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ABSTRACT

Large Language Models (LLMs) have been gaining increasing at-
tention and demonstrated promising performance across a variety
of Software Engineering (SE) tasks, such as Automated Program
Repair (APR), code summarization, and code completion. For ex-
ample, ChatGPT, the latest black-box LLM, has been investigated
by numerous recent research studies and has shown impressive
performance in various tasks. However, there exists a potential risk
of data leakage since these LLMs are usually close-sourced with
unknown specific training details, e.g., pre-training datasets.

In this paper, we seek to review the bug-fixing capabilities of
ChatGPT on a clean APR benchmark with different research ob-
jectives. We first introduce EvalGPTFix, a new benchmark with
buggy and the corresponding fixed programs from competitive
programming problems starting from 2023, after the training cutoff
point of ChatGPT. The results on EvalGPTFix show that ChatGPT
is able to fix 109 out of 151 buggy programs using the basic prompt
within 35 independent rounds, outperforming state-of-the-art LLMs
∗
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CodeT5 and PLBART by 27.5% and 62.4% prediction accuracy. We
also investigate the impact of three types of prompts, i.e., problem
description, error feedback, and bug localization, leading to addi-
tional 34 fixed bugs. Besides, we provide additional discussion from
the interactive nature of ChatGPT to illustrate the capacity of a
dialog-based repair workflow with 9 additional fixed bugs. Overall,
our experiments demonstrate that ChatGPT is able to fix a total of
143 bugs in EvalGPTFix, indicating the potential of ChatGPT in
repairing real-world buggy programs. Inspired by the findings, we
further pinpoint various challenges and opportunities for advanced
SE study equipped with such LLMs (e.g., ChatGPT) in the near fu-
ture. More importantly, our work calls for more research on the
reevaluation of the achievements obtained by existing black-box
LLMs across various SE tasks, not limited to ChatGPT on APR.
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1 INTRODUCTION

The scale of modern software systems has been continuously ex-
panding in recent years, leading to a significant surge in the number
of bugs within these systems [15, 39]. Manual debugging is one of
the critical software development activities, which usually requires
a substantial investment of time and human resources to keep the
software well-maintained [4, 5]. In order to reduce the costs of
repairing such detected bugs, Automated Program Repair (APR) is
proposed [27], aiming at generating correct patches automatically
to minimize human involvement in the manual debugging process.

In the literature, existing APR techniques can be categorized into
traditional and learning-based ones [14, 40]. Among traditional
APR techniques, template-based APR, which mainly relies on pre-
defined repair templates to transform buggy code into the correct
one, has been considered as state-of-the-art [52, 53]. However, it
is challenging to fix unseen bugs that fall outside the scope of pre-
defined templates. On the other hand, learning-based APR is able to
learn the bug-fixing patterns automatically from a large code repos-
itory on top of the advance of deep learning [8, 9]. Learning-based
APR usually leverages Neural Machine Translation (NMT) model to
translate a code sequence from a source language (i.e., buggy code
snippets) into a target language (i.e., correct code snippets) [47]. De-
spite addressing the limitations of template-based APR and demon-
strating promising results, the performance of learning-based APR
relies on the quality and quantity of the training data [53].

More recently, Large Language Models (LLMs) are gaining in-
creasing attention due to their powerful programming language pro-
cessing capabilities in various Software Engineering (SE) tasks [13,
37, 52]. These LLMs are usually trainedwith a pre-training-and-fine-
tuning mechanism [12, 49], i.e., pre-trained by self-supervised train-
ing on a large-scale unlabeled corpus to derive generic knowledge,
and fine-tuned by supervised training on a limited labeled corpus
to benefit a specific downstream task. Among existing LLMs, Chat-
GPT [43] is widely regarded as one of the most popular language
models today and is being studied by researchers from numerous
domains, such as code summarization [46], code generation [30]
and test generation [57]. In particular, ChatGPT is a prompt-based
LLM equipped with Reinforcement Learning from Human Feed-
back that can interact with users through human-like dialogues. In
the domain of APR, researchers have attempted to directly utilize
ChatGPT in generating correct patches and have yielded promis-
ing results [45, 54]. For example, Sobania et al. [45] evaluate the
bug-fixing capabilities of ChatGPT and find ChatGPT is able to
fix 31 out of 40 bugs on QuixBugs benchmark. Xia et al. [54] em-
ploy ChatGPT in a conversational manner to fix 114 and 48 bugs
on the Defects4J-v1.2 and Defects4J-v2.0 benchmark, and all the
40 bugs from QuixBugs benchmark, significantly outperforming
state-of-the-art APR techniques.

In spite of the remarkable performance, there are some con-
cerns with the well-known dataset used to evaluate ChatGPT for
APR. ChatGPT is trained on vast amounts of data from the inter-
net, which may contain data in the commonly-chosen datasets for
APR (e.g., Defects4J [23] and QuixBugs [29]). It is difficult to ensure
whether or not the evaluation dataset has not been seen by ChatGPT
during training. For example, when we ask ChatGPT whether it is

aware of Defects4J, as shown in Figure 1, ChatGPT gives an affirma-
tive answer and can further list the projects present in Defects4J. If
ChatGPT has previous knowledge of the dataset, employing it to fix
bugs from the dataset might not well reflect its fixing ability since it
may already be aware of the bug-fixing patches. The concern exists
in other LLMs and code-related tasks as well. A similar example
shows1 that GPT-4 is able to solve all 10 code competition problems
until 2021, which is the training cutoff of the model, while none
is solved correctly for 10 problems after that date instead. We also
find that ChatGPT can directly provide complete descriptions and
the corresponding solution by simply providing it with the number
of a programming problem in LeetCode (presented in our online
repository [2]). Similarly, Karmakar et al. [24] highlight the mem-
orization issue of Codex, showing its ability to generate accurate
code outputs only with the first sentence of the problem description
as a prompt, even in the absence of clear task objectives. Consider-
ing the fact there exist a quite number of black-box LLMs for which
no architecture or training data information has been released. The
data leaking on such LLMs is a significant concern when it comes
to evaluating their performance in some code-related tasks in the
SE community, such as APR [52] and assertion generation[41].

