw inputs and passes them
on to the subsequent layer. Hidden layers extract the features
of the input, and the output layer [, is trained to predict
the output based on the extracted features. The links between
consecutive layers are represented using a set of matrices. The
numerical values in such matrices are referred to as weight
parameters. Given a large set of input-output pairs (z;,vy;),
training a DNN model is to update all weight parameters 6
to minimize the differences between a predicted result Fy(z)
and the corresponding ground truth label y. Such differences
are measured by a loss function £(Fp(z),y). Thus, training a
DNN essentially is to minimize the value of L.

Specifically, training a DNN model consists of the following
phrases. The first step is inifialization which initializes the
weight matrices. Then starting from the input layer, the for-
ward propagation step uses existing weight values to predict
output labels for the training samples, and calculates the
value of £ based on predicted output and ground truth labels.
Afterwards, the backward propagation step tweaks the weight
values from the output layer all the way back to the input
layer, trying to minimize the difference using an optimization
method which is usually a gradient descent algorithm or its
variants. The forward propagation and backward propagation
steps will be repeated until the difference converges to a
minimum value meaning reaching the stopping criteria, or has
reached the maximal number of training iterations allowed.

B. Gradient Descent

In DNN model training, a loss function evaluates the
prediction ability of a DNN model, and a smaller value of the
loss function means a better model. Thus, the training goal is
to obtain weight values which result in a minimum loss value.
Gradient descent algorithm and its variants are commonly used
to solve this optimization problem. It works by tweaking the
weights in the opposite direction to the gradient of the loss
function. Specifically, each weight has an update proportional
to the partial derivative of the loss function with respect to the
current weight. The gradients are usually calculated by auto
differentiation (AD) techniques leveraging the chain rule. As
such, computing the gradient for a weight has an effect of
multiplying many numbers (from subsequent layers).

Normally, a neural network is designed to have many layers
to improve its capacity. Increasing the number of layers can

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

enable a neural network to train on a large-scale training
dataset and efficiently learn more complex mapping functions
from inputs to outputs. However, the addition of layers can
have negative impacts on training. The common problems are
vanishing gradient and exploding gradient.

Problem 1 (Vanishing Gradient Problem). In backward prop-
agation, when the gradient is computed by multiplying many
small number, the gradient can be vanishingly small, espe-
cially for layers that are close to the input layer. Consequently,
the weights can hardly be changed and the loss function can
end up with a very large value, meaning the trained model
would have a low accuracy. Such a problem is referred to as
vanishing gradient (VG).

Symptoms of VG. The gradient decreases exponentially from
layer to layer and is close to zero in the layers close to the
input layer, and the training accuracy remain low.

Problem 2 (Exploding Gradient Problem). In contrast fo
VG, the gradient can grow exponentially as it is propagated
backwards. This also leads to NaN or unexpected large values,
which results in bad model accuracy. Such a problem is
referred to as exploding gradient (EG).

Symptoms of EG. The gradient increases exponentially from
(output) layer to (input) layer during backward propagation
and can become large or even NaN value in the layers close
to the input layer, and the training accuracy is low.

C. Activation Function

Intuitively, each neuron in a DNN can be regarded as one
special feature to differentiate between the given inputs. Given
a set of inputs, each neuron computes the weighted sum and
then adds a bias to the sum. After that, an activation function
takes the computed sum as input and produces an output for
the neuron. Specifically, the activation function determines
how much the input is relevant for the following stage, guiding
the neural network to leverage important features and suppress
irrelevant features.

ReLLU (Rectified Linear Unit) is a widely-used activation
function in a neural network [14-16], which outputs the
same value if the input is positive and outputs zero if the
input is non-positive (i.e., ReLU(z) = maz{z,0}). Existing
work [17] has demonstrated its excellent training effect. It
effectively improves the sparsity of the model, achieving better
training convergence and accuracy. However, using ReLLU has
its own limitations, among which dying ReLU is the most
common and serious one.

Problem 3 (Dying RelLU). When a Rel.U neuron receives a
non-positive input, it will output zero, making the neuron inac-
tive. In such cases, the neuron is very likely to remain inactive
forever since a gradient-based optimization algorithm will not
tweak the weights for an inactive neuron. Consequently, such
neurons cannot be leveraged to distinguish between the inputs
and ground truth, and if there are many such neurons, we may
end up with a large part of the neural network contributing

361

nothing to the prediction task. This is known as the dying
ReLU (DR) problem.

Symptoms of Dying ReLLU. When training a DNN with ReLLU
as the activation function, the gradients of a large percentage
of the neurons are zero and the training accuracy is low.

D. Convergence

The training goal is to reduce the loss value converge to
a minimum. To determine the point of convergence, there
are usually two conditions. One is that the training time has
reached the maximal allowed iteration (defined by the user).
And the other one is that the training accuracy has reached
desired values. In some training cases, we may end up with a
set of low accuracy models even after the maximal number
of training iterations, and they are usually caused by two
problems: oscillating loss and slow convergence.

Problem 4 (Oscillating Loss). It is inevitable for the loss value
to go up and down during the training procedure. But if there
are large changes without decreasing trend, the training may
not converge in a very long time which should be enough for
training the model. We refer to such a problem as oscillating
loss (OL).

Symptoms of OL. The training accuracy keeps fluctuating in
a large range for a long time.

Problem 5 (Slow Convergence). The loss value has a high
value and decrease so slow that no significant accuracy
improvement has been made, and it may end up with low
accuracy even when the maximal number of training iteration
is finished. We refer to such a problem slow convergence (SC).

Symptoms of SC. The training accuracy holds a low value
for a long time even though the loss is decreasing slowly.

III. IDENTIFYING DNN PROBLEMS DURING TRAINING

As far as we know, there is no existing tool that can
help users identify the aforementioned DNN problems during
training. TensorFlow provides a TensorBoard Debugger [5]
tool to help users inspect program variables (e.g., loss value)
and inserting assertions. PyTorch also allows users to do the
same thing by using PyTorch Hooks [18]. However, it requires
expertises to perform the required analysis and patching to
solve this problem. While many of these problems are common
problems in DNN training, their symptoms and solutions
have been studied and analyzed. In this paper, we propose
AUTOTRAINER, a DNN training tool that can automatically
monitor DNN internal values (i.e., neuron activations and
gradients), loss values and training accuracy values during the
training procedure and inspect possible problems. If a problem
is identified, AUTOTRAINER will try to automatically fix it.
AUTOTRAINER is designed to be a training time monitoring
and fixing tool because of the following:

e Training problem occurrence is highly random. When
training a model using the same configuration and training
dataset for multiple times, whether a problem occurs or not

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

Dying ReLU Not Happened
20cases AVgACC 8534%

* Dying ReL.U Happened
80cases AVgACC 1135%
Reparred ACC 93 23%

o =0-9 50 cases AvgAst
2 = 10~19 9cases AvgAsc
4% 1 50% . 20~28 Brases AvgAsc
\ % J = 30~49 4 cases AvgA
== “No 29case AvgA
Repaired Acc 97 65%

0 38%
89 82%
86 89%
85 99%
a0 47%

20%
| % J

(a) Occurrence (b) Time of Occurrence

Figure 1. Problems Occurrence and Time of Occurrence are Random

in a training procedure is random. This is because there are
many random values used in DNN training. For example, the
weight values are usually initialized with random values. In
some cases, one problem will occur because of these random
values while it will not happen in some other cases.

We train a DNN model with 34 layers (650,000 parameters)
on the MNIST [19] handwritten digit dataset (50,000 training
and 10,000 testing samples). In this model, we also use Re.U
as the activation function, Adam as our optimizer, and set our
learning rate to be 0.001 and the maximal number of epoch to
50 (see [13]). We train the model for 100 times. Figure 1(a)
shows the distribution of the appearance of the dying Rel.U
problem. We can see that the dying Rel.U problem occurs in
80% of the training processes but not in the remaining 20%,
which demonstrates that whether a problem occurs or not is
random. The average training accuracy when the DR problem
happens is only 11.35% while the value reaches 85.34% when
there is no DR problem. With AUTOTRAINER, we are able
to detect all these DR problems and fix them, improving the
accuracy to 93.23%.

