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With the increasing popularity of blockchain, di�erent blockchain platforms coexist in the ecosystem (e.g.,

Ethereum, BNB, EOSIO, etc.), which prompts the high demand for cross-chain communication. Cross-chain

bridge is a speci�c type of decentralized application for asset exchange across di�erent blockchain platforms.

Securing the smart contracts of cross-chain bridges is in urgent need, as there are a number of recent security

incidents with heavy �nancial losses caused by vulnerabilities in bridge smart contracts, as we call them

Cross-Chain Vulnerabilities (CCVs). However, automatically identifying CCVs in smart contracts poses several

unique challenges. Particularly, it is non-trivial to (1) identify application-speci�c access control constraints

needed for cross-bridge asset exchange, and (2) identify inconsistent cross-chain semantics between the two

sides of the bridge.

In this paper, we propose SmartAxe, a new framework to identify vulnerabilities in cross-chain bridge

smart contracts. Particularly, to locate vulnerable functions that have access control incompleteness, SmartAxe

models the heterogeneous implementations of access control and �nds necessary security checks in smart

contracts through probabilistic pattern inference. Besides, SmartAxe constructs cross-chain control-�ow

graph (xCFG) and data-�ow graph (xDFG), which help to �nd semantic inconsistency during cross-chain data

communication. To evaluate SmartAxe, we collect and label a dataset of 88 CCVs from real-attacks cross-chain

bridge contracts. Evaluation results show that SmartAxe achieves a precision of 84.95% and a recall of 89.77%.

In addition, SmartAxe successfully identi�es 232 new/unknown CCVs from 129 real-world cross-chain bridge

applications (i.e., from 1,703 smart contracts). These identi�ed CCVs a�ect a total amount of digital assets

worth 1,885,250 USD.

CCS Concepts: • Software and its engineering → Software creation and management; • Software

creation and management→ Software veri�cation and validation;
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1 INTRODUCTION

The rise of blockchain has prompted a wide range of blockchain platforms (e.g., Ethereum [Ethereum
2015], BNB [Binance 2022]) and crypto-assets (e.g., Bitcoin [Bitcoin 2009], Non-Fungible To-
ken [Wikipedia 2023]). Given such a highly diverse and fragmented ecosystem, there is a strong
need for data communication across di�erent blockchain platforms (e.g., exchanging Ether to
Bitcoin).
Cross-chain bridge is a speci�c type of application, working as an intermediary for informa-

tion exchange (e.g., digital assets) across di�erent blockchains. For example, Polygon network
bridge [Polygon 2023], the most popular cross-chain bridge holding more than 2 billion USD, allows
users to transfer tokens between Polygon and Ethereum blockchains without other un-trusted third
parties. While gaining a market cap of billions of dollars [Chainspot 2023], cross-chain bridges
face emerging security issues. Our investigation showed that in the recent two years, cross-chain
bridges have su�ered more than 29 security incidents. A large portion of security incidents in
cross-chain bridges are caused by vulnerabilities that reside in their smart contracts. For instance,
PolyNetwork [Network 2020] was exploited by an access-control vulnerability, leading to a total
loss of 600 million USD [Wikipedia contributors 2022].
In this paper, we call vulnerabilities that are speci�c to cross-chain bridge smart contracts as

Cross-Chain Vulnerability (CCV). CCVs are unique to the cross-chain scenario (i.e., asset exchange)
implemented by smart contracts. For example, while the root cause of a CCV could be a lack of
�ne-grained access control, such access control enforcement is not necessary in other traditional
smart contracts. As another example, a CCV may caused by inconsistent semantics between the
two sides of the bridge (see Section 2.2 for more details).
Given the severe impact of CCVs, there has been very limited research focusing on analyzing

CCVs, not to mention a systematic detection framework for securing cross-chain bridges. More
speci�cally, prior research [Duan et al. 2023; Lee et al. 2023] performed studies to understand the
key patterns of cross-chain attacks. Based on their observation and �ndings, a set of mitigation
suggestions were proposed to cross-chain developers. Unfortunately, these suggestions can not
be directly applied, or enforced by existing cross-chain bridges. The most relevant work in terms
of detecting CCV is Xscope [Zhang et al. 2022], which can identify a subset of CCVs via anomaly
detection. However, Xscope requires analyzing collected statistics of on-chain transactions. With
such a prerequisite, it can only detect CCVs that have already been exploited by attackers.