This paper. In our work, we attempt to raise the important
concern about data leakage, which has been an overlooked issue in
the SE community, when such black-box LLMs are applied to some
code-related tasks. We select ChatGPT and APR as representative
examples of LLMs and SE tasks, respectively. In particular, we
construct a new dataset EvalGPTFix with buggy and correct code
nippets from a competitive programming website Atcoder. We
crawl users’ submissions for competitions during 2023. As ChatGPT
states its knowledge cutoff is in September 2021, thus we confirm
it does not have access to samples in EvalGPTFix. We then design
the following three research questions to evaluate ChatGPT’s bug-
fixing ability in our experiments:
(RQ1) The effectiveness of ChatGPT on EvalGPTFix.

Results: In this RQ, we aim to investigate how ChatGPT
behaves in repairing bugswhenwe present it with the buggy
code. Although ChatGPT could learn more from detailed
prompts, we only give a prompt containing the bug and an
instruction that simply asks to fix the bug. This is similar
to the input for common APR methods, so we can compare
the repair effectiveness of ChatGPT with other tools. We
require ChatGPT to try to fix 151 bugs chosen from two
latest AtCoder competitions in EvalGPTFix, and count the
number of bugs that ChatGPT is able to fix to explore to
what extent can ChatGPT generate correct patches.

(RQ2) What is the effect of different prompts on the repair

performance of ChatGPT?

Results: ChatGPT is a prompt-based languagemodel, whose
response is largely dependent on how it is prompted. Through
modifying prompts, we can give more information relating
to the bugs. After gaining such information, ChatGPT has
the potential to fixmore bugs. To find out what prompt helps
in bug fixing, we design three advanced prompts which sepa-
rately include the programming problems that the programs
target at, the exact lines where the bugs are in, and what

1https://github.com/hitz-zentroa/lm-contamination

https://github.com/hitz-zentroa/lm-contamination
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Do you know Defects4J?

Yes, I'm familiar with Defects4J. Defects4J is a curated database of real-world bugs in Java open-source projects. It was 
developed to support research in software engineering and automated program repair. Defects4J provides a collection of 
reproducible bugs along with their corresponding patches, which can be used to evaluate bug detection and program repair 
techniques.

What are the projects contained in Defects4J?

Defects4J contains a curated collection of bugs from multiple open-source Java projects. As of my knowledge cutoff in 
September 2021, Defects4J includes the following projects:
1.Chart: The JFreeChart project is a popular charting library for Java. It provides support for creating various types of charts, 
including pie charts, bar charts, line charts, and more.
…

Figure 1: Dialogue with ChatGPT about its knowledge of Defects4J Benchmark

type of error the bugs have. We apply these prompts to the
bugs not fixed in RQ1 and experiment on how many more
bugs can be fixed by each prompt.

(RQ3) Can dialogues help ChatGPT in improving repair per-

formance?

Results: ChatGPT is created to engage in dialogues with
users, and while answering a query, it has a memory of pre-
vious conversations, from which it can adjust its responses.
For the bugs that ChatGPT fails to fix when only a single
round of dialogue is performed, we continue the dialogues
by informing ChatGPT of what is wrong with the patches
it has generated. The intuition is that ChatGPT can learn
from the implausible fixes and gradually turn its attention
to the correct patch with the accumulative dialogues.

Overall, our work confirms that ChatGPT has an excellent per-
formance in fixing bugs from the dataset EvalGPTFix. In the case
of providing the basic prompt, ChatGPT fixes 109 bugs out of the
151 bugs. When programming problem descriptions, error mes-
sages and bug locations are added to the prompt, respectively 18,
25 and 10 more bugs are fixed. Moreover, by conducting dialogues,
ChatGPT fixes 9 bugs that are neither fixed with the basic prompt
nor with the prompt including error information. The results show
that the repair ability of ChatGPT can benefit from prompts that
are more in detail and deeper dialogues.

Novelty & Contributions. To sum up, the main contributions
of this paper are as follows:

• Overlooked Issue. We reveal an important concern when
evaluating the recent ChatGPT in repairing software bugs
with commonly-adopted benchmarks, i.e., the data leakage
issue. More importantly, the issue potentially exists in a
broader range of other code-related tasks and black-box
LLMs, and has been consistently overlooked by the SE com-
munity. Thus, the issue may lead to a significant bias in
previous research works that employ black-box LLMs (such
as ChatGPT and Codex) without assessing any training de-
tails, such as pre-training datasets and model architectures.

• Clean Benchmark. We construct a new APR benchmark
EvalGPTFix from a competitive programming website At-
coder. EvalGPTFix contains 151 pairs of bugs and fixes in
Java, which come from failing and accepted programming
submissions in 2023 to ensure that ChatGPT has not seen
the specific code snippets presented in this dataset.

• Extensive Study.We conduct an in-depth empirical study
of how ChatGPT are applied to automated program repair.
Specifically, our study is three-fold: (1) a systematic compar-
ison between ChatGPT and state-of-the-art LLMs, indicat-
ing that ChatGPT can outperform CodeT5 and PLBART; (2)
an extensive evaluation to analyze the impact of different
prompts; (3) an additional discussion about the impact of
dialogue-based repair workflow for ChatGPT.

• Challenge and Opportunity We discuss current press-
ing challenges and forward-looking directions on applying
ChatGPT and more advanced black-box LLMs for future
program repair and other SE studies.

Open Science. To support the open science community, we re-
lease the studied dataset, scripts (i.e., data processing, model train-
ing, and model evaluation), and related models in our experiment
for replication and future research [2].

2 BACKGROUND

2.1 Automated Program Repair

Automated Program Repair (APR) is raised to generate candidate
patches automatically for the buggy code snippets, so as to reduce
the time and cost of manual debugging [55, 60]. There are mainly
two types of APR techniques, i.e., traditional and learning-based
ones.

Traditional APR can be classified into three categories: heuristic-
based [27, 35, 56], constraint-based [11, 36, 38], and template-based [26,
31, 32]. Among them, template-based APR has shown promising
performance in the bug-fixing task. Template-based APR utilizes
pre-defined fix templates, which are patterns of code changes com-
monly applied in debugging activities, to generate possible patches
for specific bugs. Despite of its significant ability in program repair,
template-based APR has limitations in both fix templates and donor
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code. It cannot fix bugs requiring action beyond the fix templates,
and with a proper fix template, some bugs still cannot be fixed
because of a limited source of donor code [32].

