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ABSTRACT

The backdoor attack, where the adversary uses inputs stamped with triggers (e.g.,
a patch) to activate pre-planted malicious behaviors, is a severe threat to Deep
Neural Network (DNN) models. Trigger inversion is an effective way of iden-
tifying backdoor models and understanding embedded adversarial behaviors. A
challenge of trigger inversion is that there are many ways of constructing the
trigger. Existing methods cannot generalize to various types of triggers by mak-
ing certain assumptions or attack-specific constraints. The fundamental reason
is that existing work does not consider the trigger’s design space in their formu-
lation of the inversion problem. This work formally defines and analyzes the
triggers injected in different spaces and the inversion problem. Then, it pro-
poses a unified framework to invert backdoor triggers based on the formaliza-
tion of triggers and the identified inner behaviors of backdoor models from our
analysis. Our prototype UNICORN is general and effective in inverting back-
door triggers in DNNs. The code can be found at https://github.com/
RU-System-Software-and-Security/UNICORN.

1 INTRODUCTION

Backdoor attacks against Deep Neural Networks (DNN) refer to the attack where the adversary
creates a malicious DNN that behaves as expected on clean inputs but predicts a predefined target
label when the input is stamped with a trigger (Liu et al., 2018b; Gu et al., 2017; Chen et al., 2017;
Liu et al., 2019; Wang et al., 2022c; Barni et al., 2019; Nguyen & Tran, 2021). The malicious
models can be generated by data poisoning (Gu et al., 2017; Chen et al., 2017) or supply-chain
attacks (Liu et al., 2018b; Nguyen & Tran, 2021). The adversary can choose desired target label(s)
and the trigger. Existing work demonstrates that DNNs are vulnerable to various types of triggers.
For example, the trigger can be a colored patch (Gu et al., 2017), a image filter (Liu et al., 2019)
and a warping effect (Nguyen & Tran, 2021). Such attacks pose a severe threat to DNN based
applications especially those in security-critical tasks such as malware classification (Severi et al.,
2021; Yang et al., 2022; Li et al., 2021a), face recognition (Sarkar et al., 2020; Wenger et al., 2021),
speaker verification (Zhai et al., 2021), medical image analysis (Feng et al., 2022), brain-computer
interfaces (Meng et al., 2020), and autonomous driving (Gu et al., 2017; Xiang et al., 2021).

Due to the threat of backdoor attacks, many countermeasures have been proposed. For example,
anti-poisoning training (Li et al., 2021c; Wang et al., 2022a; Hong et al., 2020; Tran et al., 2018;
Hayase et al., 2021; Chen et al., 2018) and runtime malicious inputs detection (Gao et al., 2019;
Chou et al., 2020; Doan et al., 2020; Zeng et al., 2021). Different from many methods that can
only work under specific threat models (e.g., anti-poisoning training can only work under the data-
poisoning scenario), trigger inversion (Wang et al., 2019; Liu et al., 2019; Guo et al., 2020; Chen
et al., 2019; Shen et al., 2021) is practical and general because it can be applied in both poisoning
and supply-chain attack scenarios. It is a post-training method where the defender aims to detect
whether the given model contains backdoors. It reconstructs backdoor triggers injected in the model
as well as the target labels, which helps analyze the backdoors. If there exists an inverted pattern
that can control the predictions of the model, then it determines the model is backdoored. Most
existing trigger inversion methods (Guo et al., 2020; Liu et al., 2019; Shen et al., 2021; Chen et al.,
2019) are built on Neural Cleanse (Wang et al., 2019), which assumes that the backdoor triggers
are static patterns in the pixel space. It defines a backdoor sample as x̃ = (1 −m) � x +m � t,
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Fig. 1: Existing trigger inversion methods and our method.

where m and t are pixel space trigger mask and trigger pattern. It inverts the trigger via devising an
optimization problem that searches for a small and static pixel space pattern. Such methods achieve
good performance on the specific type of triggers that are static patterns in the pixel space (Gu et al.,
2017; Chen et al., 2017). However, it can not generalize to different types of triggers such as image
filters (Liu et al., 2019) and warping effects (Nguyen & Tran, 2021). Existing methods fail to invert
various types of triggers because they do not consider the trigger’s design space in their formulation
of the inversion problem.

In this paper, we propose a trigger inversion framework that can generalize to different types of trig-
gers. We first define a backdoor trigger as a predefined perturbation in a particular input space. A
backdoor sample x̃ is formalized as x̃ = φ−1 ((1−m)� φ(x) +m� t), where m and t are input
space trigger mask and trigger pattern, x is a benign sample, φ is an invertible input space transfor-
mation function that maps from the pixel space to other input spaces. φ−1 is the inverse function
of φ, i.e., x = φ−1 (φ(x)). As shown in Fig. 1, the critical difference between our framework and
existing methods is that we introduce an input space transformation φ to unify the backdoor triggers
injected in different spaces. Besides searching for the pixel space trigger mask m and pattern t as
existing methods do, our method also searches the input space transformation function φ to find the
input space where the backdoor is injected. We also observe successful backdoor attacks will lead
to compromised activation vectors in the intermediate representations when the model recognizes
backdoor triggers. Besides, we find that the benign activation vector will not affect the predictions
of the model when the compromised activation values are activated. This observation means the
compromised activation vector and the benign activation vector are disentangled in successful back-
door attacks. Based on the formalization of triggers and the observation of the inner behaviors of
backdoor models, we formalize the trigger inversion as a constrained optimization problem.

Based on the devised optimization problem, we implemented a prototype UNICORN (Unified
Backdoor Trigger Inversion) in PyTorch and evaluated it on nine different models and eight differ-
ent backdoor attacks (i.e., Patch attack (Gu et al., 2017), Blend attack (Chen et al., 2017), SIG (Barni
et al., 2019), moon filter, kelvin filter, 1977 filter (Liu et al., 2019), WaNet (Nguyen & Tran, 2021)
and BppAttack (Wang et al., 2022c)) on CIFAR-10 and ImageNet dataset. Results show UNICORN
is effective for inverting various types of backdoor triggers. On average, the attack success rate of
the inverted triggers is 95.60%, outperforming existing trigger inversion methods.

Our contributions are summarized as follows: We formally define the trigger in backdoor at-
tacks. Our definition can generalize to different types of triggers. We also find the compro-
mised activations and the benign activations in the model’s intermediate representations are dis-
entangled. Based on the formalization of the backdoor trigger and the finding of intermediate
representations, we formalize our framework as a constrained optimization problem and propose
a new trigger inversion framework. We evaluate our framework on nine different DNN models
and eight backdoor attacks. Results show that our framework is more general and more effec-
tive than existing methods. Our open-source code can be found at https://github.com/
RU-System-Software-and-Security/UNICORN.