Our Work. In this paper, we propose SmartAxe, a new static analysis framework to detect CCVs
for cross-chain bridge smart contracts. To the best of our knowledge, SmartAxe is the �rst of its
kind to detect CCVs via program analysis at the bytecode level. In this capability, SmartAxe enables
automatic security vetting for a variety of cross-chain bridge applications before their deployment,
and hence, improves their security and amend potential risks that may cause severe damage (e.g.,
�nancial losses).

The root cause of CCVs lies in two aspects: 1) access control incompleteness and 2) cross-bridge
semantic inconsistency. Identifying CCVs in bridge contracts faces the following two unique
challenges in terms of static analysis.

• Firstly, identifying access control incompleteness relies on the precise extraction of access
control constraints. Access control constraints consist of appropriate security checks over
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speci�c resources (e.g., a critical state variable in smart contract). Unfortunately, such security
checks are implemented heterogeneously in bridge contracts. Moreover, associating related
resources with such security checks introduces signi�cant complexity.

• Secondly, identifying cross-bridge semantic inconsistency heavily relies on analyzing the
�ne-grained contextual information related to cross-chain communication. For example,
inspecting the control-�ow and data-�ow dependency across multiple blockchains. These
information are mostly overlooked by prior frameworks [Liao et al. 2023; Liu et al. 2021;
Tsankov et al. 2018] when detecting smart contract vulnerabilities.

To this end, SmartAxe integrates two key designs in its static analysis process for CCV detection.
Firstly, to identify necessary security checks in cross-chain bridges, SmartAxe models the heteroge-
neous implementations of access control in bridge contracts to a canonical form. In the meantime,
SmartAxe pinpoints cross-chain related resources that need security checks through probabilistic
pattern inference (Section 4.2). In this way, SmartAxe can e�ectively �nd out those vulnerable
functions which have access control incompleteness. Secondly, to model the context information,
SmartAxe aligns the control �ow and data �ow between two sides of the bridge, and further con-
structs the cross-chain control-�ow graph (xCFG) and data-�ow graph (xDFG) (Section 4.3). With
the constructed graphs, SmartAxe locates vulnerable functions containing cross-bridge semantic
inconsistency during cross-chain data communication. Lastly, SmartAxe analyzes the accessibility
(i.e., entry point) and subversiveness (i.e., a�ected state variables) for vulnerable functions, and
reports the vulnerability trace (Section 4.4).
To evaluate the e�ectiveness of SmartAxe, we �rst construct a manually-labeled dataset (as

�<0=D0; ) based on 22 public reports discussing CCVs. The dataset is composed of 16 cross-chain
bridge applications, with 88 CCVs from 203 smart contracts. Our experiments show that SmartAxe
is e�ective in CCV detection with a precision of 84.95% and a recall of 89.77% over this dataset. The
results show that SmartAxe e�ectively detect the majority of CCVs that cause real-world damage.

Detecting CCVs in the wild. With the help of SmartAxe, we perform a large-scale security
vetting of 1,703 smart contracts (from 129 real-world cross-chain bridge applications). To the best
of our knowledge, this is the most comprehensive collection of cross-chain bridge smart contracts
in the wild. Finally, SmartAxe reported 232 new CCVs which have not been identi�ed by previous
research. The total assets a�ected by these CCVs reached 1,885,250 USD.
In summary, the contributions of this paper are as follows:

• We highlight the root causes of cross-chain vulnerabilities (Section 2.2), including access
control incompleteness and cross-bridge semantic inconsistency.