The problems above can be solved by learning-based APR, which
is a rising field that APR researchers are focusing on. APR problems
are regarded as Neural Machine Translation (NMT) tasks that trans-
form a piece of buggy code into the correct one. Learning-based
APR leverages DL techniques to gain more insight into program
repair behaviors from large code corpora. However, the effective-
ness of learning-based APR can be easily affected by the quality of
training data, which may contain code changes irrelevant to bug
fixing and thus limit the performance of APR.

2.2 Large Language Model

Large Language Models (LLMs) are language models consisting
of billions of parameters trained from a significant amount of
data and have impressive performance in language processing
tasks, including both natural languages and programming lan-
guages [12, 17, 18, 24, 49]. LLMs are typically based on Transformer
architecture, where an encoder takes a variable-length input and
turns it into a fixed-length vector, while a decoder transforms the
encoded representation into a sequence of output. Based on the
employed components, LLMs can be categorized into encoder-only,
decoder-only, and encoder-decoder ones. Encoder-only models (e.g.,
BERT[10]) learn data representation through training objectives
like Masked Language Modeling (MLM). Decoder-only models (e.g.,
GPT[6]) are trained to generate predictions for the next token given
all the previous tokens. Encoder-decoder models (e.g., CodeT5 [49])
combine the encoder and the decoder, and are trained with the
objective of recovering the corrupted input.

3 STUDY DESIGN

3.1 Research Questions

In this work, we explore the following research questions.

RQ1: What is the performance of ChatGPT in repairing buggy
programs from EvalGPTFix?

RQ2: How do the different prompts with additional program in-
formation affect the performance of ChatGPT?

RQ3: How does the interaction with dynamic execution feedback
affect the performance of ChatGPT?

3.2 EvalGPTFix Construction

There is evidence showing that ChatGPT already has knowledge
about popular datasets (e.g., Defects4J and Quixbugs) widely used
by current APR techniques. As a result, it seems not rigorous to re-
search on ChatGPT’s program repair ability based on these datasets
as ChatGPT may find a correct patch for the given bug from its
training data instead of fixing the bug by itself. To solve this prob-
lem, we construct a new dataset whose data is invisible to ChatGPT.
We gain our data from AtCoder, a platform for programming con-
tests. We extract the programming problems from contests in 2023
and get users’ submissions of these problems as the source data. As
ChatGPT is trained on data before September 2021, it has limited
knowledge about our dataset, so applying ChatGPT to fix bugs from

EvalGPTFix can better reflect ChatGPT’s performance in the APR
task.

① Raw Data Collection.We first crawl all the Java submissions
of AtCoder programming contests starting from 2023. We focus
on Java languages as it is the most targeted language in the APR
community. The online judge results of the submissions can be
divided into six types: 1) Accepted (AC); 2) Wrong Answer (WA); 3)
Time Limit Exceeded (TLE); 4) Compilation Error (CE); 5) Runtime
Error (RE); and 6) Memory Limit Exceeded (MLE).

② Bug-Fixing Pairs Construction. For all the submissions of a
user on a single problem, we take the unaccepted submissions as the
buggy program and the accepted submission as a corresponding cor-
rect program. Then we calculate the token difference between every
pair of the buggy and correct programs, and only keep those with
a difference of less than 6 tokens following existing the study [19].
This difference is calculated by tokenizing each program into a
sequence of tokens and counting the number of token-level differ-
ences, including replacements, deletions, and insertions, between
the two programs. This setting is based on the competent program-
mer hypothesis, i.e., seasoned programmers have the competence to
produce programs that are nearly error-free, and that the majority
of bugs can be rectified through minor modifications.

③ Test CaseMining. For each problem, the problem description
in the HTML website includes a handful of illustrative input-output
pairs that serve as examples. However, these test cases are not
sufficient to validate the correctness of generated patches due to
the overfitting problem in APR [59]. We further download all pos-
sible public test cases of all the problems in our dataset from the
dedicated database2 that posts all test cases of AtCoder problems.
These test cases are manually created by domain experts, such as
the programming problem setters, and serve as the test oracle in
the backend of the website to assess the functional correctness of
programs submitted by users.

④ Static-based Filtering. Furthermore, we remove repeating
submissions as well as submissions with more than 500 code tokens,
considering the limitation of repair models’ ability to handle long
code snippets (e.g., Tufano et al. [48] limit the maximum length of
the buggy code to 100 tokens and CIRCLE [50] truncates the first 512
tokens of the buggy code). We also delete the comments in the code,
as comments can provide information about the function of the
buggy code, and can affect the judgment of APR tools’ capability
in fixing code without other hints. We also observe that some
programs have a compilation error only because the class name is
not written as "Main". This is irrelevant to the logic of the code
itself, so such data is deleted from our dataset.

⑤ Dynamic-based Filtering.We execute all remaining submis-
sions against every test case associated with the respective problem.
The time limit and a memory limit of running a test case are respec-
tively set as 10 seconds and 1MB following previous work [44]. In a
pair (𝑠1, 𝑠2) where 𝑠1 represents the buggy code and 𝑠2 represents
the fixed one, if any of the following three conditions happen, the
pair will be removed: (1) 𝑠1 passes all the test cases of its corre-
sponding problem; (2) The bug type of 𝑠1 does not match the one
given on AtCoder website (e.g., 𝑠1 is found to produce a "Wrong

2https://www.dropbox.com/sh/arnpe0ef5wds8cv/AAAk_SECQ2Nc6SVGii3rHX6Fa?
dl=0

https://www.dropbox.com/sh/arnpe0ef5wds8cv/AAAk_SECQ2Nc6SVGii3rHX6Fa?dl=0
https://www.dropbox.com/sh/arnpe0ef5wds8cv/AAAk_SECQ2Nc6SVGii3rHX6Fa?dl=0
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Answer" error by running test cases but it gets a label of "Compi-
lation Error" on AtCoder); and (3) 𝑠2 fails any of the test cases of
its corresponding problem. Besides, due to differences in our local
device and AtCoder platform environments, we exclude bugs with
a type of MLE, resulting in four types of bugs in EvalGPTFix (i.e.,
WA, TLE, CE, and RE).