2 BACKGROUND & MOTIVATION

Backdoor. Existing works (Turner et al., 2019; Salem et al., 2022; Nguyen & Tran, 2020; Tang
et al., 2021; Liu et al., 2020; Lin et al., 2020; Li et al., 2020; Chen et al., 2021; Li et al., 2021d; Doan
et al., 2021b; Tao et al., 2022d; Bagdasaryan & Shmatikov, 2022; Qi et al., 2023; Chen et al., 2023)
demonstrate that deep neural networks are vulnerable to backdoor attacks. Models infected with
backdoors behave as expected on normal inputs but present malicious behaviors (i.e., predicting
a certain label) when the input contains the backdoor trigger. Existing methods defend against
backdoor attacks during training (Du et al., 2020; Hong et al., 2020; Huang et al., 2022; Li et al.,
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2021c; Wang et al., 2022a; Hayase et al., 2021; Tran et al., 2018; Zhang et al., 2023), or detect
malicious inputs during inference (Gao et al., 2019; Doan et al., 2020; Chou et al., 2020; Zeng et al.,
2021; Guo et al., 2023), or remove and mitigate backdoors in the given model offline (Liu et al.,
2018a; Li et al., 2021b; Zeng et al., 2022; Wu & Wang, 2021; Tao et al., 2022b; Cheng et al., 2023).

Trigger Inversion. Trigger inversion (Wang et al., 2019; Liu et al., 2019; Guo et al., 2020; Chen
et al., 2019; Wang et al., 2022b; Liu et al., 2022b; Tao et al., 2022c; Liu et al., 2022a; Shen et al.,
2022) is a post-training approach to defending against backdoor attacks. Compared to training-time
backdoor defenses, this method can also defend against supply-chain backdoor attacks. Meanwhile,
this approach is more efficient than inference-time defenses. Moreover, it can recover the used trig-
ger, providing more information and have many applications such as filtering out backdoor samples
and mitigating the backdoor injected in the models. It achieves good results in many existing re-
search papers (e.g., Wang et al. (2019), Liu et al. (2019), Guo et al. (2020), Shen et al. (2021), Hu
et al. (2022)) and competitions (e.g., NIST TrojAI Competition (tro)), showing it is a promising
direction. The overreaching idea is to optimize a satisfactory trigger that can fool the model. Ex-
isting trigger inversion methods achieve promising performance on specific triggers. However, they
are not generalizable by making certain assumptions or constraints during optimizing the trigger.
During the optimization, it assumes that the trigger is a static pattern with a small size in the pixel
space. Such assumption is suitable for pixel space attacks (e.g., BadNets (Gu et al., 2017) and Blend
attack (Chen et al., 2017)) but does not hold for feature-space attacks that have dynamic pixel space
perturbations, e.g., WaNet (Nguyen & Tran, 2021). Most existing approaches (Shen et al., 2021; Liu
et al., 2019; Guo et al., 2020; Chen et al., 2019; Hu et al., 2022) follow the similar assumption and
thus have the same limitation. In this paper, we propose a general trigger inversion framework.

3 BACKDOOR ANALYSIS

3.1 THREAT MODEL

Attacker’s Goal. Backdoor attacks aim to generate a backdoor modelM s.t.M(x) = y,M(x̃) =
yt, where x is a clean sample, x̃ is a backdoor sample (with the trigger), and yt 6= y is the target
label. A successful backdoor attack achieves the following goals:

Effectiveness. The backdoor model shall have a high attack success rate on backdoor inputs while
maintaining high accuracy on benign inputs.

Stealthiness. The backdoor trigger shall not change the ground truth label of the input, i.e., a benign
input and its malicious version (with trigger) shall be visually similar.

Defender’s Goal & Capability. In this paper, we focus on reconstructing the backdoor triggers
injected into the infected models. Following existing trigger inversion methods (Wang et al., 2019;
Liu et al., 2019; Guo et al., 2020; Chen et al., 2019), we assume a small dataset containing correctly
labeled benign samples is available and defenders have access to the target model. Note that our
trigger inversion method does not require knowing the target label, it conducts trigger inversion for
all labels and identifies the potential target label.

3.2 FORMALIZING BACKDOOR TRIGGERS

In software security, backdoor attack mixes malicious code into benign code to hide malicious be-
haviors or secrete access to the victim system, which are activated by trigger inputs. Backdoor
attacks in DNN systems share the same characteristics. Trigger inversion essentially recovers the
backdoor trigger by finding input patterns that activate such behaviors. Existing trigger inversion
methods (Wang et al., 2019; Liu et al., 2019; Guo et al., 2020; Shen et al., 2021) can not generalize
to different types of triggers. They define the backdoor samples as x̃ = (1 −m) � x + m � t,
where m and t are pixel space trigger mask and trigger pattern. The reason why they can not invert
different types of triggers is that existing attacks inject triggers in other input spaces (Liu et al., 2019;
Wang et al., 2022c; Nguyen & Tran, 2021) while existing trigger inversion methods cannot handle
them all. In this paper, we define backdoor triggers as:

Definition 1 (Backdoor Trigger) A backdoor trigger is a mask m and content pattern t pair (m, t)
so that for a pair of functions φ and φ−1 that transfer an image from pixel space to other input spaces
that satisfy x = φ−1 (φ(x)) for an input x represented in the pixel space, we have a backdoor
sample x̃ = φ−1 ((1−m)� φ(x) +m� t).
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Fig. 2: Backdoor attacks in different spaces.