¢ The time when a training problem occurs is random.
Similar to the randomness of problem occurrence challenge,
the time when the problem actually happens is also random
during training. We use a model which has the oscillating loss
problem as an example. It is a DNN model with 20 layers and
uses RelLU as activation function, Adam as optimizer, and we
set the learning rate to be 0.001 and the maximal number of
iterations is 50. Details of the training scripts is also available
in our repository [13]. The distribution of the stages (epoch
number) when the problem occurs is shown in Figure 1(b). In
29% of the cases, the oscillating loss problem is not triggered.
In half cases, the problem is detected in the first 10 epochs,
and the percentages of detecting the problem in other stages
are separately 9%, 8% and 4%. It demonstrates at which stage
a particular problem occurs is random.

Since our system enforces real-time surveillance, it is
able to perform timely detection and repair. For this model,
AUTOTRAINER can detect the problem at early stage (i.e.,
before 20 epochs out of 50) in the wide majority of cases (i.e.,
more than 80% of the cases where the problem occurs). After
the detection, our system attempts to resolve the problem
by leveraging four solutions (i.e., substituting initializer, in-
creasing batch size, decreasing learning rate and substituting
optimizer. See §IV). Based on our experiments, the problem is
successfully alleviated in all cases, and improves the accuracy
to 97.65%. In contrast, existing post-training methods do not
collect real-time data, making them unable to detect problems
during the training.

362

Problem Detection Automatic Repair
! . °
%: = =t (v New Solution / No Repaired 4
. === More Solution Signal °
Model Training Monitor Well-
trained
g — A Model
Recorded Data Solution Scheduler
Problem] _Fhpiled
Problem Recognizer Problem
Report

Figure 2. Overarching Design of AUTOTRAINER

IV. SYSTEM DESIGN

Figure 2 gives the overarching design of our system, which
consists of the problem detection module (left) and the au-
tomatic repair module (right). The whole system starts by
training a model with an initial training configuration and
using the problem recognizer to monitor the training. When
a problem is detected, the system will launch the automatic
repair module trying to retrain the model with new settings
until the training can finish without any problem (repaired) or
a detected problem cannot be solved (failed). Notice that if
there exist several problems, our system will attempt to solve
the detected problems one by one in the order of exposure.

AUTOTRAINER takes a training configurations (i.e., the
original training scripts including model architecture, loss
function, optimizer etc.), and user preferences as in-
puts. The user preferences are configurable parameters for
AUTOTRAINER, which includes preferred repair solutions and
so on. AUTOTRAINER has a set of default values for them, and
user can replace them. Details will be presented in §IV-B. The
problem detector monitors training information like loss value.
During this, the problem recognizer is triggered on a timely
basis to analyze the recorded data to recognize symptoms and
determine whether a training problem exists. If a problem is
detected, the automatic repair module will be leveraged to
address it. Otherwise, the training monitor will output the
trained model with its training configurations to the user.

For each problem, AUTOTRAINER has a few built-in so-
lutions to fix them. However, one solution may or may not
work. If the detected problem is the same as before (if any), it
means the applied solution cannot solve the problem for this
particular case. Hence, the solution scheduler will retrieve the
next one, apply it and restart training. If a new problem is
detected, the solution generator will select the corresponding
solutions to it. The order of solutions can be reorganized by
users. If none of the solutions can fix the problem, the solution
scheduler will report a failed case with the whole training log.

A. Training Monitor

The training monitor starts a training procedure and records
data which is used to recognize symptoms and retrain the
model when a problem is detected. The recorded data includes:

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

« Model definition including layers and their configurations
(e.g., kernel sizes in convolutional layers).

« Optimization method definition and its parameters.

« Training accuracy and loss values.

« Calculated gradients for each neuron.

« Hyper-parameters and other necessary variables used in
training, such as the batch size and learning rate.

Note that the data of each training procedure will be

recorded separately and can be queried by the user.

B. Problem Recognizer

The problem recognizer regularly conducts analysis on the
recorded data to recognize training problems. The symptoms
leveraged to detect problems are formalized and shown in
Table 1. The first column lists the training problems and the
second column specifies the symptoms involving gradient and
training accuracy. If the depicted condition is met, our system
regards the corresponding symptom as observed. The last
column presents the built-in solutions in AUTOTRAINER.

VG. We formalize the symptom of the VG problem as
two conditions. Firstly, there has not been a trained model
whose accuracy is good enough to terminate the training
(max(Acc) < ©). This check is by default enabled and
checked by all existing DNN training platforms already. If
there is such a model, the training should have terminated.
Secondly, in the recent «; training iterations, the gradient has
been drop from layer to layer in the backward propagation and
the gradient becomes to be very small (smaller than a threshold
value [33). To measure the change and value of gradients, we
use the /o-norm, which is borrowed from existing literature in
the Al research community [20-22].

EG. The definition of EG symptoms are very similar to that
of VG except that the gradient is growing from layer to layer
in backward propagation or it has already become NaN values
in some layer (meaning that it cannot propagate back to the
input layer already).

DR. Dying RelLU means that there has been a set of neurons
whose gradients have been O in the recent a few iterations
([k — as,k]) and this set is large forms a large portion of
the whole DNN (more than a threshold value ~) while the
accuracy of the neuron net work is still low.

OL. Intuitively, the symptom of an OL problem is that there
has been a lot of oscillating loss values from the start till
now. To measure if there are oscillating loss values, we first
extract two lists of loss values, A and B representing the
maximum optimal and minimal optimum loss values (in time
order) respectively. Then, we calculate the degree of oscillation
by computing the differences of a consecutive pair of elements
in A and B. If the oscillation is larger than 7, we think this is
a significant oscillation, and if such oscillation happens very
frequently, we think there is an OL problem.

SC. By definition, SC means the accuracy of trained models
is growing slowly. To check this problem, AUTOTRAINER
checks the training accuracy change for the past iterations.
If the change has been small, it indicates that the training

363

has been trapped into a local optimal point, and the training
process has failed to improve it. Based on this, AUTOTRAINER
determines that the SC problem happens.

C. Solution Scheduler

The main role of the solution scheduler is to pick one
solution to fix the problem and restart the training procedure.
For the same problem, it will try each possible solution one by
one based on the default order if users do not specify preferred
orders. If one solution can fix the problem, the scheduler will
not be triggered by the same problem. Otherwise, it will try
a new solution. And if none of these solutions can fix it,
AUTOTRAINER fails to resolve this problem and will report
this to the user to determine what to do next.

D. Existing Solutions

There has been some study on how to solve training prob-
lems. Unfortunately, there is no silver bullet and one solution
cannot be guaranteed to work for all cases. For each problem,
AUTOTRAINER collects a few possible solutions which have
been shown to be effective in prior study and uses them to fix
detected training problems, and these solutions include:

¢ S1: Adding Batch Normalization Layers. Batch normal-
ization is a method used to normalize the neuron values
of a layer by re-centering and re-scaling them. This helps
remove the unexpected gradient and neuron activation values.
Specifically, the normalization will squeeze the values into a
specific range, and as such, small gradient updates will not
diminish or explode during the backward propagation, mean-
ing that the vanishing and exploding gradient problem can be
alleviated [9, 26]. In addition, such value range enforcement
reduces the possibility of getting an inactive neuron and help
resolve the Dying Rel.U problem.

Regarding to the problem of where to add batch nor-
malization layers, authors of this method [9] has performed
analysis and demonstrated that adding batch normalization
before activation function layers gives the best result. We
follow this guidance and implemented our solution.

o S2: Substituting Activation Functions. As aforementioned,
Rel U is a commonly adopted activation function. The gradient
of RelLlU activation is 1 when the input is greater than 0,
meaning the gradient will remain the same without decreasing
or increasing dramatically (if used with the proper optimizer
and learning rate). Hence, substituting the current activa-
tion function with ReLLU and its variants (e.g., SELU [10],
LeakyReLLU [27]) can mitigate both the vanishing gradient
problem and the exploding gradient problem.

e S3: Adding Gradient Clipping. Gradient clipping clips
gradient values that exceed a specified range, which essentially
limits the update of a weight value to a limited region. Unlike
batch normalization and other normalization methods, this
method clips the gradient values based on a threshold. By
removing obviously large gradient values, it can be used to
alleviate the exploding gradient problem [28-30].