• We propose SmartAxe, the �rst static analysis framework to detect CCVs for cross-chain
bridge smart contracts.

• We perform an extensive evaluation to show the e�ectiveness of SmartAxe. In addition, by
performing a large-scale study over 1,703 cross-chain bridge smart contracts in the wild,
SmartAxe identi�ed 232 new CCVs in the real world.

• We build the �rst manual-labeled dataset of cross-bridge vulnerabilities, as well as the most
comprehensive dataset of cross-chain bridge applications/smart contracts. To bene�t future
research, we release the artifact of SmartAxe, as well as the datasets 1.

1https://github.com/InPlusLab/FSE24-SmartAxe
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Fig. 1. Workflow of cross-chain bridge.

2 BACKGROUND ANDMOTIVATION

2.1 Smart Contract and Cross-Chain Bridge

Smart contract is a speci�c type of program running on the blockchain. These programs support
various functionalities to implement new business models [Zheng et al. 2020], such as decentralized
�nance (DeFi), decentralized gaming (GameFi), and cross-chain bridges.

Cross-chain bridge works as an intermediary for asset exchange on di�erent blockchain platforms.
Figure 1 shows the key architecture of the cross-chain bridge. A typical cross-chain bridge can
be divided into three parts: source chain, cross-chain relayer, and destination chain. The cross-
chain bridge deploys smart contracts on the source chain and destination chain. The relayer is
designed to support information exchange between the source chain and the destination chain.
With the cross-chain bridge, users can deposit assets on the source chain and withdraw assets on
the destination chain. For example, exchange Token A with Token B in Figure 1. To detail, this
process includes the following three steps:

(1). Asset deposit on source chain.When receiving the asset exchange request from the user, the
Router contract 'B of the source chain invokes the Token contract )B to lock Token A. Then 'B
emits a deposit event �3 as the con�rmation of locked assets, which contains the detailed deposit
information (e.g., the type and amount). After that, the asset of users would be transferred to
the Router contract 'B

(2). Cross-chain communication via o�-chain relayers. Once a deposit event �3 is emitted, the
o�-chain relayer veri�es whether the deposit is valid on the source chain. If the veri�cation
gets passed, the relayer transmits the informed information �? to Router contract '3 of the
destination chain.

(3). Asset withdrawal on destination chain. Once �? is delivered to the destination chain, the
Router contract '3 validates various proofs from �? for authorization. After the validation, '3
emits a withdraw event �F and invokes Token contract )3 to withdraw Token B to user-speci�ed
addresses on the destination chain.

2.2 Definition and Problem Statement

Cross-Chain Vulnerability. Cross-chain vulnerability (CCV) is a speci�c type of vulnerability
in cross-chain bridge smart contracts. In most cases, cross-chain bridge contract unexpectedly
introduces incomplete access control or inconsistent cross-bridge semantics when exchanging
assets between the two blockchains. In the following, we use two motivating examples (Figure 2)
to illustrate CCV. The examples are collected from two real-world bridge contracts that have been
exploited by attackers (i.e., ChainSwap [Sam Cooling 2021] and ThORChain [Sebastian Sinclair
2021]). We re-organized the original contract code for better illustration.
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Fig. 2. Two motivating examples of CCV.

• Access Control Incompleteness. Cross-chain bridge contracts may omit critical security
checks, or contain incorrect access control implementations. As shown in Figure 2(a), variable
Quota in Contract ContextUpgradeSafe represents the validation of signatory (line 2), which
should be checked before asset authorization and withdrawal. However, while Function
Receive is designed for asset authorization and withdrawal, it only checks the signatures
without validating the signatory (i.e., checking Quota, see the red dotted box (line 6 and 7)).
Therefore, the contract introduces an exploitable CCV. As shown in path %2 , to attack this
cross-chain bridge, the attacker can forge fake relayers (i.e., signatory) for signatures (%2 -1)
and bypass authorization check due to the lack of signatory validation (%2-3), and �nally
withdraw asset (%2-4). In practice, this vulnerability can be avoided by adding statements
such as "require (Quota[signatory] > 0)" between lines 6 and 7.