⑤ Benchmark Statistics. After all pre-processing phrases, we
get 151 pairs of bug-fixing of Java programs for 15 programming
problems from the two latest programming contests when we con-
duct the work, i.e., Beginner Contest 297 and 298.

3.3 ChatGPT Setup

We conduct our experiment based on the API of ChatGPT with
the model gpt-3.5-turbo released by OpenAI. Considering that
ChatGPT will generate different responses when it is queried by the
same input several times, with every prompt we send the request to
ChatGPT repeatedly to improve the possibility of generating more
correct patches.

3.4 Evaluation Metrics

We evaluate whether the patch generated by ChatGPT is correct by
running it against the test suite. All the test cases are downloaded
from the website of AtCoder, and they are used to judge users’
submissions during coding contests. Averagely, every programming
problem has 38 test cases, which is enough to tell whether the
program can correctly solve the problem. We run every candidate
fix on the test cases of the problem, and if it passes all the test cases,
it is regarded as a correct fix.

For every bug with a prompt, we ask ChatGPT for a fix continu-
ously in a loop, and if in any of the rounds, ChatGPT can generate
a correct patch for a bug, we consider ChatGPT to be able to fix the
bug successfully, and the loop will be exited.

3.5 Compared Techniques

We consider the following two state-of-the-art LLMs as the baseline
techniques.

• CodeT5. Wang et al. [49] introduce a pre-trained language
model (i.e., CodeT5) on top of the T5 architecture by incorporating
the token type information. CodeT5 considers both unimodal (code
only) and bimodal (code-text pairs) data for four pre-training tasks,
i.e.,masked span prediction, masked identifier prediction, identifier
tagging, and bimodal dual generation.

• PLBART. Ahmad et al. [1] introduce a pre-trained encoder-
decoder model (i.e., PLBART) on top of the BERT architecture to
perform both program and language understanding and generation
tasks. PLBART considers three denoising auto-encoding strategies
to reconstruct an input text that is corrupted by a noise function in
pre-training, i.e., token masking, token deletion, and token infilling.

4 RESULTS AND ANALYSIS

4.1 RQ1: Effectiveness of ChatGPT

Design. In this RQ, we explore the repair ability of ChatGPT by
presenting it with buggy programs and asking it to repair them. We
only give the buggy code without any other information about the
bugs to find out to what extent can ChatGPT localize and repair

bugs if no extra prompts are provided. The basic prompt designed
for RQ1 is presented as follows, where [CODE] represents the buggy
program to be fixed.

▶Basic Prompt◀

There’s a bug in the program below. Try to fix it and return
the complete fix for the code in the form of the markdown
code block.
✍ [CODE]

ChatGPT generates different responses even if it is prompted by
the same sentences, so if it is not able to return the correct patch
for a bug, there is a possibility that it will fix the bug when queried
again. Therefore, asking ChatGPT to fix a bug only once cannot
reflect its actual repair capability well. To solve this problem, for
every bug, we repetitively send the same request to ChatGPT. If a
patch for a bug can pass all the test cases, we stop asking ChatGPT
to fix the bug again. In every round of query, we check whether
any new bugs are fixed compared to the last round, and if no more
bugs are fixed for three consecutive rounds, the process is stopped.

Figure 2: The number of totally fixed and newly fixed bugs

in every round of query to ChatGPT

Figure 3: The overlap of bugs fixed by three models
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1 ...
2 String S = sc.next();
3 boolean f1 = false;
4 boolean f2 = true;
5 for(int i=0;i<N;i++){
6 - if(S[i]=='o'){
7 + if(S.charAt(i)=='o'){
8 f1 = true;
9 }
10 - if(S[i]=='x'){
11 + if(S.charAt(i)=='x'){
12 f2 = false;
13 }
14 }
15 ...

Listing 1: An example of bug with syntax error fixed by basic

prompt

Results. Figure 2 shows the number of bugs that ChatGPT is
able to fix in each round of requests. We finally query ChatGPT
for 35 independent rounds, in which the 33-35 rounds do not see
any newly-fixed bugs. Among the 151 bugs from the two latest pro-
gramming contests at AtCoder, 109 are successfully fixed. Generally,
there is a decline in additional fixes with the increase of round num-
ber. In the first three rounds, respectively 51, 19, and 5 additional
correct patches are generated, which is a sharp decrease. After that,
the number begins to drop slowly, and vacillates between 0 to 2
since the 11th round. The decreasing trend only stopped after 35
rounds, indicating the randomness nature of ChatGPT. Therefore,
we recommend future work to explore the issue of randomness in
ChatGPT, which has been ignored in most previous studies, e.g.,
Sobania et al. [45] only repeats four times.

We then invesgiate the types of bugs fixed by ChatGPT. Among
the 151 bugs in EvalGPTFix, there exist 23, 4, 22, and 102 bugs of
the four types CE, TLE, RE, and WA. ChatGPT is able to fix 22, 4,
11, and 72 of them, with the fixing percentage of 96%, 100%, 50%,
and 71%. We find ChatGPT shows an impressive performance in
localizing and fixing bugs with Compilation Error(CE), which is
usually caused by syntax errors. Such errors are easy to identify as
long as ChatGPT has knowledge of Java syntax, so it can fix the bug
without considering the operating logic of the program, which can
be much more intricate. For example, in the following bug shown
in Listing 1, the array operator "[]" is used on a string, which is not
allowed in Java. ChatGPT recognizes the error and replaces "S[i]"
with "S.charAt(i)", and gives a correct patch.

Apart from simple syntax errors, ChatGPT can also identify and
repair some logic errors in the programs. Listing 2 presents an ex-
ample with a logic error that can be successfully fixed by ChatGPT.
In the buggy program, the conditional expression "i<t.length"
in the while statement is problematic, as in the next statement
it can trigger ArrayIndexOutOfBoundsException, which is a kind
of Runtime Error. ChatGPT changes the buggy expression into
"i<t.length-1" to prevent the exception, so as to solve the prob-
lem in the code snippet.

