
CPC: Automatically Classifying and Propagating
Natural Language Comments via Program Analysis

Juan Zhai, Xiangzhe Xu, Yu Shi, Guanhong Tao, Minxue Pan, Shiqing Ma,

Lei Xu, Weifeng Zhang, Lin Tan, Xiangyu Zhang

Motivation

Developers are less motivated to write and update comments,

making it infeasible and error-prone to leverage comments to

facilitate software engineering tasks.

Code comments provide abundant information which can be

leveraged to help perform various software engineering tasks, such

as bug detection, specification inference and code synthesis.

Comments…

Provide Automation Support in Maintaining Comments
Juan Zhai, juan.zhai@rutgers.edu

Information Propagation

• Program analysis techniques propagate information based on

program semantics.

• If x = y, then x and y should have the same data type.

boolean y = true;
…
int x = y; //fault, detected by compiler for strong typed languages

Can we propagate comments of y to x?

Juan Zhai, juan.zhai@rutgers.edu

Idea
• Treat comments as first-class objects and leverage program analysis to

derive, refine and propagate comments.

• Propagated comments provide additional semantic hints to enrich program

analysis, like bug detection, especially for code without existing comments.

Code-comment Co-analysis

Juan Zhai, juan.zhai@rutgers.edu

Code-comment Co-analysis Example

Class ArrayList<E>
Implements all optional list operations, and
permits all elements, including null.

01 private final List<Collection<E>> all
= new ArrayList<Collection<E>>();

...
02 public int size() {
03 int size = 0;
04 for (final Collection<E> item: all)
05 size += item.size();
06 return size;
07 }

class comment①

may be null
③

④ throw NullPointerException if item is null
Container Propagation

Instantiation Propagation

permit null elements
②

Juan Zhai, juan.zhai@rutgers.edu

Comment Classification Motivation

Q: Can we propagate arbitrary comments following a unified rule?

A: No! Software developers tend to comment on different content

aspects of different code elements. Comments must be classified!

01
02
03
04
05
06

public void write(byte[] b, int off, int len) throws IOException {
...
while (!def.needsInput()) { ...

synchronized (zsRef) {...}
...}

}
(d) java.util.zip.DeflataerOutputStream.write(byte[] b, int off, int len)

01
02
03
04

public void write(int b) throws IOException {
byte[] buf = new byte[1];
buf[0] = (byte)(b & 0xff);
write(buf, 0, 1); }

(a) java.util.Base64. write(int b)

01
02
03
04
05
06
07
08

/** Writes a byte to the compressed output
* stream. This method will block until the
* byte can be written.
*/

public void write(int b) throws IOException {
byte[] buf = new byte[1];
buf[0] = (byte)(b & 0xff);
write(buf, 0, 1); }

(c) java.util.zip.DeflataerOutputStream. write(int b)

01
02
03
04
05
06

public void write(byte[] b, int off, int len) throws IOException {
...
while (nBits24-- > 0) { ...

out.write(base64[(bits >>> 18) & 0x3f]);
... }

}
(b) java.util.Base64. write(byte[] b, int off, int len)

Method property

Cannot Be
Propagated
×

Code
Clone

does not block the method

block the method

Call

Call

Can Be PropagatedMethod functionality

Juan Zhai, juan.zhai@rutgers.edu

The Taxonomy of Comments
• Different comments describe different code entities from different content perspectives

Juan Zhai, juan.zhai@rutgers.edu

Content Perspectives
• What: the functionality

• Pushes an item onto the top of this stack.

• How-it-is-done: the implementation details

• Shits the element currently at that position and any subsequent elements to the right.

• Property: properties of the subject like pre-conditions and post-conditions

• The index must be a value greater than or equal to 0.

• Why: why the subject is provided or the design rationale of the subject

• Helps prevent entries that end up in the same segment from also ending up in the same bucket.