Bengio et al. [30] and many others [29] have studied and
evaluated the concrete values to use in gradient clipping, and

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Problem Symptoms and Repair Solution Candidates

Training Problem Symptom

Solution

Gl Gi S1: Adding Batch Normalization Layers
Vanishing Gradient Gradient: V¢ € [k — o1, k), ,2 ous n—l <pi A Hui H < P2 S2: Substituting Activation Functions
[20-22] EN A 2
Accuracy: maz(Acc) < ©
i ‘ Gi H S1: Adding Batch Normalization Layers
Exploding Gradient Gradient: Vi € [k — oz, k], 2 n—1 Sa\/ 3j € N,G} = NaN S2: Substituting Activation Functions
[20-22] let,] ™ letal 2 $3: Adding Gradient Clip
Accuracy: maz(Acc) < ©
. . . [{7eN|,G%t=0}| S1: Adding Batch Normalization Layers
Dy1n[%3R]eLU Gradient: Vi € [k — a3, k], W\J > ¥ S2: Substituting Activation Functions
Accuracy: maz(Acc) < © S4: Substituting Initializer
S4: Substituting Initializer
Oscillating Loss Accuracy: LEELmin(AL|BDIIAL] = BliI>¢} S5: Ad]:ust@ng BatchlSizes
[24] s ” 3 =7 S6: Adjusting Learning Rate
S7: Substituting Optimizer
Slow C S4: Substituting Initializer
ow E)Qn;/]ergence Accuracy: Vi € [1, k], |Acc[i] — Acclt — 1] < 8 S6: Adjusting Learning Rate
S7: Substituting Optimizer

6 (1/B2/Bs3, thresholds for gradients
7 ©, the training accuracy threshold
8

1
2
3
4
5

G, the gradient of layer a in iteration b
n, the number of layers of a DNN

N, all nevrons of a DNN

k, the current training iteration

vy /g / ag, thresholds for iterations

rons with O gradients

9 3, the threshold for accuracy difference

recomnmend to clip the gradient of each layer to [—10, 10]
which is adopted by AUTOTRAINER.

¢ S4: Substituting Initializers. Initializers set a starting point
for the optimizers during model training. Thus, inappropri-
ate initialization can cause disasters in training deep neural
networks. Xavier initialization [31] was proposed solve the
oscillating loss and slow convergence problem by initiating the
weight values to a proper range. Lu et al. [11] have shown that
the popular initialization schemes like He Initialization [32]
suffers from the Dying Rel.U problem. In §III, we also showed
a case where the initialization values can affect the model
training. Thus, we also try to substitute the used initializers
when a model encounters the Dying RelLU, slow convergence
or oscillating loss problems.

e S5: Adjusting Batch Sizes. Batch size is the number of
training samples used in one iteration to estimate the error
gradient, which is an important hyper-parameter. A too large
batch size might make the loss value trap into a poor local
minimum, leading to low accuracy, while a too small batch
size might make the loss bounce around a lot, leading to
oscillating loss [12, 33]. In practice, increasing the batch size
appropriately has the potential to improve the stability of the
training and solve the oscillating loss problem.

Setting the proper batch size is not easy for DNN training,
and various researchers have performed analysis and evalu-
ation and this [12, 29, 30]. Based on our study, LeCun et
al. and Bengio et al. suggest using 32 as the starting point.
Following this, we try to initialize the batch size to be 32.
If the accuracy is too low, we try to descries the batch size
by a factor of 2 until it reaches 8. If the OL occurs, we will
increase the batch size also by doubling until it reaches 256
(according to Masters et al. [12]).

¢ S6: Adjusting Learning Rates. Learning rate is a hyper-
parameter that determines the amount of change to the model

~, the threshold for the percentage of neu-

364

10 ¢, the threshold for the difference of max-
imum and minimum optimal

11 7, the threshold for the percentage of times
of large loss fluctuation

12 Ace, accuracy arry for each iteration

13 mazx, the maximum function

14 A/ B, araies of maximum/minimum op-
timal

in each update (i.e., each backward propagation). If the learn-
ing rate is too large, the weights are likely to have fluctuating
update and the loss value will oscillate and even increase over
training epochs [28]. Given this, decreasing the learning rate
can be helpful to tackle the oscillating loss problem.

Generally, a small learning rate makes it possible for the
model to learn more optimal or even globally optimal weights
with the risk of taking a very long time to finish the training.
At one extreme, the training may never converge to a low loss
value even after the maximal number of training epochs. As
such, the slow convergence problem might be resolved if the
learning rate is increased [28].

The values we set for learning rates depend on different

optimizers they use. We follow the suggestions made by
their original authors (e.g., Adam [34]) and existing empirical
evidence [35, 36]. Specifically, we choose 0.01 for SGD based
optimizers,and 0.001 for Adam and other adaptive optimizers.
If the slow convergence problem still exists, AUTOTRAINER
increases it 10 times; and if the oscillating loss problem still
exists, AUTOTRAINER decreases it by a factor of 10.
e S7: Substituting Optimizers. Optimizers are algorithms
used to update weights to reduce the loss value. An optimizer
can have different performance in different scenarios. Practi-
cally, a substitution of an optimizer can help address various
training problems. Stochastic Gradient Descent (SGD) [37]
is a variant of the basic gradient decent algorithm, which
computes an estimated gradient on a randomly selected small
subset of data samples instead of computing an actual gradient
on the entire dataset. Based on the rationale, the weights are
updated more frequently in SGD which can speed up the
convergence. However, the high variance in weights may result
in fluctuations in the loss value.

Momentum [38] is a method introduced to speed up SGD
and dampen loss oscillations. It works by adding a fraction
of the update in the past time step to the current update.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

Usually the value of momentum is set as 0.9 or a similar
value. The value 0.9 means the weights will update based on
90% of the previous gradient and 10% of the new gradient.
Such a mechanism achieves a faster convergence and fewer
oscillations compared with SGD. However, if the momentum
is too much, we may swing back and forth near the local
minimum without hitting the minimum. Adaptive Moment Es-
timation (Adam) [34] is a widely adopted optimizer that uses
momentum and adaptive learning rates. The adaptive learning
rate allows us to start with large learning rate and finish with
small learning rate. As the learning rate is decreasing, we will
take smaller and smaller steps, which can prevent us from
missing the local minimum and accelerate the convergence.

In a nutshell, we can use algorithms with momentum like
SGD+Momentum or Adam to alleviate the oscillating loss
problem, and randomly use a different optimizer to alleviate
the slow convergence problem.

V. EVALUATION

The prototype of AUTOTRAINER is implemented on top of
Keras 2.3.1 [39] and TensorFlow 2.1.0 [40]. In the evaluation,
we aim to answer the following research questions:

RQ1: How effective is AUTOTRAINER in detecting and fixing
training problems?

RQ2: How efficient is AUTOTRAINER in detecting and fixing
training problems?

RQ3: What is the impact of different configurable parameters
in AUTOTRAINER?

A. Setup

We performed our experiments on six popular datasets: Cir-
cle [41], Blob [42], MNIST [19], CIFAR-10 [43], IMDB [44]
and Reuters [45]. Circle and Blob are two datasets from
SKLearn [46] for classification tasks. MNIST is a gray-scale
image dataset used for handwritten digits recognition. CIFAR-
10 is a colored image dataset used for object recognition.
IMDB is a movie review dataset for sentiment analysis.
Reuters is a newswire dataset for document classification.
In total, we collected 495 models and their training scripts
with various DNN models structures (CNN, RNN and fully
connected layers only) for these six datasets. Among them,
262 of them have training problems and the rest are normal
models, which have been confirmed by model authors. Most
models are collected from reported buggy models on GitHub,
StackOverflow, existing papers and personal blogs, and some
of them are gathered from machine learning experts within
our organization. The training scripts of these models and all
experiment results are all public at our repository [13].

If not specified, all experiments in this section are conducted
on a server with Intel(R) Xeon ES5-2620 2.1GHz 8-core
processors, 130 GB of RAM and a NVIDIA TITAN V GPU
running Ubuntu 18.04 as the operating system.

365

B. Effectiveness of AUTOTRAINER

Experiment Design: To evaluate the effectiveness of
AUTOTRAINER, we run our collected 495 model training
scripts to test the effectiveness of AUTOTRAINER. Due to
the randomness in performing these experiments, we run the
training multiple times to ensure that the problem have been
exposed, and collect the experiment results of such cases. To
measure the effectiveness of AUTOTRAINER, we start two
parallel trainings for the same model. To reduce the effects
of randomness, we enforce them to share the usage of the
same random number including the initialization weights.
They also share the same set of training hyper-parameters and
optimization methods. During training, we collected training
logs including gradient, loss values, etc., to help us verify
the whole process. At the end, we manually verify them
and confirm them with the details provided by buggy model
providers (i.e., online posts and machine learning experts).