We further compare the repair performance of ChatGPT with
the other two state-of-the-art pre-trained models, i.e., CodeT5 and
PLBART. The models are fed with the buggy code and then gen-
erate possible patches which are later run on the test cases. We
fine-tune the selected models with the FixEval dataset [19], which
contains 156k buggy and correct code submissions to competitive

1 ...
2 int[] t = new int[n];
3 ...
4 - while(i<t.length)
5 + while(i<t.length -1)
6 {
7 if(t[i+1]-t[i]<=d)
8 {
9 ...

Listing 2: An example of bug with logic error fixed by basic

prompt

programming problems before 2021. The beam size is set as 50
for both models, which means 50 patches with highest possibil-
ity are produced for each bug. We find that CodeT5 fixes 79 bugs
and PLBART only fixes 41 bug, 27.5% and 62.4% less than what is
achieved by ChatGPT. Figure 3 presents the overlap of bugs fixed by
the three models, showing that ChatGPT significantly fixes more
bugs (i.e., 55 unique bugs) that the other two models are not able
to fix (i.e., 13 unique bugs for CodeT5 and none for PLBART). The
results indicate that ChatGPT notably outperforms existing LLMs
with regard to repairing programming problems.

Answer to RQ1: The performance of ChatGPT in EvalGPT-
Fix shows that: (1) there exists a significant randomness is-
sue in ChatGPT, e.g., 35 independent rounds are required to
achieve stable results; (2) ChatGPT is effective in fixing differ-
ent types of bugs, e.g., 96%, 100%, 50% and 71% of CE, TLE, RE
and WA bugs are correctly fixed; (3) ChatGPT is able to fix 109
bugs in EvalGPTFix with a recall of 72.19%, 30 and 68 more
than CodeT5 and PLBART.

4.2 RQ2: The Impact of Prompt

Design.We further add more details about the bug to the prompt
given to ChatGPT, expecting that ChatGPT will gain more useful
information from the prompts so that it can fix more bugs. We
ask ChatGPT to fix the bugs that are not fixed when only the
basic prompt is offered, as described in RQ1. We consider three
types of additional bug information, including problem descriptions,
error information, and bug locations. For the three types of bug
information, we respectively design three kinds of prompts based
on the original prompt, discussed as follows.

• Problem descriptions indicate what the programming prob-
lem aims to solve. The prompt with a problem is shown below,
where [CODE] represents the buggy program and [PROBLEM]
represents the coding problem that the code is submitted to. All the
problem descriptions are obtained from the website of AtCoder, and
consist of the background of the problem, the input to the program,
and what the output is supposed to be like.

▶Problem Description Prompt◀

✎ There’s a bug in the program below. Try to fix it and return
the complete fix for the code in the form of the markdown
code block.
✍ [CODE]
The program is to solve this problem:
✍ [PROBLEM]
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• Error information informs ChatGPT of the type of error, the
input that triggers the error, the expected correct output, and the
actual wrong output of the buggy program. For the four types of
bugs (i.e. CE, TLE, RE, and WA), the prompts are slightly different
from each other, displayed as follows.

❶ Compilation Error (CE) is not triggered by any input as it
happens while compiling, so in the case of a CE bug, we only tell
ChatGPT that there is a compilation error in the code.

▶Compilation Error Prompt◀

There’s a bug in the program below. Try to fix it and return
the complete fix for the code in the form of the markdown
code block.
✍ [CODE]
There’s a Compilation Error in the code.

❷ For a Time Limit Exceeded (TLE) or Runtime Error (RE), the
input that causes the error as well as the expected output are added
to the prompt. The prompt is described as follows, where [INPUT]
represents the input that causes the test case to fail and [EXPECT]
represents the output that should be printed by a correct program.

▶Exceeded/ Runtime Error Prompt◀

There’s a bug in the program below. Try to fix it and return
the complete fix for the code in the form of the markdown
code block.
✍ [CODE]
The following input triggers a Time Limit Exceeded/ Runtime
Error:
✍ [INPUT]
The expected output is:
✍ [EXPECT]

❸ For a bug with a Wrong Answer (WA) error, apart from the
input and expected output, the prompt also contains the actual
output of the buggy program. The prompt is described as follows,
where [OUTPUT] represents the output of the buggy program
given the input filled in "[INPUT]".

▶Wrong Answer Error Prompt◀

There’s a bug in the program below. Try to fix it and return
the complete fix for the code in the form of the markdown
code block.
✍ [CODE]
The following input triggers a Wrong Answer error:
✍ [INPUT]
The expected output is:
✍ [EXPECT]
The actual output is:
✍ [OUTPUT]

• Bug localization show the suspicious lines where bugs are
localized in [51]. Wemark the buggy lines with a comment "//bug"
and then ask ChatGPT to repair the code with a bug position. To
obtain the buggy line, we compare the lines of every pair of bug

and fix. In the bug, the first line that is different from the line
in the fix is considered as the buggy line. We add another short
prompt just following the basic prompt to tell ChatGPT what the
comment means. The prompt is designed as follows, where [CODE]
represents the buggy code whose buggy line is followed by the
comment "//bug".

▶Bug Localization Prompt◀

There’s a bug in the program below. Try to fix it and return
the complete fix for the code in the form of the markdown
code block. The location of the bug is in or near the line with
a comment "//bug".
✍ [CODE]

Results. In the 42 bugs that are not fixed in RQ1, 25, 18, and
10 more bugs are fixed when we separately add error information,
problem description, and bug location to the basic prompt. This
shows the promoting effect that more concrete prompts have on the
repair performance of ChatGPT. Like in RQ1, we query ChatGPT
several times until no bugs are newly fixed in continuously three
rounds. Figure 4 shows howmany additional bugs are fixed in every
round. It only takes 12 and 13 rounds to prompt with problems
and bug locations, but 27 rounds are executed when it comes to
error information, notably more than the other two prompts. The
possible reason is that the former two prompts help ChatGPT to
focus on a smaller range of code, so the patches it generates in
every round are relevantly stabler. By contrast, there is vacillation
in the patches when error messages are provided, since an error
could be caused by different parts of the code.

Figure 4: Number of bugs newly fixed in each round with

three types of prompts

Figure 5 presents the overlapping relationship among the bugs
fixed with the three types of prompts. Altogether, 34 bugs are
fixed, while only 5 of them are fixed by all three prompts. Each
prompt fixes 11, 7, and 2 bugs that the other two prompts fail to
fix, indicating that different prompts contribute disparately to a
successful bug fix.