• Cross-bridge Semantic Inconsistency. Ideally, the program semantics of the source chain
and destination chain should be aligned with each other, such as type and amount of the
exchanged assets. Figure 2 (b) shows an example of semantic inconsistency caused by incorrect
parsing of token type. For contract Chain_Router, function Deposit emits a record (line 4) of
“ERC-20” on the source chain. However, the default token expected in functionWithdrawal

is “ETH” (line 6). While the actual token type can be updated by getTokenMeta(token), the
smart contract on the destination chain does not carefully handle and inspect exceptions.
Particularly, an adversary can intentionally pass a wrong token address (i.e., 0x0000x) here,
making the token type incorrectly parsed as the default value (“ETH”) regardless of the actual
token type on the source chain. Since ETH is more expensive than ERC-20, the attacker can
bene�t from exchanging assets with such value di�erences.
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1contract Radar {

2 function bridgeTokens(uint256 amount ,bytes32 destChain ,address destAddress) external {

3 require(balanceOf(msg.sender) >= _amount); // check the balance for ensuring deposit sucess

4 ...

5 safeTransferFrom(msg.sender , address(this), amount);

6 emit Deposit(amount , destChain , destAddress);}}

7

8contract Polkabridge {

9 mapping(address => uint) public balanceOf;

10 function mint(address to) external {

11 ...

12 require(liquidity > 0); // check the liquidity for ensuring deposit sucess

13 balanceOf[to] = balanceOf[to] + liquidity;

14 emit Deposit(address (0), to , liquidity);}}

Fig. 3. An example of the diversity of security checks for deposit success (i.e., lines 3 and 12), which is caused

by di�erent implementations and non-standard check, and cannot be addressed by Ethainter [Brent et al.

2020], SPCon [Liu et al. 2022], AChecker [Ghaleb et al. 2023].

Existing Work and Limitations. Despite that CCVs have been extensively exploited, there is
limited work on identifying this type of vulnerability in advance and further eliminating such
losses. To the best of our knowledge, the most relevant work on identifying cross-chain attack is
Xscope [Zhang et al. 2022]. However, Xscope is an anomaly detection tool to analyze cross-chain
transactions, and it does not support CCV detection at the smart contract level.

Further, as smart contracts are di�cult to support patches after deployment, such a framework
cannot avoid the attack and further eliminate economic losses. Additionally, Duan et al. [Duan et al.
2023] and Lee et.al [Lee et al. 2023] conduct the survey on cross-chain attacks and propose advice
on designing cross-chain systems, so both studies cannot fundamentally detect CCV.

2.3 Scope of Our Work

SmartAxe is designed to be a generalized framework for detecting CCVs caused by vulnerable smart
contracts in cross-chain bridges. SmartAxe targets the upper-level application of bridge (i.e., bridge
Dapp), rather than the underlying protocol of bridge (e.g., Inter-blockchain communication (IBC)
protocol). As a program analysis framework, SmartAxe can cover 20 CCV attacks of 29 cross-chain
security attacks, but does not cover other 9 cross-chain exploits irrelevant to smart contract code,
such as private key leakage [Rubic 2022], DNS hijacking [CelerNetwork 2022] and trusted root
leakage [Behnke 2022]. Given a set of smart contracts in the cross-bridge application, SmartAxe
performs static analysis on the bytecode, and further reports whether the smart contract contains
CCVs. Since SmartAxe conducts analysis on the level of bytecode instead of source code, it is
applicable for a number of security vetting scenarios such as large-scale third-party auditing.

3 DESIGN OF SMARTAXE

3.1 Challenges and Solutions

With the increasing complexity of cross-chain smart contracts, identifying CCVs is by no means
trivial. While prior works conducted analysis on access control vulnerability for smart contracts
(e.g., Ethainter [Brent et al. 2020], SPCon [Liu et al. 2022], AChecker [Ghaleb et al. 2023]), these
works never consider the security assumption of cross-bridge scenario, therefore, they can hardly
detect CCVs. Below we list the challenges encountered by SmartAxe as well as the corresponding
solutions.