Results: For all 262 buggy trainings, we detect 316 training
problems as some models have more than one. Table II
demonstrates partial results. The first column lists the six
datasets. The second column shows the model status and the
corresponding number of models. “Repaired” status indicates a
model is successfully repaired if any target problem is detected
and “Failed” indicates that the problem still exists even after
AUTOTRAINER has tried all built-in solutions. Lastly, we
use the “Normal” status to denote models without training
problems. The third column lists model identification numbers,
and the fourth column shows the number of detected problems
of each model. The following columns denote the accuracy,
the training time and the memory consumption (efficiency
results, see §V-C). Column “Original” shows the information
for the original model training (without AUTOTRAINER) while
column “AT” (short for AUTOTRAINER) shows that of the re-
paired models. Column “Ratio” gives the ratio between the val-
ues of a repaired model and the corresponding original model.
Column “Tmprove” shows the absolute accuracy improvement
that our system achieves. The cells in purple separately corre-
spond to the models with the highest accuracy improvement,
maximum training overhead and maximum memory overhead
while the cells in grey separately correspond to the ones
with least accuracy improvement, minimum training overhead
and the minimum memory overhead. All detailed experiment
results can be found at our repository [13].

Notice that the same problem may get repaired using differ-
ent solutions, and after AUTOTRAINER repairs the model, its
accuracy may not be improved. To evaluate the repair effects,
we also calculated the number of problems that are fixed
by individual solutions and the change ranges in accuracy.
The results are separately shown in Table III, Table IV and
Figure 3. In Table III, the first column shows the datasets, and
the following columns present the problem and corresponding
solutions. The solutions are (from left to right) ordered by their
default priority used for repairing in AUTOTRAINER. Each
number in the top half of the table denotes the number of
problems that are repaired successfully by the corresponding

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Overall Results of AUTOTRAINER

Accuracy Train Time Average Memory
Dataset Status Model #Problem | AT (%) Improve (%) Rafio | Original () AT (s) Raio | Original (MB)g AT (MB) Ratio
I i 2033 86.00 6567 423 1853 4435 230 158068 1571.75 099
2 1 8533 84.67 067 099 3106 6506 2.09 155412 155232 1.00
Repaired: 46 | 3 3067 85.00 5433 2.77 1586 58663 3698 156495 156512 1.00
4 1 4033 8367 4333 207 1799 2403 134 155091 1554.17 1.0
5 1 5300 84.67 3167 160 2100 3304 157 157569 158219 1.0
Blob 6 1 5033 83.67 3333 166 1299 3099 239 1282.06 125863 098
Ave 113 4331 81.04 3773 187 1367 5178 379 150591 150524 1.0
7 i 3367 3367 000 1.00 1603 10056 684 157694 1574190 1.00
Failed: 2 48 1 3367 3367 000 1.00 689 8664 1257 157470 157395 1.00
Ave 1 3367 3367 000 1.00 1146 9810 856 157582 157407 1.00
o . 6767 B . B 561 1774 114 150501 148604 0.99
Normal: 39 50 - 70.67 - - - 1571 1694 1.08 151426 150971 1.00
Ave - 76.27 . L - 1636 1768 1.08 156239 156112 1.00
88 i na 8833 8833 na 1800 2844 158 132003 1321.28 1.00
89 1 8733 8633 2100 0.99 2208 7185 313 132553 132622 1.00
Repaired: 71 | 90 2 4967 78.00 2833 157 350 57.18 1635 133255 133232 1.00
Circle 91 1 5433 87.67 3333 161 6088 7427 122 1358.89 1358.80 1.00
Ave 1.10 4697 8356 3660 178 2805 6760 241 133685 133612 1.00
159 B 7667 B . B 1620 1694 1.05 130543 130258 1.00
Normal: 36 | 160 - 68.00 - - - 2914 3053 105 131331 130658 0.99
Ave - 81.43 - . - 2801 2929 105 134273 134225 1.00
195 7 1000 7173 6173 717 7348 1180.53 1607 7729 377416 084
196 1 5772 69.46 1174 120 7380 13998 1.90 435905 365591 0.84
Repaired: 45 | 197 2 10.00 6567 5567 657 40989 43113 105 302197 300428 0.9
198 1 812 6544 5732 8.06 9324 12931 139 374407 503464 134
CIFARAO 199 1 1000 67.82 5782 678 21444 29544 138 358040 2817.81 0.79
Ave 1.02 1311 66.80 5360 5.10 24896 52222 210 3679.23 351332 095
TFailed: T 740 T 1000 10.00 000 1.00 38279 49260 1.29 377713 377713 1.0
241 B 6537 . B B 34288 31932 093 5237 3714912 084
Normal: 35 | 242 - 56.56 = - - 23645 24480 1.04 374978 375379 1.00
Ave - 63.48) -) 14563 14639 101 394677 382603 097
776 i 933 0017 8084 1063 14882 21236 143 308437 308377 1.00
277 1 8844 99.12 1068 1.12 26711 40137 150 322607 3188.81 0.9
278 2 980 99.20 8040 10.12 365.55 229460 628 328342 328367 1.00
Repaired: 38 | 279 1 3508 98.89 6381 2.82 33144 36542 110 347525 328604 095
MNIST 280 1 950 99.21 8971 1044 12355 22597 183 314398 335633 1.07
281 1 1614 99.11 8297 6.4 6540 12388 1.89 334791 313869 094
Ave 1.13 1622 98.88 8266 6.10 22074 49314 223 3085.00 302666 0.8
314 B 9879 B) B 17385 17347 1.0 320396 3198.10 L1.00
Normal: 78 | 315 - 86.54 - - . 13593 13642 1.00 3168.69 292568 092
Ave - 96.89) - 0 20843 22879 1.00 325175 320340 0.99
392 i 719 6674 6256 1503 64501 102308 150 224700 236128 1.5
393 1 5686 57.30 045 101 85534 284438 333 241377 248197 1.03
Repaired: 31 | 3% 1 4791 5245 454 1.09 127841 477825 374 231299 2360.14 1.02
395 1 na. 6291 6291 na. 131638 1321.00 1.00 1859.00 1869.22 1.01
Reuters 396 1 na. 5846 5846 na 259111 4363.19 1.68 182366 175823 096
Ave 1 2137 5923 3787 277 141138 289473 205 221400 225093 1.02
TFailed: 1 773 T 3602 36.02 000 1.00 148400 146037 008 188161 1820.14 097
7 B 7713 B B B 146605 151032 1.03 101203 192708 1.01
Normal: 32 | 425 - 46.15 -)) 140059 147197 1.05 1901.38 193053 1.02
Ave - 51.75)) . 122265 124935 1.02 230796 234796 1.02
756 i na 87.08 8708 na 398220 887697 223 199846 206023 1.04
457 1 82.04 80.53 151 098 2078.05 5961.56 2.87 205186 228511 101
458 1 4933 86.03 3670 174 670.69 692599 1033 2056.18 234293 1.04
Repaired: 24 | 459 1 4912 8595 3683 175 106943 1307.58 1.22 2058.64 234551 1.04
460 1 4978 86.68 3690 174 1306.62 5478.55 4.19 213805 231773 1.08
461 1 5000 86.11 3611 172 370341 9246.12 2.50 205798 1854.65 0.90
IMDB Ave 1 4529 8439 3910 186 287101 6499.83 226 215372 219581 1.02
730 T 50.00 50.00 000 1.00 106277 148036 130 218229 2349.58 1.08
Failed: 3 481 1 na na 000 na 208921 145198 0.69 218426 204423 094
482 1 na na 000 na 130046 2257.56 174 206188 234853 1.04
Ave 1 1667 1667 000 1.00 1484.15 172997 1.17 200047 224745 1.02
183 B 8738 B B B 105187 198437 1.02 706038 34784 104
Normal: 13 | 484 - 83.14 - - - 202207 203650 1.01 219192 2088.60 095
Ave - 84.54 - - - 1828.85 1844.67 1.01 220419 228091 1.03
Normal Ave . 7914 B B B 37537 38057 101 259148 256553 0.09
Repaired Ave 1.07 3246 79.55 4708 245 51566 1141.79 221 220498 219530 0.9
Failed Ave 1 2334 2334 000 1.00 906.02 104844 1.16 2205.54 221254 1.00
366