Case Studywith ProblemDescription. ChatGPT gains knowl-
edge about the purpose of the program through problem descrip-
tions, so it can find out which part of the code is inconsistent with
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Figure 5: The overlaps of the bugs fixed by three types of

prompts

1 ...
2 for(int i = 1; i < count; i++) {
3 int x1 = numlist.get(i - 1);
4 int x2 = numlist.get(i);
5 int dis = x2 - x1;
6 - if(dis < distance) {
7 + if(dis <= distance) {
8 System.out.println(x2);
9 break;
10 }
11 counter ++;
12 }
13 ...

Listing 3: An example of fixed bug with problem description

what the coder is actually trying to do. The following is a program-
ming problem and a buggy submission which is fixed by ChatGPT.

Problem Statement:

Takahashi turned on a computer at time 0 and clicked the mouse N times. The
𝑖-th (1 ≤ 𝑖 ≤ 𝑁 ) click was at time𝑇𝑖 .
If he consecutively clicked the mouse at time 𝑥1 and time 𝑥2 (where 𝑥1<𝑥2 ), a
double click is said to be fired at time 𝑥2 if and only if 𝑥2 − 𝑥1 ≤ 𝐷 .
What time was a double click fired for the first time? If no double click was fired,
print −1 instead.
Input:

The input is given from Standard Input in the following format:
𝑁 𝐷

𝑇1 𝑇2 ...𝑇𝑁
Output:

If at least one double click was fired, print the time of the first such event; otherwise,
print −1.

In Listing 3, in the if statement, the operator that the problem
requires is a "<=", as it is stated in the problem that "a double
click is said to be fired at time 𝑥2 if and only if 𝒙2 − 𝒙1 ≤ 𝑫", but
the programmer wrongly uses a "<". ChatGPT realizes the discor-
dance between the problem and the function code, and replaces the
incorrect operator to have the bug fixed.

Case Study with Error Information. ChatGPT can also infer
where the bug is according to information on the type of the bug
as well as on what input the program fails. Listing 4 presents a
bug that can only be fixed by ChatGPT with error information. To
fix the following bug, ChatGPT is informed that for the input "9
737738327422964222", the expected output is "81970925269218254"
but the program actually outputs "1251275726". From the prompt,

1 ...
2 Scanner sc = new Scanner(System.in);
3 long A = sc.nextLong ();
4 long B = sc.nextLong ();
5 - int cnt = 0;
6 + long cnt = 0;
7 while(A!=B){
8 if(A>B){
9 long div = A/B;
10 A = A-B*div;
11 if(A==0){
12 div += -1;
13 cnt += div;
14 break;
15 ...

Listing 4: An example of fixed bug with error information

1 ...
2 Scanner sc=new Scanner(System.in);
3 - long A=sc.nextInt ();
4 + long A=sc.nextLong ();
5 - long B=sc.nextInt ();
6 + long B=sc.nextLong ();
7 long sum=0;
8 while(A!=0 &&B!=0) {
9 if (A<B) {
10 long tmp=A;
11 A=B;
12 B=tmp;
13 }
14 sum+=A/B;
15 A=A%B;
16 ...

Listing 5: An example of fixed bug with bug localization

ChatGPT can probably infer that there is an overflow of the output
variable "cnt", so it changes the variable type from int to long.

Case Study with Bug Localization.With fault locations, Chat-
GPT fixes relatively fewer bugs than with the other two types of
prompts. This could be attributed to the less plentiful information
provided by simply buggy lines. Nevertheless, the bug position
helps in some circumstances. Listing 5 presents a bug that is cor-
rectly fixed only when the bug location is offered in the prompt.
While attempting to fix it based on the programming problem or
the error message, ChatGPT makes the same mistake: it not only
swaps the method "nextInt()" to "nextLong()" but also mod-
ifies the output "sum - 1" to "sum" at the end of the program.
The prompt with the location of the bug in some ways narrows the
scope of code that ChatGPT tries to edit, thus deterring ChatGPT
from changing the initial correct line.

Answer to RQ2: The performance under different prompts
demonstrates that, ChatGPT can benefit from more advanced
prompts with additional information. For example, compared
with the basic prompt, 25, 18, and 10 more bugs can be fixed
with error information, problem description, and buggy lines.

4.3 RQ3: Dialogue Study

Design. During the conversation with ChatGPT, it is aware of the
previous dialogues, and the response depends on both the current
prompt and the context of the conversation. According to existing
work [7], ChatGPT can repair more program faults through per-
forming more dialogues. We raise this RQ to investigate the effect
of dialogues on ChatGPT’s repairing performance.
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We focus on the unfixed bugs when giving ChatGPT either the
basic prompt or the advanced prompt with error information. First,
we prompt ChatGPT with the original bug and what type of error
it has, and get a patch, which is then tested on the test cases. If it
fails to pass any of the test cases again, we continue to conduct
the next round of dialogue, in which we tell ChatGPT the failure
triggered by the patch. In particular, with different types of bugs, the
dialogue prompts are also different. Similar to the error information
prompts described in Section 4.2, when a TLE or RE bug occurs, the
[OUTPUT] will not be provided; when the bug is a CE, the dialogue
will not involve any of the three elements (i.e. [INPUT], [EXPECT]
and [OUTPUT]), while with a WA, all of them will be added to the
prompt, shown as follows.

▶Dialogue Prompt◀

There’s still a Compilation Error/ Time Limit Exceeded Error/
Runtime Error/ Wrong Answer Error in your code triggered
by the input:
✍ [INPUT]
The expected output is:
✍ [EXPECT]
The actual output is:
✍ [OUTPUT]
Try to fix it again and return the complete fix for the code.

The dialogue is continued until ChatGPT successfully repairs the
bug or the round of dialogues reaches five. The API of ChatGPT has
a limited length of input, so sometimes the dialogue may become
too long to process. In this case, we simply delete the second round
of dialogue since the first round contains the basic and essential
bug information. The above process is repeated until no more new
bugs are fixed for successive three times.