C1: Extracting access control constraints. A typical access control constraint commonly
consists of security checks over speci�c resources in smart contracts. Speci�cally, security checks
can be conditional or compared statements (e.g., require, assert, and if), the resource can be the
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1contract BaseBridge {

2 mapping (address => uint) public authorization;

3 function withdrawal(uint256 SrcChain ,address to ,uint256 amount ,Signature [] memory signatures) public {

4 ...

5 if(signatures.length > _minSignatures); { // Security Check 1, check the number of signatures

6 for(uint i=0; i<signatures.length; i++) {

7 address _signatory = getSignatory(signatures[i]);

8 require(_signatory == signatures[i]. signatory); // Security Check 2, check the validation signatory

9 authorization[to]= authorization[to]+1;

10 emit Authorize(SrcChain , to , amount , signatory);}}

11 require(authorization[to] == signatures.length);

12 _transfer(address(this), to , volume); // Resource 1, withdrawal the asset

13 emit Receive(fromChainId , to , volume);}}

Fig. 4. An example to show the complexity in linking resources with security checks.

important operation statement (e.g., read and write on state variables, method invocation). From this
perspective, the challenge of extracting access control constraints can be divided into two aspects.
The �rst aspect is the diversity of security checks which is caused by di�erent implementations and
non-standard checks. For instance, Figure 3 shows the diverse implementation of security checks
between di�erent cross-chain bridges. As can be seen, to check the deposit success, contract Radar
compares the balance of the user with the deposit amount (line 3), contract Polkabridge compares
the liquidity of the bridge with the threshold (line 12). However, prior research (i.e., Ethainter [Brent
et al. 2020], SPCon [Liu et al. 2022], AChecker [Ghaleb et al. 2023]) cannot address this diversity, as
their detection patterns are incomplete without considering the semantic of the bridge.
The second aspect is the inherent complexity in linking resources to security checks. We take

Figure 4 as an example. For the resource of line 12, prior works [Brent et al. 2020; Ghaleb et al. 2023;
Liu et al. 2022] link this resource to the security checks on which the resource has control �ow
dependency, i.e., only check of line 5 without check of line 8, which causes the mistake. Actually, by
analyzing the semantics on them, we can �nd that the resource of line 14 transfers the authorized
withdrawal, the check of line 5 checks the authorizing signatures, and the check of line 7 checks
the authorizing signatory, so all of the checks of lines 5 and 7 should be linked with resource 12.
Alternatively, by analyzing the data dependency of lines 8, 9, and 11, we can also determine check
of line 7 should be linked with resource 12. However, automatically identifying these is by no
means trivial, as it requires analyzing the complex patterns of semantic and data dependency.
To overcome this challenge, for identifying the security checks, we review the documentation

and program code of the top 100 cross-chain bridges, and model the access control of cross-chain
bridge and normalizes diverse checks to a canonical form (see details via Table 1 and Section 4.2).
To link the resources to security checks, SmartAxe utilizes a probabilistic pattern inference method
(see detail via Table 2 and Section 4.2). Speci�cally, SmartAxe utilizes a set of prede�ned patterns
that consider the dependency of control �ow, data �ow, and semantics between the resource and
security check to determine the association relationship between them.

Further, based on the extracted access control constraint, SmartAxe identi�es the incompleteness
of access control for the bridge contract.

C2: Identifying cross-bridge semantic inconsistencies. Di�erent from the vulnerability analy-
sis on a single blockchain, identifying CCVs of cross-bridge semantic inconsistency heavily relies
on modeling the contextual information (e.g., emitting �3 , relayer, informing �? ) during cross-chain
data transmission. Identifying the contextual information is by no means trivial, as it requires
the accurate alignment of control �ow and data �ow between two sides of the cross-chain bridge,
which lack of prior work can support. Further, it is di�cult to identify the alignment sites of control
�ow and data �ow, because locating alignment sites requires �ne-grained semantic and control
�ow analysis.
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Fig. 5. The workflow of SmartAxe.