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

TABLE III: The Problem Repaired Results

V& | EG DR SC OL
Dataset oy <7137 ST 53|52 ST 457 56 54 |57 56 55 54| 02!
Biob |10 2Z[10 0 0| 4 3 1] 2 0 0[4 0 0 0] 6
Cirle |9 19 1 0|6 3 0[43 1 0/7 1 0 o 81
CIFAR-10| 5 0| 7 1 0/ 2 1 0/ 27 1 0/ 2 0 0 0| 46
MNIST | 6 2|10 0 o/ 4 0 ol 20 1 o[7 1 0 of 51
Rewers | 0 3| 6 0 0| - - -| 19 7 0/ 0 4 0 of 30
IMDB | 5 2|5 0 1| - - -/ 93 0|0 4 0 0| 29
Towl |35 10[47 2 1|16 7 1|147 13 0][20 10 0 0] 309
Repaied | 45 5 % 160 307 300
Failed 3 4 0 0 o| 7
Total 48 54 2% 160 30| 316

TABLE IV: The Accuracy Improvement of Problems

#Repaired Avg Improve(%)
Datast ' v—5G DR SC OL| VG _EG DR SC _OL
Blob 12 10 8 29 4 {3878 3040 2478 43.01 -0.50
Circle 10 10 9 44 8 | 30.08 8292 2810 33.64 1020
CIFAR-10 5 8 3 28 2| 5617 5850 5981 5272 11.74
MNIST 8 10 4 21 8 | 87.72 87.68 8674 8293 56.97
Reuters 3 6 - 26 412012 5030 - 3758 2077
IMDB 7 6 - 12 43643 8594 - 3343 -055
Total/Average | 45 50 24 160 30| 4504 66.87 4691 4605 16.00

solution (i.e., column name). The bottom half summaries the
number of problems of different status. The pie chart in
Figure 3 demonstrates the distrubution of change ranges in
accuracy with corresponding numbers of models.

Analysis. The experiment results demonstrate the effectiveness
of our system. Firstly, AUTOTRAINER can effectively detect
the defined training problems with a 100% success rate on
all 495 model trainings, and none of the normal trainings are
mis-classified as problematic. Secondly, AUTOTRAINER can
effectively repair the buggy training procedures. After success-
ful repairing, it can improve the accuracy by 47.08% with the
maximum improvement as 89.84%. Overall, AUTOTRAINER
achieves around 46% accuracy improvement which is 2.43
times that of training without AUTOTRAINER. Notice that
when EG happens, it may result in NaN values in the model,
leading to NaN output results for all inputs. In such cases,
we do not measure the prediction accuracy and directly report
them as “n.a.” in Table II

From Table III, we observe that AUTOTRAINER is able to
respectively repair 93.75%, 92.6%, 100%, 100% and 100%
of VG, EG, DR, SC and OL in buggy trainings. And Ta-
ble IV shows the detailed average accuracy improvement
of AUTOTRAINER on different problems, which is 45.04%,
66.87%, 46.91%, 46.05% and 16.00% of VG, EG, DR, SC and
OL in repairing, respectively. Table III and Table IV demon-
strate that AUTOTRAINER is capable of handling different
types of datasets, model problems and model architectures.
Regarding SC and OL, we find that only two solutions can
effectively address all the problems we encountered in our
evaluation.

Figure 3 shows that model accuracy increase distrubution.
Specifically, over 40.78% of the models get an increase of
50% and over 50% has an increase between 10% and 30%.
It demonstrates that AUTOTRAINER has the advantage of
effectively increasing accuracy by repairing training problems.
We also notice that there are 6 models (out of all 255 models)

367

2.35%

‘ 17.65% [-1.51%, 0%): 6 models
40.78% [0%, 30%): 45 models
0,
= g - [30% 50%) 100 models
Uy > 50%: 104 models

Figure 3. Accuracy Change After Model Training Repair.

30%r 5% T
B25%|1 --- qxg 54%' == gxg
£20%|| Experiment Results f;, 3% || Experiment Results
E \ 21%| \
< g: = = 1 Eoyl —
5 101520253035404550 g

— 1
0 5101520253035404550 7

(a) Circle Dataset (b) MNIST Dataset

Figure 4. Runtime Overhead vs. Problem Check Frequency.

whose accuracy has slight reduction after repaired. For the
worst case, the model accuracy decreases from 82.04% to
80.53%. We manually analyzed them, and found that it is
mainly because they have other problems that are not covered
by AUTOTRAINER, such as floating point bugs. How to detect
and repair such problems will be one of our future directions.

C. Efficiency of AUTOTRAINER

Experiment Design and Results: To evaluate the efficiency
of AUTOTRAINER, we run all 495 model trainings with and
without AUTOTRAINER enabled. During training, we collected
the time used to train the model and the memory usage
for both the original training and AUTOTRAINER. Notice
that experiments for run-time overhead and memory overhead
are conducted individually to avoid influencing each other.
The experiments are conducted 5 times, and the overhead is
calculated as the average of these 5 runs. The results are shown
in Table II. Results and analysis are presented below.

Runtime Overhead Analysis: For normal training, the run-
time overhead is purely from problem checker, which is about
1%. From Table II, we observe that the runtime overhead on
smaller datasets is usually larger (e.g., Blob 8% vs. almost
0% for MNIST). This is because the total time for training on
small datasets is relatively short, making the runtime overhead
ratio larger. For buggy trainings, AUTOTRAINER takes 1.19
more training time on average. We performed a deeper analysis
to understand the overhead of individual components, and
found that retraining takes over 99% and the rest two parts
(i.e., problem checker and repair) takes less than 1%. It
means that AUTOTRAINER only costs little time (< 1% total
overhead) in automatically searching a suitable solution for
the problems, which requires lots of manual operations and
time-consuming in existing strategies. As discussed in §IV,
to repair a problem, it may try several times, which leads
AUTOTRAINER training several models.

Checking Frequency v.s. Runtime Overhead. More frequent
problem checking causes higher runtime overhead. Suppose
that one training iteration and one checking separately take ¢;
and to time, then the overhead of AUTOTRAINER is roughly

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Check Frequency vs. Delay in Problem Detection

Problem Detection Delay
7q=2 1/q=3 T1/q=4 1/q=5 T1/q=9 1/q=15
VG 033 1.12 1.48 1.78 3.22 6.22
EG 0.38 1.38 2.38 3.38 7.38 13.38
DY 043 1.15 2.15 2.29 8.01 8.01
OL 040 1.60 1.60 2.40 3.40 6.40
SC 032 1.06 1.25 2.13 2.74 6.09

qX12/t1, where ¢ is the checking frequency. Figure 4 presents
the corelations between checking frequency and runtime over-
head on Circle and MNIST. The X-axis is the number of
iterations between two checks (1/¢), and Y-axis is the runtime
overhead. The solid line represents the collected data and the
dashed curve is the theoretical results (i.e., ¢ X t2/t1). As we
can see, shapes of experiment data conform to our theoretical
analysis. By comparing the two figures, we observe the smaller
dataset has the higher runtime overhead, which is consistent
with our data in Table II. By default, AUTOTRAINER checks
the problem every 3 iterations, which causes less than 5%
overhead even for small datasets like Circle.

Lower frequency checking can reduce the overhead, but may
cause longer delay in detection. Table V shows the effects of
different check frequencies. Fach row represents one problem
type, and each column denotes a different check frequency.
Numbers in cells show the delayed iterations between the
occurrence of the problem and the detection of the problem.
Considering VG, if AUTOTRAINER performs the checking
every 15 iterations, it needs 6 extra iterations to detect it
compared with checking problems every the other iteration.
In a nutshell, a lower checking frequency may result in the
delay in problem detection, which further leads to wasting
time on a buggy training.

Memory Overhead Analysis. AUTOTRAINER has very lim-
ited memory overhead (-1% to 1%) since AUTOTRAINER
reuses data which has been collected. To detect problerms,
AUTOTRAINER requires the current gradient values, and his-
torical loss and training accuracy values. The gradient infor-
mation is stored as part of the tensor data for training purpose
(used in backward propagation), and the historical loss and
training accuracy values are automatically collected by all
major frameworks. The overhead caused by AUTOTRAINER
are mostly due to program variables, which are negligible
compared with neuron and gradient values and even the
overhead introduced by the memory profiling tool itself.