The difference between our definition and that of existing works is that we introduce an input space
transformation function pair φ and φ−1that convert images from/to the pixel space to/from other
spaces. The input space transformation function φ is invertible, i.e., x = φ−1 (φ(x)). For pixel
space attacks, φ−1(x) = φ(x) = x. Fig. 2 classifies input spaces used by existing attacks. Pixel
Space Attacks mixes the malicious pixels and benign contents at the pixel level. For example,
patch attack (Gu et al., 2017) directly uses a static colored patch as a trigger; Blend attack (Chen
et al., 2017) generates backdoor samples via blending the images with a predefined pattern; SIG
attack (Barni et al., 2019) uses the sinusoidal signal pattern to create backdoor samples. In Signal
Space Attacks, the adversary mixes the malicious signals with benign ones. For instance, the Filter
attack (Liu et al., 2019) uses an image signal processing kernel (e.g., 1977, Kelvin and Moon filters
used in Instagram) to generate backdoor samples. For Feature Space Attacks, backdoor samples
inject malicious abstracted features and benign ones. As an example, WaNet (Nguyen & Tran, 2021)
introduces the warping feature as a trigger. To perform Numerical Space Attacks, the attacker cre-
ates backdoor samples by changing numerical representations, e.g., the BppAttack (Wang et al.,
2022c) generates backdoor samples via introducing quantization effects into the numerical repre-
sentation of images. Existing trigger inversion methods (Wang et al., 2019; Liu et al., 2019; Guo
et al., 2020; Shen et al., 2021) define backdoor triggers in the pixel space, and can not generalize to
the attacks in different spaces. Compared to existing works, our definition is more general, and it
can represent the triggers in different spaces.

3.3 BACKDOOR BEHAVIORS IN INTERMEDIATE REPRESENTATIONS

Directly inverting the trigger can not guarantee that the inverted transformations have trigger effects.
It will yield general transformations which are not specific to the injected backdoor. Thus, we
need to find the invariant in the backdoor behavior and use it to constrain the inverted trigger. A
successful backdoor attack will lead to compromised activation values that are highly associated
with backdoor triggers. The intermediate representation of DNNs contains the activation values of
different neurons, the composite of these values can be viewed as a vector. In this section, we use
u to represent the unit vector in the intermediate representations. A is the activation values in the
intermediate representations. We also use u(x) to denote the projection length on unit vector u for
input x’s intermediate representation. Their formal definition can be found in §A.1.

In backdoored DNNs, the intermediate activation vector A can be decomposed into compromised
activation vector Ac and the benign activation vector Ab, i.e., A = Ac +Ab. Ac is on direction of
unit vector uc (compromised direction) that is most sensitive to the backdoor triggers:

uc = max
u
‖u(x̃)− u(x)‖,x ∈ X (1)

where x̃ is the samples pasted with trigger and x is the clean sample. Meanwhile, Ab is on direction
of unit vector ub that is not sensitive to the backdoor triggers (i.e., ‖ub(x̃) − ub(x)‖ < τ , where
τ is a threshold value), and sensitive to the benign contents. As shown in Eq. 2, given a backdoor
model, the backdoor trigger will lead to a specific projection value on compromised direction uc,
where F is the trigger pasting function to create the backdoor sample x̃ via benign sample x, i.e.,
x̃ = F (x). S is the backdoor vector.

x ∈ F (X ) =⇒ Ac = uc(x) ≈ S (2)
Corollary 1 When the compromised activation vector Ac is close to the backdoor vector S, the
modelM will predict the target label yt regardless of benign activation vector Ab, i.e., ∀Ab,Ac ≈
S =⇒ g(Ac,Ab) = yt, where g is the sub-model from the intermediate layer to the output layer.

As discussed in §3.1, a backdoor attack is effective means it has a high attack success rate and
high benign accuracy simultaneously. If the model has high benign accuracy, then it can extract
the benign features well. Namely, different benign features will cause different activation values in

4



Published as a conference paper at ICLR 2023

benign activation vector. Meanwhile, if the attack success rate is high, then the model will predict
target labels if it recognizes the trigger, regardless of the benign contents. Also, backdoor trigger
will cause specific intermediate representations in model. Based on the above analysis, we con-
clude that the backdoor intermediate representations on the compromised activations will lead to
the model predicting the target label while ignoring the activation values on the benign activation
vector. More support for Corollary 1 can be found in §A.2. Existing works also find some patterns
of backdoor behaviors, such as having a shortcut path when inferring (Zheng et al., 2021; Li et al.,
2022). However, it is hard to integrated them with the optimization for trigger inversion (See §A.3).

4 OPTIMIZATION PROBLEM

Based on the discussed attack goals and observation, we propose a backdoor trigger inversion frame-
work to reconstruct the injected triggers in the given models. In Definition 1, we introduce input
space transformation functions φ and φ−1 to specify the input space where the backdoor is injected.
Trigger inversion is an optimization problem finding the input space mask and pattern m and t
as well as the input space transformation functions. Directly optimizing functions is challenging.
Because of the high expressiveness of neural networks (Hornik et al., 1989), in our optimization
problem, we use two neural networks P and Q to correspondingly approximate φ and its inverse
function φ−1. In this section, we first discuss the objectives and the constraints for the optimization
problem. Then we introduce the formalization and the implementation of our trigger inversion.

Objectives. Based on the goal of the attacker, the attack success rate (ASR) should be high. We
achieve the effectiveness objective by optimizing the classification loss of inverted backdoor samples
on the target label. Minimizing L (M(x̃), yt) means optimizing the ASR for the inverted trigger.
Here, M is the target model, x̃ is the sample pasted with inverted trigger. Function L is the loss
function of the model. yt is the target label.

Invertible Constraint. As P and Q are used to model the input space transformation function φ
and its inverse function φ−1, we add the constraint that the inputs generated by composite function
Q◦P should be close to the original inputs, i.e., ‖Q(P (x))−x‖ < α, where α is a threshold value.

Mask Size Constraint. As pointed out in Neural Cleanse (Wang et al., 2019), the trigger can only
modify a small part of the input space. Similar to Neural Cleanse, we constrain the size of the mask
m in the input space introduced by transformation function φ, i.e., ‖m‖ < β.

Stealthiness Constraint. Based on the attacker’s goal, the backdoor sample and the clean sample
should be similar to the human visual system. Following existing works (Tao et al., 2022a; Cheng
et al., 2021), we use SSIM score (Wang et al., 2004) to measure the visual difference between two
images. Thus, the SSIM score between original sample x and the sample pasted with inverted trigger
x̃ should be higher than a threshold γ, i.e., SSIM(x̃,x) > γ.