• How-to-use: the expected set-up of using the subject like platforms

• But using this class, one must implement only the computeNext method.
Juan Zhai, juan.zhai@rutgers.edu

Taxonomy Construction

• Perform a large-scale study of comments to build the taxonomy

• Comment Sampling

• Randomly collected 5,000 comment units (sentences) from four frequently-used open-

sourced libraries (i.e., JDK, Guava, Apache Commons Collections and Joda)

• Coding Procedure

• Four coders participated in manually categorizing comments

• Each comment is assigned to two different coders to minimize subjectivity

Juan Zhai, juan.zhai@rutgers.edu

Automatic Comment Classification

• Train classification models separately for perspectives and code entities

Three algorithms: Decision Tree (DT), Random Forest (RF), and Convolutional Neural Network (CNN)

Perspective Code Entity

DT RF CNN DT RF CNN

Precision 87.84% 87.78% 95.15% 97.39% 98.09% 89.33%

Recall 95.22% 91.39% 93.78% 99.27% 99.27% 75.28%

The classifiers are effective in classifying comments.

Juan Zhai, juan.zhai@rutgers.edu

Comment Propagation via Program Analysis

• Comment propagation rules are derived from program semantics.

• Certain and rigorous, generally applicable to all projects.

• Different propagation rules for different code entities and different content

perspectives.

• Read our paper for details of rules.

Juan Zhai, juan.zhai@rutgers.edu

Evaluation Setup

• Hardware

• CPU: Intel® i7-8700K

• RAM: 32GB

• Operating System

• MacOS High Sierra 10.13.6

• JDK version: 8

Juan Zhai, juan.zhai@rutgers.edu

Comment Propagation Summary

In the 5 projects, 41,573 new comments can be derived by propagation.
Juan Zhai, juan.zhai@rutgers.edu

Comment Propagation Accuracy

• Randomly sampled 500 comments of each perspective and manually

checked them

• A propagated comment is accurate when it is consistent with source code.

• CPC achieves 88% accuracy.

Juan Zhai, juan.zhai@rutgers.edu

User Study: Usefulness in Helping Developers

• Meaningfulness: is a comment of high quality in helping developers understand code?

• Consistency: is a comment consistent with code?

• Naturalness: does a comment effectively convey information as a natural language sentence?

Propagated comments align well with
existing comments in terms of quality.

• To avoid bias: propagated comments and existing comments are mixed

Juan Zhai, juan.zhai@rutgers.edu

Effectiveness in Improving Comments

• Precise functional comments are inferred for 87 native methods that have neither comments nor code.

• 12 incomplete comments and 292 wrong comments are identified.

• Developers confirmed and corrected some of the wrong existing comments.

Juan Zhai, juan.zhai@rutgers.edu

Effectiveness in Bug Detection

Detect and report 37 bugs, 30 of which have been confirmed and fixed by developers.

Juan Zhai, juan.zhai@rutgers.edu

Related Work

• Comment Classification

• Pascarella [MSR ’17] , Maalej [TSE ’13], Steidl [ICPC ’13], Monperrus [EMSE ’12],

Haouari [ESEM ’11], Padioleau [ICSE ’09]

• Comment Generation

• LeClair [ICML ’19], Hu [ICPC ’18], Iyer [ACL ’16], Jiang [ASE ’17], Allamanis [ICML ’16],

McBurney [TSE ’16], Wong [ASE ’16, SANER ’15], Moreno [ICPC ’13], Rastkar [ICSM ’11],

Sridhara [ICPC ’11, ASE ’10]

• Comment-Code Inconsistency Detection

• Zhou [ICSE ’17], Tan [ICST ’12], Tan [ICSE ’11, SOSP ’07]

Juan Zhai, juan.zhai@rutgers.edu

Conclusion

• We construct a comprehensive comment taxonomy from different

perspectives with various granularity levels.

• We achieve a seamless synergy of comment analysis and program analysis:

• Leverage program analysis to propagate comments.

• Leverage comment analysis to facilitate program analysis.

https://setext.github.io/

Juan Zhai, juan.zhai@rutgers.edu

https://setext.github.io/

Juan Zhai, juan.zhai@rutgers.edu

