CPC: Automatically Classifying and Propagating
Natural Language Comments via Program Analysis

Juan Zhai, Xiangzhe Xu, Yu Shi, Guanhong Tao, Minxue Pan, Shiging Ma,
Lei Xu, Weifeng Zhang, Lin Tan, Xiangyu Zhang

PURDUE = RUTGERS @ %A% Aiddid

TTTTTTTTTTTTTTTTTT
EEEEEEEEEEE

Motivation

Code comments provide abundant information which can be

leveraged to help perform various software engineering tasks, such

as bug detection, specification inference and code synthesis.

Developers are less motivated to write and update comments,

making it infeasible and error-prone to leverage comments to

facilitate software engineering tasks.

Provide Automation Support in Maintaining Comments

Juan Zhai, juan.zhai@rutgers.edu

Information Propagation

* Program analysis techniques propagate information based on

program semantics.

boolean y = true;

int x = y; //fault, detected by compiler for strong typed languages

* If x =y, then x and y should have the same data type.

7 Can we propagate comments of y to x?
';

Juan Zhai, juan.zhai@rutgers.edu

ldea

* Treat comments as first-class objects and leverage program analysis to

derive, refine and propagate comments.

* Propagated comments provide additional semantic hints to enrich program

analysis, like bug detection, especially for code without existing comments.

Code-comment Co-analysis

Juan Zhai, juan.zhai@rutgers.edu

Code-comment Co-analysis Example

Class ArrayList<E>
Implements all optional list operations, and
@ permits all elements, including null. \Instantiation Propagation
~ | class comment \ 5

@1 private final List<Collection<E>>\all| permit null elements

= new ArraylList<Collection<E>>();

02 public int size() { 3
03 int size = 0; may be null

or (final Collection<E> item: all)
05 size +=|item.size()” ~——

Container Propagation
06 return size;\(4 OPa5

07 } throw NullPointerException if item is null

Juan Zhai, juan.zhai@rutgers.edu

Code
Clone

Comment Classification Motivation

Q: Can we propagate arbitrary comments following a unified rule?

A: No! Software developers tend to comment on different content

aspects of different code elements. Comments must be classified!

01 public void write(int b) throws IOException {

01 public void write(byte[] b, int off, int len) throws IOException {

01 /** Writes a byte to the compressed output \
02 * stream. This method will block until the
@3 * byte can be written.| Method property |
04 */

05 public void write(int b) throws IOException {

%byte[] buf = new byte[1];
07 buf[@] = (byte)(b & oxff);

08 write(buf, @, 1); }

02 byte[] buf = new byte[1]; Call 5|02
% buf[@] = (byte)(b & Oxff); 03 while (nBits24-- > @) { ... |does not block the method |
4 write(buf, 0, 1); 04 out.write(base64[(bits >>> 18) & 0x3f]);
(a) java.util.Base64. wrlte(mtbA \ annot Bed gz } ...}
P
[Method functionality | Can Be Propagated \Propagate

(b) java.util.Base64. write(byte[] b, int off, int len)

01 public void write(byte[] b, int off, int len) throws IOException {

02 .
Call o3 while (!def.needsInput()) { ...
04 synchronized (zsRef) {...}
05 - | block the method |
06 }

(c) java.util.zip.DeflataerOutputStream. write(int b)

Juan Zhai, juan.zhd ér java, utdl zip.DeflataerOutputStream.write(byte[] b, int off, int len)

e Different comments describe different code entities from different content perspectives

Perspective

The Taxonomy of Comments

Comment Example

METHOD

What
Why

How-it-is-done
Property

How-to-use

What
Why
How-it-is-done
Property
How-to-use

This class is a member of the Java Collections Framework.

This enables efficient processing when most tasks spawn other subtasks.
Resizable-array implementation of the List interface.

Implements all optional list operations, and permits all elements, including null.

But using this class, one must implement only the computeNext method, and invoke the
endOfData method when appropriate.

Pushes an item onto the top of this stack.

It eliminates the need for explicit range operations.
Shifts any subsequent elements to the left.

This method is not a constant-time operation.

This method can be called only once per call to next().

What

Make a new array of a’s runtime type, but my contents.

Why To get better and consistent diagnostics, we call typeCheck explicitly on each element.

How-it-is-done Place indices in the center of array (that is not yet allocated).zou

Property This shouldn’t happen, since we are Cloneable.

How-to-use Use as random seed.

What The number of characters to skip.

Why Helps prevent entries that end up in the same segment from also ending up in the same bucket.
VARIABLE How-it-is-done ~ Modified on advance/split.

Property The index must be a value greater than or equal to 0.

How-to-use The collection to be iterated.

Juan Zhai, juan.zhai@rutgers.edu

Content Perspectives

What: the functionality

* Pushes an item onto the top of this stack.

How-it-is-done: the implementation details

» Shits the element currently at that position and any subsequent elements to the right.

Property: properties of the subject like pre-conditions and post-conditions

* The index must be a value greater than or equal to 0.

Why: why the subject is provided or the design rationale of the subject

* Helps prevent entries that end up in the same segment from also ending up in the same bucket.

How-to-use: the expected set-up of using the subject like platforms

* But using this class, one must implement only the computeNext method.

Juan Zhai, juan.zhai@rutgers.edu

Taxonomy Construction

* Perform a large-scale study of comments to build the taxonomy

 Comment Sampling

* Randomly collected 5,000 comment units (sentences) from four frequently-used open-

sourced libraries (i.e., JDK, Guava, Apache Commons Collections and Joda)

* Coding Procedure

* Four coders participated in manually categorizing comments

* Each comment is assigned to two different coders to minimize subjectivity

Automatic Comment Classification

* Train classification models separately for perspectives and code entities

- Code Entity

DT RF CNN DT RF CNN
Precision 87.84% 87.78% 95.15% 97.39% 98.09% 89.33%
Recall 95.22% 91.39% 93.78% 99.27% 99.27% 75.28%

Three algorithms: Decision Tree (DT), Random Forest (RF), and Convolutional Neural Network (CNN)

The classifiers are effective in classifying comments.