Disentanglement Constraint. Based on our observation, the inverted trigger should lead to a spe-
cific projection value on the compromised activation vector. Meanwhile, the model will predict tar-
get labels regardless of the benign activations. We denote the constraint as disentangled constraint,
i.e., Ac ⊥ Ab. To implement it, we devise a loss item Ldis. Formally, it is defined in Eq. 3, where
function h and g are the sub-model from the input layer to the intermediate layer and the sub-model
from the intermediate layer to the output layer. By default, we separate h and g at the last convolu-
tional layer in the model as it has well-abstracted feature representations. In Eq. 3, m′ is the model’s
intermediate representation mask indicating the compromised activation direction. We constrain the
size of m′ (10% of the whole intermediate representation space by default) and use gradient descent
to search the direction of the compromised activation vector. We then combine the compromised
activation vector and benign activation vector. Given a input sample x, we first compute the Ac

via using the inverted trigger function F (i.e., F (x) = x̃ = Q ((1−m)� P (x) +m� t)). We
then randomly select a set of different input samples x′ and calculate the benign activation vector
on it, i.e., Ab. If the disentangle loss Ldis achieves low values, it means the benign activations can
not influence the model’s prediction when it recognizes backdoor representations on compromised
activations. We consider it satisfy the disentanglement constraint is the value of L (g(Ac,Ab), yt)
is lower than a threshold value δ.

Ldis = L (g(Ac,Ab), yt) + ‖m′‖
where Ac = m′ � h(F (x)), Ab = (1−m′)� h(x′), x′ 6= x

(3)
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Formalization. Based on the objectives and constraints. We define our trigger inversion as a
constrained optimization problem in Eq. 4, where P , Q, m, t, and m′ are approximated input space
transformation function, approximated inverse transformation function, backdoor mask and pattern
in the infected space, intermediate representation mask, respectively. Function L is the loss function
of the target neural network, yt is the target label, Pθ and Qθ are the parameters of model P and Q.

min
Pθ,Qθ,m,t,m′

L (M(x̃), yt)

where x̃ = Q ((1−m)� P (x) +m� t) , x ∈ X
s.t.‖Q(P (x))− x‖ < α, ‖m‖ < β, SSIM(x̃,x) > γ, Ac ⊥ Ab

where Ac = m′ � h(x̃), Ab = (1−m′)� h(x)

(4)

Implementation. To solve the optimization problem formalized in Eq. 4, we also design a loss
in Eq. 5. w1, w2, w3 and w4 are coefficient values for different items. Following existing meth-
ods (Wang et al., 2019; Liu et al., 2022b), we adjust these coefficients dynamically to satisfy the
constraints. A detailed adjustment method can be found in the §A.6. We use a representative deep
neural network UNet (Ronneberger et al., 2015) to model the space transformation function φ. In
detail, P and Q are represented by two identical UNet networks. By default, we set α = 0.01, β as
10% of the input space, γ = 0.85, and δ = 0.5.

Linv = L (M(x̃), yt) + w1 · ‖Q(P (x))− x‖+ w2 · ‖m‖ − w3 · SSIM(x̃,x) + w4 · Ldis (5)

5 EXPERIMENTS AND RESULTS

In this section, we first introduce the experiment setup (§5.1). We then evaluate the effectiveness of
our method (§5.2) and conduct ablation studies (§5.3). We also evaluate UNICORN’s generaliz-
ability to self-supervised models (§5.4).

5.1 EXPERIMENT SETUP.
Our method is implemented with python 3.8 and PyTorch 1.11. We conduct all experiments on a
Ubuntu 20.04 server equipped with 64 CPUs and six Quadro RTX 6000 GPUs.

Datasets and models. Two publicly available datasets (i.e., CIFAR-10 (Krizhevsky et al.,
2009) and ImageNet (Russakovsky et al., 2015)) are used to evaluate the effectiveness of
UNICORN. The details of the datasets can be found in the §A.4. Nine different network ar-
chitectures (i.e., NiN (Lin et al., 2014), VGG16 (Simonyan & Zisserman, 2015), ResNet18 (He
et al., 2016), Wide-ResNet34 (Zagoruyko & Komodakis, 2016), MobileNetV2 (Sandler et al.,
2018), InceptionV3 (Szegedy et al., 2016), EfficientB0 (Tan & Le, 2019), DenseNet121, and
DenseNet169 (Huang et al., 2017)) are used in the experiments. These architectures are repre-
sentative and are widely used in prior backdoor related researches (Liu et al., 2019; Wang et al.,
2019; Li et al., 2021d;c; Liu et al., 2022b; Xu et al., 2021; Huang et al., 2022; Xiang et al., 2022).

Attacks. We evaluate UNICORN on the backdoors injected in different spaces, including pixel
space, signal space, feature space and numerical Space. For pixel space, we use three different
attacks (i.e., Patch (Gu et al., 2017), Blended (Chen et al., 2017), and SIG (Barni et al., 2019)).
For signal space, we use Filter attack (Liu et al., 2019) that modifying the whole image with three
different filters from Instagram, i.e., 1977, kelvin, and moon. For feature space, warpping-based
attack WaNet (Nguyen & Tran, 2021) is used. We also evaluate UNICORN on numberical space
attack BppAttack (Wang et al., 2022c). More details about the used attacks can be found in the §A.5.

Baselines. We use four existing trigger inversion methods as baselines, i.e., Neural Cleanse (Wang
et al., 2019), K-arm (Shen et al., 2021), TABOR (Guo et al., 2020) and Topological (Hu et al., 2022).
Note that most existing trigger inversion methods use the optimization problem proposed in Neural
Cleanse and share the same limitations (i.e., they can not generalize to different types of triggers).

Evaluation metrics. We use Attack Success Rate of the inverted trigger (ASR-Inv) on testset (the
samples that are unseen during the trigger inversion) to evaluate the effectiveness of the trigger inver-
sion methods. It is calculated as the number of samples pasted with inverted trigger that successfully
attack the models (i.e., control the model to predict backdoor samples as the target label) divided by
the number of all samples pasted with inverted trigger. High ASR is a fundamental goal of backdoor
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Table 1: ASR-Inv on different attacks, models and datasets.

Dataset Network Pixel Space Signal Space Feature Numerical

Patch Blend SIG 1977 Filter Kelvin Filter Moon Filter WaNet BppAttack

CIFAR-10

NiN 97.62% 91.41% 98.39% 97.69% 97.96% 96.87% 92.10% 96.68%
VGG16 99.86% 98.83% 98.43% 97.42% 99.60% 98.72% 98.71% 91.97%

ResNet18 99.61% 99.74% 99.17% 96.54% 94.57% 97.50% 99.95% 99.33%
Wide-ResNet34 98.51% 98.52% 94.14% 95.31% 99.64% 97.73% 84.45% 91.91%
MobileNetV2 96.50% 99.48% 95.31% 93.51% 96.60% 93.12% 98.75% 82.29%
InceptionV3 99.24% 99.35% 97.65% 98.46% 93.59% 97.65% 96.98% 92.26%
EfficientB0 98.95% 97.89% 95.99% 92.42% 95.54% 91.41% 85.93% 95.89%

DenseNet121 99.01% 90.63% 99.60% 98.04% 94.14% 96.79% 100.00% 96.74%

ImageNet
VGG16 95.12% 91.75% 95.75% 99.02% 98.85% 99.34% 99.85% 96.18%

ResNet18 98.25% 97.12% 93.00% 97.25% 98.65% 94.37% 99.74% 99.50%
DenseNet169 92.45% 87.75% 85.50% 93.85% 97.93% 96.28% 94.62% 90.45%

attacks. The Attack Success Rate of the injected trigger is denoted as ASR-Inj. In appendix, we also
show the results for different metrics, i.e., the backdoor models detection accuracy (§A.7) and the
cosine similarity (SIM) between model’s intermediate representations produced by injected triggers
and the inverted triggers (§A.8).