To overcome the second challenge, by the �ne-grained semantic and control �ow analysis,
SmartAxe identi�es two types of functions as the alignment site, i.e., (1) functions that implement
deposit and lock and (2) functions that implement authorization and withdrawal. Then, SmartAxe
aligns the corresponding alignment sites and constructs the cross-chain control �ow graph (xCFG).
To facilitate the detection for cross-bridge semantic consistency of CCVs, SmartAxe performs the
data �ow analysis on the xCFG to construct the cross-chain data-�ow graph (xDFG).
Further, based on the constructed xCFG and xDFG, SmartAxe identify the CCV of cross-bridge

semantic inconsistency for bridge contracts.

3.2 Workflow of SmartAxe

SmartAxe takes the bytecode of cross-chain bridge contracts as its input, and �nally reports
whether it contains CCVs, as well as the corresponding vulnerable traces. A vulnerable trace
contains function calls from the vulnerable function to tainted state variable(s) that can be a�ected
by external call(s). Figure 5 demonstrates the work�ow of SmartAxe.

S1. Basic control-�ow analysis. As a typical process of static analysis, SmartAxe separately
recovers the control �ow of smart contracts on each side of the cross-chain bridge as the
pre-processing step, through the existing analyzer (e.g., SmartDagger [Liao et al. 2022] in our
research).

S2. Access control completeness identi�cation. In the second step, SmartAxe identi�es all the
access control constraints based on the basic control-�ow facts. Particularly, SmartAxe models
the access control of the bridge contracts and normalizes diverse checks to a canonical form.
Then, SmartAxe conducts the probabilistic pattern inference to associate the resources with
security checks. Based on the extracted access control constraints, SmartAxe identi�es the
vulnerable functions containing incompleteness of access control.

S3. Cross-bridge semantic inconsistency identi�cation. SmartAxe aligns the control �ow of
smart contracts between the source chain and destination chain to construct xCFG. Further,
SmartAxe performs data �ow analysis to construct xDFG. Based on the constructed graphs,
SmartAxe identi�es the vulnerable functions containing semantic inconsistency.

S4. Vulnerable traces discovery by taint analysis. Lastly, based on the vulnerable functions
reported by S3 and S4, SmartAxe identi�es all the vulnerable traces via taint analysis.

4 APPROACH DETAILS

In this section, we demonstrate the details of each step in SmartAxe. Meanwhile, we utilize a
running example (i.e., Figure 2) to elaborate how SmartAxe accurately identi�es CCVs.
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4.1 Basic Control-Flow Analysis

SmartAxe separately constructs the basic control �ow from the smart contract bytecode on each
side of a given cross-chain bridge by utilizing the state-of-the-art static analysis tool SmartDagger.
SmartAxe utilizes SmartDagger which is developed for identifying cross-contract vulnerability, as
SmartDagger can construct a more complete control �ow for cross-function (contract) invocation
compared with other static analysis tools (e.g., Slither [Feist et al. 2019] and Mythril [Consensys
2017]). Speci�cally, for each side of cross-chain bridge, SmartDagger constructs the control �ow
graph from the bytecode of the bridge contracts.

4.2 Access Control Incompleteness Identification

In this subsection, SmartAxe extracts the access control constraints by modeling the security checks
of access control and associating the resources with security checks. Based on extracted access
control constraints, SmartAxe identi�es the incompleteness of access control.

Modeling heterogeneous security checks. As mentioned earlier, the work�ows of cross-chain
bridges consist of three steps, 1) asset deposit and lock, 2) cross-chain communication, and 3)
asset authorization and withdrawal. The security checks of bridge contracts essentially enforce the
permission of users according to such three work�ows. However, the implementation for security
checks is actually much more diverse in the cross-chain bridge. This is because di�erent cross-chain
bridges generally utilize di�erent kinds of security features that are associated with these work�ows
to realize the security check of access control. Hence, we have to identify, model, and normalize all
these access control checks in various forms in order to perform a comparison.