D. Effects of Configurable Parameters

AUTOTRAINER leverages configurable parameters to deter-
mine if a problem is happening or not. We classify them into
three categories and evaluated each of them in this section.

Type-A: Type-A parameters include «q, ao and g in Table I,
which are used to determine the time window used to detect
the occurrence of VG, EG and DR problems. For these
problems, the same symptoms will also be observed in the
rest iterations once they happen in one iteration. We comfirmed
this with 50 models and 3 runs on each model. This is also
supported by others [20]. Thus, we set a1, g and a3 to 0.

368

Type-B: AUTOTRAINER has only one Type-B parameter,
the expected accuracy threshold ©, which is a training task
dependent parameter. If not, we will adopt the value which is
used to determine if the training should be early stopped, and
it is provided by Keras and TensorFlow.

Type-C: Parameters in this category include 51, 32, and 3 for
VG and EG; + for DR; 6 and ¢ for OL; and 5 for SC (defined
in Table I). The values of these parameters determine whether
AUTOTRAINER can successfully capture the real problem or
not. To measure their effects on AUTOTRAINER, for each
problem, we use different values (or value pairs if a problem
involves multiple such parameters) to investigate how they
can affect the detection effectiveness. All experiments are
performed on 100 models, and they are repeated 5 times.
Figure 5 reports the final averaged results.

e VG: The values of 5; and fs affect the detection results
of VG. If 5y or B is too large, it will introduce a lot of
false positives (i.e., normal trainings are identified as VG). If
they are too small, it will reduce the detection accuracy (i.e.,
true positives). Figure 5(a) demonstrates how precision and
recall are changed as the parameter values change. It confirms
the aforementioned analysis and suggests the default values
in AUTOTRAINER (ie., 81: le =3, Ba: 1le—%) can achieve high
precision and recall.

¢ EG: Figure 5(b) presents the relationship between precision/
recall and the value of 5. Larger 5 implies that EG becomes
more obvious, but it also means many EG cases which are
less serious will be missed. Hence, precision gets higher but
recall becomes very low. Luckily, when S3 is between 40
and 100, AUTOTRAINER can get 100% precision and recall
simultaneously. By default, AUTOTRAINER sets 33 to 70.

e DR: The detection results of DR is highly affected by the
value of ~y (see Figure 5(c)). With larger ~v, AUTOTRAINER is
able to remove obvious False Positive (FP) cases (i.e., detected
as DR, but is not DR) increasing the precision, but also may
ignore not so serious DR problem causing low recall. When ~y
is set in range [60%, 90%|, AUTOTRAINER achieves the best
result in precision (100%) and recall (100%). By default, ~ is
set as 70% in AUTOTRAINER.

¢ OL: Detecting OL requires two parameters, ¢ and 7, and its
relationships with precision and recall in detection are shown
in Figure 5(d). It is consistent with our intuition that larger ¢
and 7 values will lead to higher precision and lower recall. In
AUTOTRAINER, the default values for ¢ and n are 0.03 and
20%, which results in 100% precision and 100% recall.

e SC: The only threshold in detecting SC is . Very small &
results in very low precision and recall. On one hand, such
low accuracy change are not common during training (hence,
low recall), and on the other hand, many of them with such
low accuracy change are due to randomly initialized weights
(hence, low precision). With no-so-large values, the detection
precision and recall can grow sharply. However, larger § values
may result in the ignorance of many buggy training cases,
leading to low precision. Figure 5(e) shows such a change

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

- Precision 1.0 s precisian 10 = =

= Recall BN Recall
10 08 10 o8| | \
e 06 os| |
0.2 0.4 04| !

~A00 02| Precisian —— Precision e Precision
onb o ey ’ SRecal oy \ ooza uAO Recall
& o 0.0 2 5
B2 oG gy~ So001 B1 0 §0 120 180 100% P PO 0.0 0.008 0.016 0.024

(a) Vanishing Gradient (b) Exploding Gradient

(¢) Dying ReLU

(d) Oscillating Loss (e) Slow Convergence

Figure 5. AUTOTRAINER Detection Precision and Recall vs. Configurable Parameters.

curve. Based on our sampling, to achieve the best in precision
(100%) and recall(100%), ¢ should be from 0.004 to 0.014.
In AUTOTRAINER, we set the default value of § as 0.01.

VI. RELATED WORK

Machine learning techniques are widely adopted in various
SE tasks [47-61]. AUTOTRAINER can facilitate software en-
gineering researchers in repairing their buggy DNN models
automatically. It is highly related with DNN model debugging
and testing, and automatic program repair.

DNN Model Debugging and Testing. In addition to what we
have discussed in §I, there are some other efforts devoted on
debugging DNN models [62-66]. Ribeiro et al. [62] produced
adversarial examples as training data to debug natural language
processing models. Others [63, 64] cleaned up training data
that are wrongly labeled to debug RNN models. LAMP [67]
utilizes gradient information as data provenance to help debug
graph based machine learning algorithms. Ma et al. [4] pro-
posed differential analysis on inputs to fix model overfitting
and under fitting problems. TRADER [65] analyzed how
problematic word embeddings affect the model accuracy by
comparing the model execution traces of correctly-classified
samples and incorrectly-classified samples.

A great number of testing methods have been proposed
to test machine learning models, such as fuzzing [68-75],
symbolic execution [76-79], runtime validation [80, 81], fair-
ness testing [74, 78, 82], etc. DeepXplore [83] introduced
the neuron coverage metric to measures the percentage of
activated neurons or a given test suite and DNN model,
and generates new test inputs that can maximize the metric
to test DL systems. Many others [70, 84-88] extended the
coverage concept and proposed to use them on many different
scenarios. Model testing has also been leveraged for many
other domains such as image classification [79, 89], automatic
speech recognition [90], text classification [74], and machine
translation [91, 92]. Recently, Yan et al. [93] have studied
many coverage criteria and measured their correlations with
model quality (i.e., model robustness against adversarial at-
tacks), and empirical results show that existing criteria can
not faithfully reflect model quality.

Automatic Program Repair. The aim of automatic program
repair is to automatically derive patches to correct bugs in
programs, which normally includes fault localization, patch
candidates generation and patch candidates validation. Many
different kinds of methods have been employed in automated
program repair. The researchers in [94-99, 99] proposed
search-based approaches to generate patches. There are some

369

other semantics-based methods which construct patches using
synthesis techniques [100, 100-104]. Specifications were also
utilized to guide the repair process [105-109]. More program
repair work can be found in the survey [110]. Different from
these research efforts, our work is to repair DNN models which
are not uninterpretable rather than the interpretable code.

Automated Machine Learning (AutoML). AutoML focuses
on automatically design models for given training tasks. Var-
ious kinds of neural architecture search (NAS) algorithms
have been design to find efficient models, such as Bayesian
optimization [111, 112], deep reinforcement learning [113,
114], evolutionary algorithms [115, 116], and gradient based
methods [117, 118]. These methods acquire impressive results
in their experiments. Additionally, open-source AutoML tools,
such as AutoSKLearn [119-121], Microsoft NNI [122], and
AutoKeras [123], also show remarkable model searching re-
sults in actual application.

Although AutoML can automatically generate models
from the training tasks, these models may still face train-
ing problems when training. Comparing with AutoML,
AUTOTRAINER focuses on improving the training process. It
can provide timely monitoring facing the training process and
facilitates SE researchers in repairing buggy models automat-
ically. In summary, the goal of AutoML and AUTOTRAINER
are different, and these two are complementary solutions
which can be intergraded with each other.

VII. CONCLUSION

This paper presents AUTOTRAINER, a DNN monitoring and
auto-repairing system. It monitors the model training status
and automatically fix them once a problem is detected. By
doing so, it can prevent problems from happening at the ear-
liest convention which saves a lot of time and resources. Our
evaluation results show that AUTOTRAINER can effectively
and efficiently detecting and repairing our targeted five training
problems (i.e., vanishing gradient, exploding gradient, dying
ReL.U, oscillating loss and slow convergence).