5.2 EFFECTIVENESS.

To measure the effectiveness of UNICORN, we collect the ASR of the inverted triggers (ASR-Inv)
generated by UNICORN and baselines on different attacks, datasets and models. Note that the ASR
on the injected trigger (ASR-Inj) are all above 95%. We also show the visualizations of the inverted
triggers. We assume only 10 clean samples for each class are available for trigger inversion as our
default setting, which is a challenging but practical scenario. It is also a common practice. (Wang
et al., 2019; Shen et al., 2021; Liu et al., 2019).

Attack success rate of inverted triggers. Table 1 shows the ASR-Inv under the backdoored models
generated by attacks in different spaces. The inverted triggers generated by UNICORN achieves
ASR-Inv in all settings. In detail, the average ASR-Inv under pixel space attacks, signal space at-
tacks, feature space attacks and numerical space attacks are 96.37%, 96.55%, 95.55%, and 93.92%,
respectively. These results indicate UNICORN is effective for inverting backdoor triggers injected
in different spaces. We also show the visualization of the inverted triggers as well as the ground-truth
triggers in Fig. 3. The first row shows the original image and the samples pasted with different in-
jected triggers. The dataset and the model used here are ImageNet and VGG16. As can be observed,
UNICORN can effectively invert the trigger that is similar to injected triggers. For example, for
the backdoored models produced via patch attack (Gu et al., 2017), the inverted trigger share the
same location (i.e., right upper corner) and the color (i.e., yellow) with the injected trigger. For the
attack in filter space, feature space and numerical space, our method also successfully inverted the
global perturbations. The inverted triggers might be not equal to the injected triggers. This is be-
cause existing backdoor attacks are inaccurate (Wang et al., 2022a). In other words, a trigger that is
similar but not equal to the injected one is also able to activate the malicious backdoor behaviors of
the model. We observed that pixel space attacks are more accurate than the attacks in other spaces.
The results show that UNICORN can effectively invert the triggers in different input spaces.

Comparison to existing methods. To compare the effectiveness of UNICORN and ex-
isting trigger inversion methods, we collect the ASR-Inv obtained by different methods.

Table 2: ASR-Inv for different methods.

Space Attack NC K-arm TABOR TOPO UNICORN

Pixel
Patch 92.40% 89.47% 94.57% 92.48% 99.61%
Blend 90.75% 88.24% 90.32% 91.74% 99.74%
SIG 89.69% 91.32% 86.93% 89.33% 99.17%

Signal
1977 63.63% 65.28% 68.69% 69.94% 96.54%

Kelvin 67.46% 63.54% 65.02% 67.24% 94.57%
Moon 73.93% 72.93% 68.01% 70.87% 97.50%

Feature WaNet 61.90% 62.50% 64.86% 62.06% 99.95%

Numerical BppAttack 55.83% 59.84% 49.01% 60.18% 99.33%

The dataset and the model used is
CIFAR-10 and ResNet18, respec-
tively. Results in Table 2 demonstrate
the average ASR-Inv of UNICORN
are 99.51%, 96.20%, 99.95%, and
99.33% for the attack in pixel space,
signal space, feature space and nu-
merical space, respectively. On av-
erage, the ASR-Inv of UNICORN
is 1.32, 1.33, 1.34, and 1.30 times
higher than that of Neural Cleanse (NC), K-arm, TABOR and Topological (TOPO), respectively.
For existing methods, their inverted trigger has higher ASR-Inv on pixel space attacks, while the
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BlendedPatch Filter WaNet BppAttack

Injected 

Residual

Inverted 

Residual

Samples with 

inverted trigger

SIG

Fig. 3: Visualizations of the inverted triggers.
ASR-Inv on other three spaces is much lower. This is understandable because existing methods
assumes the trigger is a static pattern with small size in the pixel space, and it formalize the trigger
by using pixel space masks and patterns. However, UNICORN formalizes the triggers in a more
general form, thus it has better generalizability and it is highly effective for various types of triggers.

5.3 ABLATION STUDIES.
In this section, we evaluate the impacts of different constraints used in Eq. 4 (i.e., stealthiness con-
straint and disentanglement constraint). More ablation studies can be found in §A.8.

Effects of disentanglement constraint. In our trigger inversion framework, we also add a constraint
to disentangle the compromised activation vector and benign activation vector (§4). To investigate
the effects of it, we compare the ASR-Inv of our method with and without the disentanglement
constraint. The model and the dataset used is EfficientNetB0 and CIFAR-10. Results in Table 3
show that the ASR-Inv of the inverted triggers drop rapidly if the disentanglement constraint is re-
moved. In detail, the average ASR-Inv is 94.25% and 64.56% for the method with and without dis-
entanglement constraint, respectively. The results demonstrate that the disentanglement constraint
is important for inverting the injected triggers in the model.

Sample with 

injected trigger

Sample with 

inverted trigger

w/ constraint

Sample with 

inverted trigger

w/o/ constraint

Fig. 4: Effects of stealthiness constraint.

Effects of stealthiness constraint. As we dis-
cussed in §4, we use SSIM score to constrain
the stealthiness of the backdoor samples. In
Eq. 4, we use a threshold value γ to constrain
the SSIM score. The higher the SSIM score is,
the stealthier the trigger is. In this section, we
show the inverted backdoor samples generated
by the framework with and without the SSIM
constraint (stealthiness constraints). The results
are demonstrated in Fig. 5e. We also show the
sample pasted with injected trigger at the left
most column. As can be observed, when we remove the stealthiness constraint, the main contents in
the image becomes difficult to tell, and the quality of the image becomes low. When the constraint is
added, the samples pasted with the inverted trigger is close to the injected backdoor sample. Thus, to
satisfy the stealthiness requirement, adding the stealthiness constraint in the optimization of trigger
inversion is needed. We set γ = 0.85 as the default setting.