Results. Through dialogues, ChatGPT fixes 9 bugs among the
17 bugs that keep unfixed when only a single prompt is provided,
proving that dialogues can help ChatGPT positively in repairing
bugs. This can be because that although ChatGPT mistakenly fixes
the bug at the first time, the knowledge towards the right fix is
accumulated when we respond to a patch with what problems it
has. In this way, ChatGPT can learn from its previous errors and
be directed to the true location of the bug, thus the probability of
generating a correct patch is improved.

There are mainly three scenarios in which ChatGPT can rectify
the wrong patch with dialogues: (1) ChatGPT wrongly identifies the
position of the bug, so the patch faces the same problem as what the
buggy code has. After notifying ChatGPT of the problem that still
exists, a new line can be located, which might be where the bug is
really in. (2) ChatGPT fixes the initial problem, but there is another
bug in the code that ChatGPT fails to notice. This usually happens
when several bugs lie in different locations of the code. For example,
in the first round of dialogue, we give a bug with a Compilation
Error, caused by a syntax problem. ChatGPT corrects the syntax but
a Wrong Answer problem arises. In this case, ChatGPT is told about
the wrong answer and manages to find the other bug. (3) ChatGPT
finds multiple suspicious code snippets, only part of which are bugs.
While fixing the bugs, ChatGPT also turns some originally correct

code into the wrong one. From further dialogues, ChatGPT can
realize its previous faults and produce the correct patch.

Answer to RQ3: The performance under a dialogue study
demonstrates that, ChatGPT can repair more difficult-to-fix
bugs with dynamic execution feedback in an interaction man-
ner, e.g., 9 bugs that have not been fixed in previous prompts
are fixed successfully.

5 DISCUSSION

In the above work, we have demonstrated that ChatGPT has an
outstanding performance in program repair. However, we only ask
ChatGPT to repair bugs written by human programmers in a coding
contest. In this section, we aim to investigate on whether ChatGPT
can fix bugs in the code generated by itself. If ChatGPT is able to
fix bugs in its own code through dialogues, it will take less effort
to debug manually, and help to improve humans’ coding efficiency
while working with ChatGPT.

To research on this question, we use themethod similar to the one
in RQ3, but this time the programs to be fixed by ChatGPT are given
by itself. We first query ChatGPT with the problem descriptions in
two AtCoder contests (i.e., abc297 and abc298) with the following
prompt:

▶Code Generation Prompt◀

✎ Use Java to solve the following problem. The class name
must be ’Main’. return the code in the form of markdown
code block.
✍ [PROBLEM]

ChatGPT is asked with this prompt for 10 times and generates 10
pieces of code for each coding problem. We run them on all the test
cases, and pick out the one that passes the most cases. If it passes
all the test cases, it will not go into the next step. Otherwise, it is
considered as the buggy code to be fixed. Next, we ask ChatGPT to
fix the bug it has previously generated using the same way as in
the dialogue study mentioned in Section 4.3. The dialogue round is
set as 30 as we find that ChatGPT is not able to fix any bugs within
a small number of dialogues, such as 5 or 10.

Among the 16 problems in the two contests, ChatGPT generates
correct solutions for 3 of them when first asked to solve the prob-
lems, and then it is required to fix the remaining 13 bugs. Despite
of ChatGPT’s impressive bug-fixing performance in the previous
experiments, it is unexpected that only 2 bugs are fixed even though
we have performed 30 rounds of dialogues. This indicates that Chat-
GPT may have limited ability in self-repair. After careful analysis,
the possible reason lies in that the edit actions to fix the developer-
submitted programs are minimal (e.g., less than 6 token differences
in Section 3.2), while the initial programs generated by ChatGPT
are far from the correct programs and require more edits.

6 CHALLENGE AND OPPORTUNITY

Better Prompt Engineering. In the experiment, we design dif-
ferent prompts to feed ChatGPT with the buggy code and detailed
debugging information. The results show that ChatGPT is able to
fix an impressive number of bugs with the basic prompt in RQ1.
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We also find advanced prompts in RQ2 and RQ3 can further boost
repair performance. The quality of a prompt depends on how much
information it contains and how well-crafted it is. In the bug-fixing
scenario, a prompt well-crafted should contain the following ele-
ment: the instruction to describe the specific task the model needs
to perform, context to describe additional information that steers
LLMs to better responses, and examples to describe the concrete
type of the input and output samples. In the future, it is important to
explore better prompts that effectively guide such LLMs to generate
accurate and helpful patches for the buggy code.

Domain-specific LLMs. The investigated ChatGPT has shown
outstanding performance in repairing software bugs, outperform-
ing code domain-specific LLMs, e.g., CodeT5. We think the benefits
of ChatGPT lies in a wide range of training data from the internet,
including books, articles, websites, and other textual data. Such
diverse training data gives ChatGPT a broad understanding of lan-
guage and general knowledge, while it also includes a substantial
amount of information unrelated to source code and requires a huge
parameter size. On the other hand, domain-specific LLMs are typi-
cally trained specifically on datasets relevant to code within a par-
ticular domain. Such domain-specific models are more focused and
tailored to the code-related task and can capture domain-specific
code transformation patterns, potentially resulting in more accu-
rate patches. Overall, general-purpose LLMs (e.g., ChatGPT) benefit
from their broad exposure to diverse language data, enabling them
to offer general programming assistance, while domain-specific
LLMs (e.g., CodeT5), trained solely on code-related datasets, can
provide more specialized and domain-specific guidance. In the fu-
ture, it is interesting to explore the advantages and disadvantages
of these two types of LLMs. Besides, future work can advance the
repair capabilities of LLMs by combining general language under-
standing with specialized domain knowledge.

ChatGPT IDE Integration. In our work, we evaluate the per-
formance of ChatGPT with a well-constructed benchmark in terms
of the number of fixed software bugs. Although ChatGPT is able
to fix a considerable number of bugs, it is unclear how such LLMs
perform in assisting developers in real-world development envi-
ronments. Different from the existing APR pipeline that directly
provides patched code, integrating LLMs like ChatGPT into IDEs
can offer benefits. For example, based on the natural language and
programming language understanding capabilities of ChatGPT, de-
velopers can describe the behaviors of a bug in natural language,
and ChatGPT is able to analyze the buggy program and provide
feasible solutions under an iterative interactive process. Besides,
ChatGPT can accept more information about the bug, and even ad-
ditional details or steps to reproduce the bug in IDE, enabling amore
accurate diagnosis. In contrast, with limited code understanding ca-
pabilities, most existing APR techniques focus on accepting buggy
code as input, leading to numerous ineffective candidate patches
(e.g., 1000 candidate patches per bug in CIRCLE [50]). In the future,
more works are recommended to explore how LLMs streamline the
typical bug-fixing workflow and offer valuable insights.