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for their in-
sightful feedback and constructive comments. We also thank
Jiong Li for his efforts and feedbacks on this project. This
work is, in part supported by the National Science Foundation
of China (No. 61802166, 61822309, 61773310, U1736205)
and National Key R&D Program of China under Grand No.
2020AAA0107700. Chao Shen is the corresponding author.
The views, opinions and/or findings expressed are only those
of the authors.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]
[3]
[4]

[5]
[6]
[7]
[8]
[9]

[10]

[11]
[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

REFERENCES

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A
lite bert for self-supervised learning of language representations,” arXiv preprint
arXiv:1909.11942, 2019.

G. Cadamuro, R. Gilad-Bachrach, and X. Zhu, “Debugging machine learning
models,” in ICML Workshop on Reliable Machine Learning in the Wild, 2016.
A. Chakarov, A. Nori, S. Rajamani, S. Sen, and D. Vijaykeerthy, “Debugging
machine learning tasks,” arXiv preprint arXiv:1603.07292, 2016.

S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “Mode: automated neural
network model debugging via state differential analysis and input selection,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 2018, pp. 175-186.

D. Mané er al., “Tensorboard: Tensorflow’s visualization toolkit, 2015.”
“Visdom,” 2020, https:/github.com/facebookresearch/visdom.

“Tensorwatch,” 2020, https:/github.com/microsoft/tensorwatch.

“Manifold,” 2020, https://github.com/uber/manifold.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing
neural networks,” in Advances in neural information processing systems, 2017,
pp- 971-980.

L. Lu, Y. Shin, Y. Su, and G. E. Karniadakis, “Dying relu and initialization:
Theory and numerical examples,” arXiv preprint arXiv:1903.06733, 2019.

D. Masters and C. Luschi, “Revisiting small batch training for deep neural
networks,” arXiv preprint arXiv:1804.07612, 2018.

“Autotrainer repository,” 2020, https:/github.com/shiningrain/AUTOTRAINER.
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436444, 2015.

P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,”
arXiv preprint arXiv:1710.05941, 2017.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in ICML, 2010.

Y. Sun, X. Wang, and X. Tang, “Deeply learned face representations are sparse,
selective, and robust,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 2892-2900.

“Pytorch documentations,” 2020, https://pytorch.org/docs/stable/index.html.

Y. LeCun, “The mnist database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/, 1998.

S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,” Diploma,
Technische Universitit Miinchen, vol. 91, no. 1, 1991.

D. Sussillo and L. Abbott, “Random walk initialization for training very deep
feedforward networks,” arXiv preprint arXiv:1412.6558, 2014.
J. Miller and M. Hardt, “Stable recurrent models,”
arXiv:1805.10369, 2018.

I. Amekvist, J. F. Carvalho, D. Kragic, and J. A. Stork, “The effect of target
normalization and momentum on dying relw,” arXiv preprint arXiv:2005.06195,
2020.

C. Xing, D. Arpit, C. Tsirigotis, and Y. Bengio, “A walk with sgd,” arXiv preprint
arXiv:1802.08770, 2018.

“Convolutional neural networks for visnal recognition,” 2020, https://cs231n.git
hub.io/neural-networks-3/.

N. Bjorck, C. P. Gomes, B. Selman, and K. Q. Weinberger, “Understanding batch
normalization,” in Advances in Neural Information Processing Systems, 2018, pp.
7694-7705.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. icml, vol. 30, no. 1, 2013, p. 3.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint
arXiv:1308.0850, 2013.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” in International conference on machine learning, 2013, pp.
1310-1318.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proceedings of the thirteenth international conference
on artificial intelligence and statistics, 2010, pp. 249-256.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026-1034.

“How to control the stability of training neural networks with the batch size,”
2019, https://machinelearningmastery.com/how-to-control-the-speed-and-stabili
ty-of-training-neural- networks- with- gradient- descent- batch-size.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

Y. Bengio, “Practical recommendations for gradient-based training of deep archi-
tectures,” in Neural networks: Tricks of the trade. Springer, 2012, pp. 437-478.
I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in Infernational conference on
machine learning, 2013, pp. 1139-1147.

S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiv:1609.04747, 2016.

N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
networks, vol. 12, no. 1, pp. 145-151, 1999.

arXiv preprint

370

[39]
[40]

[41]
[42]

[43]
[44]
[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

“Keras: The python deep learning library,” 2020, https://keras.io.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard er al., “Tensorflow: A system for large-scale
machine learning,” in 12th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16), 2016, pp. 265-283.

“Sklearn, make circles dataset,” 2020, https://scikit-learn.org/stable/modules/ge
nerated/sklearn.datasets.make_circles.html.

“Sklearn, make blobs dataset,” 2020, https://scikit-learn.org/stable/modules/gene
rated/sklearn.datasets.make_blobs.html.

“Cifar-10 datasets,” 2020, https://www.cs.toronto.edu/~kriz/cifar.html.

“Imdb datasets,” 2020, https://www.imdb.com/interfaces/.

“Reuters-21578 dataset,” 2020, http://www.daviddlewis.com/resources/testcollec
tions/reuters21578/.

“scikit-learn, machine learning in python,” 2020, https://scikit-learn.org/stable/.

D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia,
“Detecting code smells using machine learning techniques: are we there yet?”
in 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 1EEE, 2018, pp. 612-621.

D. Alrajeh and A. Russo, “Logic-based learning: Theory and application,” in
Machine Learning for Dynamic Software Analysis: Potentials and Limits, 2018.

M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk, “On
learning meaningful code changes via neural machine translation,” arXiv preprint
arXiv:1901.09102, 2019.

C. S. Pidsireanu, D. Gopinath, and H. Yu, “Compositional verification for
autonomous systems with deep learning components,” in Safe, Autonomous and
Intelligent Vehicles. Springer, 2019, pp. 187-197.

R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing advanced
driver assistance systems using multi-objective search and neural networks,”
in Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering. ACM, 2016, pp. 63-74.

X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering, 2018.

Z. Lin, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-machine-
translation-based commit message generation: how far are we?” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engi-
neering. ACM, 2018, pp. 373-384.

C. Chen, Z. Xing, and Y. Liu, “By the community & for the community: a deep
learning approach to assist collaborative editing in q&a sites,” Proceedings of the
ACM on Human-Computer Interaction, 2017.

B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto, “Sentiment
analysis for software engineering: How far can we go?” in Proceedings of 40th
International Conference on Software Engineering (ICSE), 2018.

Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detection,” arXiv
preprint arXiv:1801.01681, 2018.

J. Henkel, S. K. Lahiri, B. Liblit, and T. Reps, “Code vectors: understanding
programs through embedded abstracted symbolic traces,” in Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018.

K. Wang, R. Singh, and Z. Su, “Dynamic neural program embedding for program
repair,” arXiv preprint arXiv:1711.07163, 2017.

S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic program corrector for
introductory programming assignments,” in 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). 1EEE, 2018, pp. 60-70.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source code
using a neural attention model,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, 2016.

S. Jiang, A. Armaly, and C. McMillan, “Automatically generating commit mes-
sages from diffs using neural machine translation,” in Proceedings of IEEE/ACM
International Conference on Automated Software Engineering, 2017.

M. T. Ribeiro, S. Singh, and C. Guestrin, “Semantically equivalent adversarial
rules for debugging nlp models,” in Association for Computational Linguistics
(ACL), 2018.

X. Zhang, X. Zhu, and S. Wright, “Training set debugging using trusted items,”
in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Y. Jiang and Z.-H. Zhou, “Editing training data for knn classifiers with neural
network ensemble,” in International symposium on neural networks, 2004.

G. Tao, S. Ma, Y. Liu, Q. Xu, and X. Zhang, “Trader: Trace divergence analysis
and embedding regulation for debugging recurrent neural networks,” in 2020
IEEF/ACM 42nd International Conference on Software Engineering (ICSE).
IEEE, 2020.

Y. Tian, S. Ma, M. Wen, Y. Liu, S. Cheung, and X. Zhang, “Testing deep learning
models for image analysis using object-relevant metamorphic relations,” CoRR,
vol. abs/1909.03824, 2019. [Online]. Available: http://arxiv.org/abs/1909.03824

S. Ma, Y. Aafer, Z. Xu, W. Lee, I. Zhai, Y. Liu, and X. Zhang, “LAMP:
data provenance for graph based machine learning algorithms through derivative
computation,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8,
2017, E. Bodden, W. Schafer, A. van Deursen, and A. Zisman, Eds. ACM, 2017,
pp- 786-797. [Online]. Available: https://doi.org/10.1145/3106237.3106291

A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “Tensorfuzz: Debugging
neural networks with coverage-guided fuzzing,” in International Conference on
Machine Learning, 2019, pp. 4901-4911.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

1. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differential fuzzing
testing of deep learning systems,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 739-743.