5.4 EXTENSION TO SELF-SUPERVISED MODELS.

To investigate if UNICORN can generalize to models generated by different training paradigms, in
this section, we evaluate our framework on self-supervised learning models. Different from super-
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Table 3: Effects of disentanglement constraint.

Pixel Signal Feature Numerical

Patch Blended SIG 1977 Filter Kelvin Filter Moon Filter WaNet BppAttack

ASR-Inj 99.92% 99.70% 98.71% 98.46% 99.31% 98.67% 98.69% 99.18%
ASR-Inv w/o Disentanglement 68.08% 64.64% 68.78% 63.20% 55.42% 70.50% 58.82% 70.54%
ASR-Inv w/ Disentanglement 98.95% 97.89% 95.99% 92.42% 95.54% 91.41% 85.93% 95.89%

vised learning, self-supervised learning (Chen et al., 2020; He et al., 2020) first pre-trains an encoder
with unlabeled data, and then builds downstream classifiers by using the encoder as feature extractor.
In backdoor attacks for self-supervised learning, backdoor injected into pre-trained encoders can be
inherited to the downstream classifiers. Directly conducting trigger inversion on encoders is impor-
tant as it can reduce the cost of training extra downstream classifiers for inverting triggers. In this
section, we use a mainstream self-supervised learning backdoor attack Badencoder (Jia et al., 2022)
to evaluate if UNICORN can be applied for self-supervised models. Badencoder assumes that at-
tackers have knowledge of the downstream task and have access to few reference samples belong to
the downstream target class. It first trains a clean encoder using SimCLR (Chen et al., 2020), then
injects backdoors into this pre-trained encoder. By default, Badencoder uses a white square patch
as its trigger. Its backdoor optimization maximizes the similarity between clean encoder extracted
and backdoored encoder extracted features of benign inputs, and maximizes the similarity between
backdoored encoder extracted features of inputs with triggers and features of reference samples.

Table 4: ASR in self-supervised learning.

Target class ASR-Inj ASR-Inv

Airplane 98.92% 99.92%
Truck 99.81% 99.75%
Horse 94.88% 91.35%

Average 97.87% 97.01%

We use the backdoored encoder generated by Baden-
coder on CIFAR-10 dataset (Krizhevsky et al., 2009)
to invert triggers. Instead of minimizing the classifi-
cation loss on the target labels, we use one reference
sample for each target class as the Badencoder does,
and maximize the similarity between the embedding
of reference sample and that of samples pasted with
inverted triggers. As illustrated in Fig. 6, we visu-
alize the inverted triggers and injected triggers in a
backdoored encoder. It shows that UNICORN can
invert a similar patch trigger as the injected one at the bottom right corner of input images. We also
evaluate the attack success rate of our inverted triggers (ASR-Inv) in downstream classifiers. We
adopt STL10 (Coates et al., 2011) as the downstream dataset and fine-tune 20 epochs for classifiers.
The target classes of the reference input we use are truck, airplane, and horse, respectively, which
are the same as Badencoder. In Table 4, ASR-Inj means the ASR of injected triggers. From Table 4,
we can observe that in different target class, our inverted triggers all have comparative ASR (i.e.,
over 90%) as injected triggers. Similar to Neural Cleanse (Wang et al., 2019), the ASR-Inv is even
larger than ASR-Inj in some cases. It is not surprising given the trigger is inverted by using a scheme
that optimizes for higher ASR.

6 DISCUSSION

Ethics. Studies on adversarial machine learning potentially have ethical concerns. This paper pro-
poses a general framework to invert backdoor triggers in DNN models. We believe this framework
can help improve the security of DNNs and be beneficial to society.

Extention to NLP models. In this paper, we have discussed backdoor triggers in different input
spaces in CV models. Similarly, backdoor triggers can be injected into NLP models in different
input spaces, e.g., word space (Chen et al., 2021; Qi et al., 2021b), token space (Shen et al., 2021;
Zhang et al., 2021), and embedding space (Qi et al., 2021a; Kurita et al., 2020; Yang et al., 2021).
Expanding our framework to NLP trigger inversion will be our future work.

7 CONCLUSION

In this paper, we formally define the trigger in backdoor attacks against DNNs, and identify the
inner behaviors in backdoor models based on the analysis. Based on it, we propose a backdoor
trigger inversion method that can generalize to various types of triggers. Experiments on different
datasets, models and attacks show that our method is robust to different types of backdoor attacks,
and it outperforms prior methods that are based on attack-specific constraints.
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A APPENDIX

A.1 DEFINITIONS FOR SECTION 3.3.

In this section, we provide definitions for the notations used in §3.3.

Definition 2 (Sub-models) Given a neural networkM, we have h and g are the sub-models from
the input layer to the intermediate layer and the sub-model from the intermediate layer to the output
layer, respectively.

Intuitively, a neural network can be split into two functions. There are different ways to split the
model. In this paper, we split the model at the last convolutional layer.

Definition 3 (Activation Vector) Given a neural networkM = g ◦ h, where h and g are the sub-
models, we define the activation vector A as the output of function h, i.e., A = h(x), where x is the
input of the model.

Definition 4 (Unit Vector) Given a neural networkM = g ◦ h, where h and g are the sub-models,
we define u as the unit vector (i.e., |u| = 1) in the intermediate representation space N mapped by

function h, where I h−→ N , I is the input space of the model. The dimensions of u are identical to
h(x), where x is the input of the model.

Definition 5 (Projection Length) Given a neural networkM = g ◦ h, where h and g are the sub-
models, we define u(x) as the projection length on unit vector u for the intermediate representation
of input x, i.e., u(x) = h(x)·u

|u| . The projection length u(x) is a scalar.

A.2 SUPPORT FOR COROLLARY 1.

In this section, we provide more support for Corollary 1, which describes the invariant of the back-
door attacks. It can be supported by the findings in existing researches, as well as our empirical
evidences. Liu et al. (2019) show that some specific neurons (compromised neurons) can repre-
sent the trigger feature that can significantly elevate the probability of the target label when their
activation value is set to a narrow region, which can support our observation. We also conducted
experiments on CIFAR-10 (Krizhevsky et al., 2009) and ResNet18 (He et al., 2016) with Patch at-
tack (Gu et al., 2017) to verify it. We first calculated the compromised activation vector Ac and
benign activation vector Ab based on their definitions. We then perturb Ab by using 100 randomly
sampled clean inputs. After that, we feed the perturbed Ab and calculate Ac into the submodel
g, and compute the attack success rate, i,e., P (g(Ac,Ab) = yt). The results show that the attack
success rate is 95.32% even though the benign activation values Ab is perturbed. The results demon-
strate perturbing Ab will not influence the backdoor behaviors of the infected model, namely, Ac

and Ab are disentangled.