Juan Zhai, juan.zhai@rutgers.edu

Comment Propagation via Program Analysis

* Comment propagation rules are derived from program semantics.
* Certain and rigorous, generally applicable to all projects.

 Different propagation rules for different code entities and different content

perspectives.

* Read our paper for details of rules.

Evaluation Setup

e Hardware

* CPU: Intel® i7-8700K

* RAM: 32GB

* Operating System

* MacOS High Sierra 10.13.6

*]DK version: &

Comment Propagation Summary

Similarity with Existing Comments

Petr.spe- Project dist=0 dist<0.5 dist>0.5
ctive #c #m #ec #pc | #cmt o #cmt To #cmt o

JDK 998 17727 21147 39274 9133 75.11% | 2191 18.02%| 835 6.87%
Collections | 247 2687 3151 4222 | 1301 73.30% | 372 20.96%| 102 5.75%
Property | Guava |518 6140 1940 8425 | 2718 88.28%| 259 8.41% | 102 3.31%
Joda-Time | 219 5011 2344 4393 | 1313 80.50% | 111 6.81% | 207 12.69%
ApacheDB | 193 3508 1898 2552 | 779 82.43%| 57 6.03% | 109 11.53%

JDK 628 10841 12927 5029 | 1368 39.66% | 1550 44.94% | 531 15.40%
Collections | 70 989 1472 330 | 105 44.30%| 83 35.02%| 49 20.68%
What Guava |205 2847 1347 1294 | 419 49.47%| 333 39.31%| 95 11.22%
Joda-Time | 83 1725 1949 885 | 237 29.40% | 325 40.32%| 244 30.27%
ApacheDB | 78 1426 1316 682 | 169 29.14%| 366 63.10%| 45 7.76%

JDK 261 974 1392 1628515516 96.72% | 394 2.46% | 133 0.83%
. |Collections | 41 98 100 113 | 53 67.09%| 22 27.85%| 4 5.06%
How-it- | qva |20 33 31 127 | 108 85.71%| 16 12.70%| 2 1.59%
is-done | ;40 Time | 15 22 20 130 | 32 3520%| 37 20.13%| 58 45.67%
ApacheDB [180 285 254 519 | 421 84.04%| 58 7.39% | 22 4.39%

In the 5 projects, 41,573 new comments can be derived by propagation.

Juan Zhai, juan.zhai@rutgers.edu

Comment Propagation Accuracy

 Randomly sampled 500 comments of each perspective and manually
checked them

* A propagated comment is accurate when it is consistent with source code.

e CPC achieves 88% accuracy.

User Study: Usefulness in Helping Developers

* To avoid bias: propagated comments and existing comments are mixed

* Meaningfulness: is a comment of high quality in helping developers understand code?
* Consistency: is a comment consistent with code?

* Naturalness: does a comment effectively convey information as a natural language sentence?

Consistency —Propagated
4.00
3.95 —Existing

2 Propagated comments aligh well with
existing comments in terms of quality.

Meaningfulness

3475
£
/310

Naturalness

Juan Zhai, juan.zhai@rutgers.edu

Effectiveness in Improving Comments

erspective Property What How-it-is-done
Project #N #] #W #N # #W #N #1 #W
JDK 26862 11 243 1580 1 0 242 na. 0
Collections 2404 11 42 93 0 0 34 n.a. 0
Guava 5344 0 2 447 0 0 1 n.a. 0
Joda-Time 2757 0 5 79 0 0 3 n.a. 0
ApacheDB 1607 0 0 102 0 0 18 n.a. 0

* Precise functional comments are inferred for 87 native methods that have neither comments nor code.
* 12 incomplete comments and 292 wrong comments are identified.

* Developers confirmed and corrected some of the wrong existing comments.

Juan Zhai, juan.zhai@rutgers.edu

Effectiveness in Bug Detection

Project Version #Bugs Buggy Method Confirmed
CompositeCollection.iterator() Yes
Collections 4.2 29 CompositeMap.removeComposited(final Map<K, V>) Yes
Guava 280 6 Throwables.getRootCause(Throwable) No
Utilities.printClasspath() Yes
ApacheDB 32 2 ConsoleFileOutput.getDirectory() No

Detect and report 37 bugs, 30 of which have been confirmed and fixed by developers.

Juan Zhai, juan.zhai@rutgers.edu

Related Work

 Comment Classification
e Pascarella [MSR "17], Maalej [TSE "13], Steidl [ICPC’13], Monperrus [EMSE "12],
Haouari [ESEM "11], Padioleau [ICSE '09]

e Comment Generation

e LeClair [ICML’19], Hu [ICPC 18], Iyer [ACL "16], Jiang [ASE "17], Allamanis [ICML "16],
McBurney [TSE "16], Wong [ASE 16, SANER "15], Moreno [ICPC "13], Rastkar [ICSM "11],
Sridhara [ICPC '11, ASE "10]

« Comment-Code Inconsistency Detection

e Zhou [ICSE "17], Tan [ICST "12], Tan [ICSE "11, SOSP "07]

Conclusion

* We construct a comprehensive comment taxonomy from different

perspectives with various granularity levels.

* We achieve a seamless synergy of comment analysis and program analysis:

* Leverage program analysis to propagate comments.

* Leverage comment analysis to facilitate program analysis.

https://setext.github.io/

Juan Zhai, juan.zhai@ rUt ¥=Rreps

https://setext.github.io/