X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li, J. Yin, and
S. See, “Deephunter: A coverage-guided fuzz testing framework for deep neural
networks,” in Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2019, pp. 146-157.

M. Wicker, X. Huang, and M. Kwiatkowska, “Feature-guided black-box safety
testing of deep neural networks,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 2018.

J. Uesato, A. Kumar, C. Szepesvari, T. Erez, A. Ruderman, K. Anderson, N. Heess,
P. Kohli ef al., “Rigorous agent evaluation: An adversarial approach to uncover
catastrophic failures,” arXiv preprint arXiv:1812.01647, 2018.

Z. Q. Zhou and L. Sun, “Metamorphic testing of driverless cars,” Communications
of the ACM, vol. 62, no. 3, pp. 61-67, 2019.

S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed fairness testing,”
in Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 98-108.

X. Gao, R. Saha, M. Prasad, and R. Abhik, “Fuzz testing based data augmentation
to improve robustness of deep neural networks,” in 2020 [EEE/ACM 42nd
International Conference on Software Engineering (ICSE). 1EEE, 2020.

A. Ramanathan, L. L. Pullum, F. Hussain, D. Chakrabarty, and S. K. Jha, “Integrat-
ing symbolic and statistical methods for testing intelligent systems: Applications
to machine learning and computer vision,” in 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2016, pp. 786-791.

D. Gopinath, C. S. Pasareanu, K. Wang, M. Zhang, and S. Khurshid, “Symbolic
execution for attribution and attack synthesis in neural networks,” in 2019
IEEE/ACM 415t International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). 1EEE, 2019, pp. 282-283.

A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Black box fairness
testing of machine learning models,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 625-635.

Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening, “Con-
colic testing for deep neural networks,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018, pp. 109-119.
A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour prediction for
autonomous driving systems,” in 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). IEEE, 2020.

H. Wang, J. Xu, C. Xu, X. Ma, and J. Lu, “Dissector: Input validation for
deep learning applications by crossing-layer dissection,” in 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). 1EEE, 2020.

P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S. Dong, and D. Ting,
“White-box fairness testing through adversarial sampling,” in 2020 IEEF/ACM
42nd International Conference on Software Engineering (ICSE). IEEE, 2020.
K. Pei, Y. Cao, . Yang, and S. Jana, “Deepxplore: Automated whitebox testing
of deep learning systems,” in proceedings of the 26th Symposium on Operating
Systems Principles, 2017, pp. 1-18.

L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li, Y. Liu
et al., “Deepgauge: Multi-granularity testing criteria for deep learning systems,”
in Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 120-131.

Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of deep-
neural-network-driven autonomous cars,” in Proceedings of the 40th international
conference on software engineering, 2018, pp. 303-314.

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad: Gan-based
metamorphic testing and input validation framework for autonomous driving
systems,” in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 132-142.

H. Zhou, W. Li, Z. Kong, J. Guo, Y. Zhang, L. Zhang, B. Yu, and C. Liu, “Deep-
billboard: Systematic physical-world testing of autonomous driving systems,” in
2020 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 2020.

S. Gerasimou, H. F. Eniser, A. Sen, and A. Cakan, “Importance-driven deep
learning system testing,” in 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). 1EEE, 2020.

Y. Tian, Z. Zhong, V. Ordonez, G. Kaiser, and B. Ray, “Testing dnn image
classifier for confusion & bias errors,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 1EEE, 2020.

X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar: Model-based
quantitative analysis of stateful deep learning systems,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp. 477-487.
P. He, C. Meister, and Z. Su, “Structure-invariant testing for machine translation,”
in 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). 1EEE, 2020.

Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, and L. Zhang, “Automatic testing
and improvement of machine translation,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 1EEE, 2020.

S. Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, and X. Zhang, “Correlations between
deep neural network model coverage criteria and model quality,” in ESEC/FSE
’20: 28th ACM Joint European Software Engineering Conference and Symposium

371

[94]

[95]

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]
[114]

[115]

[116]

[117]
[118]
[119]
[120]
[121]

[122]
[123]

on the Foundations of Software Engineering, Virtual Event, USA, November
8-13, 2020, P. Devanbu, M. B. Cohen, and T. Zimmermann, Eds. ACM, 2020,
pp- 775-787. [Online]. Available: https://doi.org/10.1145/3368089.3409671

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding
patches using genetic programming,” in Proceedings of the 31st International
Conference on Software Engineering. 1EEE Computer Society, 2009, pp. 364—
374.

‘W. Weimer, S. Forrest, C. L. Goues, and T. V. Nguyen, “Automatic program repair
with evolutionary computation,” Communications of the Acm, vol. 53, no. 5, pp.
109-116, 2010.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each,” in Software
Engineering (ICSE), 2012 34th International Conference on. IEEE, 2012, pp.
3-13.

C. L. Goues, T. V. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic
method for automatic software repair,” IEEE Transactions on Software Engineer-
ing, vol. 38, no. 1, pp. 54-72, 2012.

A. Arcuri, “Evolutionary repair of faulty software,” Applied Soft Computing,
vol. 11, no. 4, pp. 3494-3514, 2011.

Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random search on
automated program repair,” in Proceedings of the 36th International Conference
on Software Engineering. ACM, 2014, pp. 254-265.

S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided component-
based program synthesis,” in Proceedings of the 32rd International Conference
on Software Engineering. ACM, 2010, pp. 215-224.

H. D. T. Nguyen, D. Qi, A. Roychoundhury, and S. Chandra, “Semfix: program
repair via semantic analysis,” in Proceedings of the 2013 International Conference
on Software Engineering. 1EEE Press, 2013, pp. 772-781.

S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for simple program
repairs,” in leee/acm IEEE International Conference on Software Engineering,
2015, pp. 448-458.

J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical program repair
with on-demand candidate generation,” in Proceedings of the 40th international
conference on software engineering, 2018, pp. 12-23.

F. Long and M. Rinard, “Staged program repair with condition synthesis,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 166-178.

B. Demsky and M. Rinard, “Data structure repair using goal-directed reasoning,”
in International Conference on Software Engineering, 2005. ICSE 2005. Proceed-
ings, 2005, pp. 176-185.

B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and M. Rinard,
“Inference and enforcement of data structure consistency specifications,” in Pro-
ceedings of the 2006 international symposium on Software testing and analysis.
ACM, 2006, pp. 233-244.

D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based program
repair using sat,” in International Conference on TOOLS & Algorithms for the
Construction & Analysis of Systems, 2011, pp. 173-188.

Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller, “Automated
fixing of programs with contracts,” IEEE Transactions on Software Engineering,
vol. 40, no. 5, pp. 427-449, 2014.

L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without the
contracts,” in 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1EEE, 2017, pp. 637-647.

L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A survey,”
IEEE Transactions on Software Engineering, vol. 45, no. 1, pp. 34-67, 2017.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of
machine learning algorithms,” Advances in neural information processing systems,
vol. 25, pp. 2951-2959, 2012.

H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural architecture search
system,” in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 1946-1956.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”
arXiv preprint arXiv:1611.01578, 2016.

B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network archi-
tectures using reinforcement learning,” arXiv preprint arXiv:1611.02167, 2016.
Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single path one-
shot neural architecture search with uniform sampling,” in European Conference
on Computer Vision. Springer, 2020, pp. 544-560.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le,
and A. Kurakin, “Large-scale evolution of image classifiers,” arXiv preprint
arXiv:1703.01041, 2017.

R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture optimization,”
in Advances in neural information processing systems, 2018, pp. 7816-7827.

H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture search on
target task and hardware,” arXiv preprint arXiv:1812.00332, 2018.
“Auto-sklearn,” 2020, https://github.com/automl/auto-sklearn.

M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter,
“Auto-sklearn: efficient and robust antomated machine learning,” in Automated
Machine Learning. Springer, Cham, 2019, pp. 113-134.

M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, “Auto-sklearn
2.0: The next generation,” arXiv preprint arXiv:2007.04074, 2020.

“Microsoft nni,” 2020, https://github.com/microsoft/nni.

“Autokeras,” 2020, https://github.com/keras-team/autokeras.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 01,2022 at 05:51:42 UTC from IEEE Xplore. Restrictions apply.