A.3 DISCUSSION ABOUT EXISTING WORKS ABOUT BACKDOOR BEHAVIORS

Existing works also find some backdoor related behaviors, such as having a shortcut path when infer-
ring (Zheng et al., 2021; Li et al., 2022). However, they can not be integrated with our optimization.
For Zheng et al. (2021), such “shortcut” behavior is modeled by the neuron connectivity graph and
its topological features of the model. The topology features are model-specific, and the time cost
for extracting them is high. In detail, the runtime of extracting the neuron connectivity graph and its
topological features for each ResNet18 (He et al., 2016) model on the CIFAR-10 (Krizhevsky et al.,
2009) dataset is 373s while the time cost for computing our disentanglement loss is only 0.36s. In-
tegrating the “shortcut” constraint in our optimization requires conducting the topological feature
extraction for each optimization step, which will take a significantly longer time.

A.4 DETAILS OF DATASETS

In this section, we introduce the details of the datasets involved in the experiments. All datasets used
are open-sourced.
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CIFAR10 (Krizhevsky et al., 2009). This dataset is built for recognizing general objects such as
dogs, cars, and planes. It contains 50000 training samples and 10000 training samples in 10 classes.

ImageNet (Russakovsky et al., 2015). This dataset is a large-scale object classification benchmark.
In this paper, we use a subset of the original ImageNet dataset specified in Li et al. (Li et al., 2021d).
The subset has 100000 training samples and 10000 test samples in 200 classes.

A.5 DETAILS OF ATTACKS

In this section, we introduce the details of the used backdoor attacks. The attacks are in single-target
setting. The target label of the attack is randomly selected for each backdoored model.

Patch Attack (Gu et al., 2017). This attack uses a static pattern (i.e., a patch) as backdoor trigger.
It generates backdoor inputs by pasting its pre-defined trigger pattern (e.g., a colored square) on the
original inputs. It then compromises the victim models by poisoning a subset of the training data
(i.e., injecting backdoor samples and modifying their labels to target labels). In our experiments, we
use a 3×3 yellow patch located at the right-upper corner as the backdoor trigger. The poisoning rate
we used is 5%.

Blend Attack (Chen et al., 2017). This attack generates backdoor samples via blending the clean
input with a predefined pattern, e.g., a cartoon cat. It also considers the poisoning threat model
where the attacker can modify the training data, but can not control the whole training process. The
poisoning rate we used is 5%.

SIG Attack (Barni et al., 2019). This attack uses superimposed sinusoidal signals as backdoor
triggers. It assumes that adversary can poison a subset of training samples but can not fully control
the training process. In our experiments, we set the poisoning rate as 5%. Also, we set the frequency
and the magnitude of the backdoor signal as 6 and 20, respectively.

Filter Attack (Liu et al., 2019). This attack exploits image filters as triggers and creates backdoor
samples by applying selected filters on images. Similar to BadNets, the backdoor triggers are in-
jected with poisoning. In our experiments, we use a 5% poisoning rate and apply the 1977, Kelvin
and Moon filter from Instagram as backdoor triggers.

WaNet (Nguyen & Tran, 2021). This method achieves backdoor attacks by image warping. It
adopts an elastic warping operation to transform backdoor triggers. Different from BadNets and
Filter Attack, in WaNet, the adversary can modify the training process of the victim models to make
the attack more resistant to backdoor defenses. WaNet is nearly imperceptible to human, and it is
able to bypass many existing backdoor defenses (Gao et al., 2019; Chen et al., 2018; Liu et al.,
2018a; Wang et al., 2019). In our experiments, the warping strength and the grid size are set to 0.5
and 4, respectively.

BppAttack (Wang et al., 2022c). This attack creates backdoor samples by using image quantization
and dithering techniques. It changes the numerical representations of the images. It considers the
attacker that can access the full control of the training process. It is even more stealthier than
WaNet (Nguyen & Tran, 2021). In this paper, we set the bits depth for the backdoor inputs as 5.

A.6 COEFFICIENT ADJUSTMENT IN OPTIMIZATION

In this section, we discuss the detailed method for adjusting the coefficients for different items in
the optimization. Following existing works (Wang et al., 2019; Liu et al., 2022b), coefficients are
dynamic in the optimization. When the loss value is larger (or smaller) than the threshold value (i.e.,
the loss value does not satisfy the constraint), we use a large coefficient wlarge. Otherwise, if the
loss value satisfy the constraint, we apply a small coefficient wsmall. By default we set wsmall = 0.
The default wlarge value for w1, w2, w3, and w4 are 200, 10, 10, and 1.

A.7 BACKDOOR MODELS DETECTION RESULTS

To compare the performance of UNICORN and existing methods on backdoor models detection
task, we report the detailed true positive, false positive, false negative, true negative, and detection
accuracy for different trigger inversion methods. In our method, we determine a model is infected
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Table 5: Backdoor models detection results.

Method Pixel Space Attack Signal Space Attack Feature Space Attack

TP FP FN TN Acc TP FP FN TN Acc TP FP FN TN Acc

NC 19 1 1 19 95.0% 2 1 18 19 52.5% 8 1 12 19 67.5%
K-arm 20 0 0 20 100.0% 0 0 20 20 50.0% 9 0 11 20 72.5%

TABOR 20 3 0 17 92.5% 5 3 15 17 55.0% 3 3 17 17 50.0%
Hu et al. 18 1 2 19 92.5% 4 1 16 19 57.5% 9 1 11 19 70.0%

UNICORN 19 1 1 19 95.0% 20 1 0 19 97.5% 18 1 2 19 92.5%

Table 6: Influence of hyperparameters.