7 THREATS TO VALIDITY

The first threat to validity lies in the repair benchmarks. We con-
struct EvalGPTFix from AtCoder, a programming contest platform.

The collected programs are small-size algorithms, which may not
accurately reflect real-world professional software repair capabili-
ties. There is an increasing trend in using competitive programming
as benchmarks in APR, as well as other tasks, such as the popu-
lar CodeNET benchmark. Besides, EvalGPTFix contains programs
with varying difficulty and types, written by programmers from di-
verse backgrounds. Therefore, EvalGPTFix can effectively evaluate
the repair capabilities of LLMs and foster future work on APR.

The second threat to validity comes from the compared ap-
proaches. In RQ1, we select CodeT5 and PLBART as the baselines to
evaluate the effectiveness of ChatGPT. We do not consider (1) other
LLMs (e.g., CodeBERT [12] and GraphCodeBERT [18]) because the
selected two LLMs represent stat-of-the-art in bug-fixing [33]; and
(2) existing APR techniques (e.g., CIRCLE [50] and CoCoNut [34])
because our work focuses on LLMs on SE. However, considering
that our work mainly focuses on empirical evaluations, the improve-
ment of ChatGPT over the baselines is enough to demonstrate the
promising future of boosting program repair on top of ChatGPT.

The third threat to validity is the selection of ChatGPT and APR.
In our work, we regard data leakage as a common issue that may
appear in a variety of SE tasks involving black-box LLMs. We only
conduct experiments to evaluate the capabilities of ChatGPT in re-
pairing software bugs, Thus, our findings may not be generalizable
to other LLMs and tasks. Considering the fact that (1) ChatGPT is
one of the state-of-the-art LLMs and has been extensively studied
in recent works, and (2) APR plays a vital role in software devel-
opment, and a number of APR works leverage LLMs to generate
patches, We believe that ChatGPT and APR can indeed serve as
representative examples of LLMs and SE tasks, respectively.

8 RELATEDWORK

8.1 Automated Program Repair

Existing APR techniques are generally divided into traditional and
learning-based ones [3, 16, 20]. Traditional APR, especially template-
based APR, is proven to perform well in fixing bugs. For example,
PAR [25] first proposes a patch generation method based on fix pat-
terns, which are drawn from over 60,000 patches written manually.
TBar [32] systematically summarizes frequently-used fix templates
from the literature, and applies them in fixing program bugs. There
are different ways to obtain fix templates. For example, In AVATAR
[31], fix patterns come from code changes that can address vio-
lations in static bug detection tools. FixMiner [26] develops an
automated template mining tool, in which a clustering strategy is
applied to mine code changes from bugs and patches.

Recently, learning-based APR has been proposed to transform
buggy code into the correct one automatically. For example, DLFix
[28] raises a two-layer deep learning model to learn code trans-
formation from bug fixes and surrounding contexts. CURE [22]
pre-trains a programming language model based on a large code-
base, and optimizes the searching efficiency by proposing a novel
search strategy as well as using a subword tokenization technique.
In this paper, we do not include these techniques as baselines be-
cause (1) previous studies [21, 53] demonstrate existing LLMs can
outperform APR approaches; and (2) as an empirical study, our
work mainly focuses on LLMs and select two state-of-the-art LLMs.
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8.2 Large Language Models in SE

There is growing interest in leveraging LLMs in SE tasks [42, 47].
For example, Zeng et al. [58] perform an extensive study that eval-
uates eight pre-trained LLMs (e.g., CodeBERT [12], CodeT5 [49],
and GraphCodeBERT [18]) on seven program understanding and
generation tasks, and compare the pre-trained models with non-pre-
trained domain-specific techniques, demonstrating that pre-trained
models significantly perform better in code understanding than
other state-of-the-art techniques. In the field of program repair,
LLMs are exploited to directly generate patches so as to break
the limitations in learning-based techniques [50, 52, 53]. AlphaRe-
pair [53] introduces the mask prediction task of the pre-trained
model CodeBERT [12] into APR, and implements a cloze-style APR
tool without using any bug-fixing historic code. Prenner et al. [44]
research on the program repair ability of Codex, a GPT-3-based
language model aiming to translate natural language to program-
ming language. Although Codex is not specifically trained for APR
tasks, it is still effective at fixing bugs, especially those in Python
language on the benchmark QuixBugs [29].

Recently, ChatGPT is attracting a lot of attention because of
its stunning ability of understanding and responding to conver-
sations started by humans. In APR, ChatGPT has been proven to
have outstanding performance in fixing bugs from popular datasets
(e.g. Defects4J [23] and QuixBugs [29]). Sobania et al. [45] analyze
ChatGPT’s program repair behavior through both giving a single
request and conducting more discussions with ChatGPT. Cao et al.
[7] focus on studying ChatGPT’s capability in fixing deep learning
programs. Xia et al. [54] propose an APR approach based on Chat-
GPT that fully utilizes conversations by offering instant feedbacks
about previous patches. In this work, we review the data leakage
issue of black-box LLMs by taking ChatGPT and APR as examples.

9 CONCLUSION

In this paper, we seek to review the overlooked data leakage is-
sue of black-box LLMs in the SE domain. In particular, we eval-
uate ChatGPT’s capability of program repair on a clean dataset
EvalGPTFix. The results demonstrate that ChatGPT generates 109
correct patches over 151 bugs when only given the basic prompt.
Besides, ChatGPT continues to fix 18, 25, and 10 additional bugs
with prompts containing programming problem descriptions, error
messages, and bug localizations. Through engaging in dialogues,
nine more bugs are fixed by ChatGPT. These results indicate that
ChatGPT has a promising bug-fixing ability, which can be further
enhanced by proper prompts and more dialogues.
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