Attack α β γ δ p

0.005 0.01 0.05 0.1 1% 3% 5% 10% 20% 0.65 0.75 0.85 0.90 0.95 0.5 1.0 5.0 10.0 0.04% 0.10% 0.20% 1.00%

Patch 0.87 0.88 0.82 0.80 0.46 0.65 0.83 0.88 0.80 0.77 0.83 0.88 0.87 0.79 0.88 0.87 0.62 0.56 0.70 0.88 0.88 0.89
1977 0.72 0.72 0.70 0.68 0.38 0.60 0.69 0.72 0.59 0.66 0.69 0.72 0.73 0.60 0.72 0.73 0.50 0.47 0.61 0.66 0.72 0.72

WaNet 0.81 0.80 0.77 0.74 0.54 0.62 0.76 0.80 0.65 0.67 0.72 0.80 0.80 0.70 0.80 0.81 0.64 0.55 0.74 0.78 0.80 0.81
BppAttack 0.67 0.69 0.66 0.62 0.42 0.56 0.65 0.69 0.58 0.62 0.65 0.69 0.67 0.61 0.69 0.67 0.49 0.43 0.56 0.60 0.69 0.68

with a backdoor if the ASR-Inv of a label is larger than 90%. The dataset and the model used
are CIFAR-10 (Krizhevsky et al., 2009) and ResNet18 (He et al., 2016). We conduct the experi-
ments on attacks in different spaces, i.e., Patch (Gu et al., 2017), 1977 Filter (Liu et al., 2019), and
WaNet (Nguyen & Tran, 2021). For each attack, we train 20 benign models and 20 backdoor mod-
els. The results demonstrate that our method achieves high detection accuracy under the attacks in
different spaces. For the attacks in all spaces, the detection accuracy is higher than 90%. However,
existing methods can only handle the attack in pixel space, and they have low detection accuracy for
the attacks in other spaces.

A.8 MORE ABLATION STUDIES

In this section, we study the influence of different hyperparameters, i.e., the threshold values α, β, γ,
and δ used in Eq. 4, as well as the portion of the required clean training samples p. The dataset and
the model used is CIFAR-10 (Krizhevsky et al., 2009) and EfficientNetB0 (Tan & Le, 2019), respec-
tively. We show the cosine similarity (SIM) between model’s intermediate representations produced
by injected triggers (ground-truth) and the inverted triggers under different hyper-parameters. A
higher SIM value means the intermediate representations of the inverted trigger are closer to that of
the injected trigger. As can be observed, the similarity between the inverted trigger features and the
injected trigger features is stable when α < 0.01, 0.85 < γ < 0.95, and δ < 1.0. These results
show the stability of UNICORN. For β, in most cases, the SIM achieves the highest value when
the value of is around 10% of the entire input space. For the portion of the required clean training
samples p, the SIM value is low when the portion is smaller than 0.10% (5 samples per class). When
it is larger than 0.20% (10 samples per class), the results are stable, and UNICORN has high SIM.
In Table 7, we also show the SIM value for the patch triggers with different sizes under different β
value. For larger patch trigger, the SIM value is still high when is β around 10% of the entire input
space, showing the robustness of our method.

A.9 EFFICIENCY

In this section, we discuss the efficiency of our method. We compared the runtime of our method and
that of Neural Cleanse (Wang et al., 2019) on CIFAR-10 (Krizhevsky et al., 2009) and ResNet18 (He
et al., 2016). The result shows that our runtime is 2.7 times of Neural Cleanse’s runtime. We admit

Table 7: Influence of β on patch trigger with different sizes.

Patch Size β =1% β =3% β =5% β =10% β =20%

3*3 0.46 0.65 0.83 0.88 0.80
6*6 0.46 0.62 0.78 0.82 0.81
9*9 0.44 0.55 0.69 0.77 0.79
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Fig. 5: Loss values during the optimization process.

Table 8: Results of integrating disentanglement constraint with NC.

Method ASR-Inv Detection Accuracy

NC 63.63% 52.5%
NC+Distenglement 70.35% 55.0%

the computational complexity of our method is larger than existing methods. However, our method
is more general and robust for inverting different types of backdoor triggers, while existing methods
can only handle pixel space triggers. In addition, our method can be accelerated by existing works
K-arm scheduler (Shen et al., 2021) and mixed precision training (Micikevicius et al., 2017).

A.10 STABILITY OF OUR OPTIMIZATION

In this section, we discuss the stability of our optimization. Since our method optimize several com-
ponents simultaneously, the discussion about the stability of our optimization process is meaningful.
Our optimization is stable, and it can be supported by existing works. The optimization processes
for existing backdoor attacks are also complicated. Many existing backdoor attacks (e.g., Cheng
et al. (2021), Doan et al. (2021b), Doan et al. (2021a)) use generative models as backdoor triggers.
In these attacks, the backdoors are injected by simultaneously optimizing the generative networks
and the victim models. For example, Cheng et al. (2021) optimize the victim model and a complex
CycleGAN (Zhu et al., 2017) at the same time to inject the backdoor. Such processes also have
many parameters to optimize. Their training loss can reduce smoothly, and they can get high ASR
and benign accuracy. These results give us more confidence to invert backdoor triggers via optimiz-
ing generative models. In Fig. 5, we show the plot of training loss values for different items in Eq. 5,
i.e., misclassification objective L (M(x̃), yt) (Fig. 5a), disentanglement loss Ldis (Fig. 5b), loss for
invertible constraint ‖Q(P (x))−x‖ (Fig. 5c), mask size ‖m‖ (Fig. 5d), and SSIM between the be-
nign samples and inverted samples SSIM(x̃,x) (Fig. 5e). The X-axis is the epoch number, and the
Y-axis denotes the loss value. The dataset, model and attack used are CIFAR-10 (Krizhevsky et al.,
2009) and ResNet18 (He et al., 2016), and 1977 Filter (Liu et al., 2019). Results demonstrate our
the loss values are smoothly reduced during the optimization, showing the stability of our method.
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Fig. 6: Visualization of inverted triggers of backdoored encoders.

A.11 RESULTS FOR INTEGRATING DISENTANGLEMENT CONSTRAINT WITH EXISITING
METHODS.

To study the effects of the disentanglement constraint when integrate it with existing methods, we
conduct the experiment of adding the disentanglement constraint on Neural Cleanse (NC) (Wang
et al., 2019). The attack, dataset, and model used is 1977 Filter (Liu et al., 2019), CIFAR-
10 (Krizhevsky et al., 2009), and ResNet18 (He et al., 2016), respectively. The results are shown
in Table 8. It demonstrates that the ASR-Inv and the detection accuracy are still low when adding
the disentanglement constraint on NC. This is because the limitation of the existing formulation in
the inversion problem is that it can not handle the trigger not injected in the pixel space. Adding
disentanglement constraint on it can not solve the limitation. However, the invertible transformation
given in Eq. 4 makes inverting the trigger in different spaces possible.
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