Modeling security checks is based on the fact that, while most of security checks are di�erent in
syntactic form, they are semantically equivalent in terms of the protection they provide. SmartAxe
adopt the same de�nition of equivalence proposed in previous research [Aafer et al. 2018]. Our
de�nition of equivalence is regarding the protection enabled by the security checks, that is, the
kind of malicious behaviors precluded by the security checks. We turn to Figure 3 to illustrate this,
checks of line 3 and 12 are di�erent from the perspective of syntactic form. However, they are
equivalent to each other in terms of the protection they provide, as the check of line 3 ensures
su�cient balance for the deposit success and the check of line 12 ensures su�cient liquidity for the
deposit success.

To establish requisite access control mechanisms in cross-bridge smart contracts, we collect the
top-100 bridge Dapps from Chainspot [Chainspot 2023], a website for blockchain bridge aggregation.
Our domain experts meticulously scrutinize these Dapps to discern all security checks embedded
within their smart contracts. According to the work�ows of bridges, our domain experts categorize
these security checks accordingly. For each category, they further stratify them into distinct
perspectives based on the targeted protection areas. Subsequently, they provide a comprehensive
summary of the corresponding security features and their respective applications associated with
each perspective.
Table 1 shows our summarized security check model of access control. SmartAxe divides the

security checks of access control into three categories: (1) category that is speci�c to asset deposit
and lock, (2) category that is speci�c to cross-chain router, and (3) category that is speci�c to asset
authorization and withdrawal (i.e., the �rst column). Therefore, we propose to model the security
checks of bridge contracts as follows.

�A8364�ℎ42: :=[�4?>B8C0=3!>2:,�A>BB2ℎ08='>DC4A, �DCℎ>A8I0C8>=0=3F8Cℎ3A0F0;] (1)

Category-1 - asset deposit and lock: This category includes a success check for the deposit and
a validation check for arguments passed by users (i.e., the �rst two entries of the second column).
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Table 1. Security check model of access control for cross-chain bridge contract.

Category Perspective Security feature Example of usage

C1. Asset deposit
and locking

P1.Success check for
the deposit

Balance of bridge after deposit Comparison with balance before deposit
Balance of user Comparison with the deposit amount
Liquility of bridge Comparison with deposit threshold

P2.Validation check
for arguments of user

Arguments of public function Comparison with logic condition
Arguments of user message Comparison with logic condition

C2.Cross-chain
router

P3.Correctness check
for cross-chain router

Bridge-supported token/chain Comparison with ID of destination
Address of external invocation Comparison with 0 address

C3. Asset
authorization
and withdrawal

P4.Validation check
for veri�cation

Signature and Signatory Comparison with cross-chain message

Timeout of signature
Comparison with on-chain time status
(e.g., timestamp, blocknumber)

P5.Check for
repetitive withdrawal

List recording the withdrawal
Consultation on the lists (i.e., mapping
variables)

P6.Correctness check
for releasing

Recevier address
Comparison with user-speci�ed address
or 0 address

Speci�cally, a success check for the deposit is used to con�rm the deposit is transferred to the
cross-chain bridge and thus prevent fake deposits. The validation check for arguments passed
by users is used to prevent users from passing into malicious arguments that cause malicious
modi�cation on the contract state. As shown in the �rst three entries of the third column, security
checks of each perspective can adopt various forms, such as comparing the balance of the bridge
before and after the deposit, comparing the user balance with the deposit amount, or comparing the
liquidity of the bridge with the deposit threshold. Despite the three types of security checks being
di�erent in syntactic form, they are semantically equivalent in terms of con�rming the success of
the deposit, so there is a disjunction relationship between them. In addition, in the fourth and �fth
entries of the third column, validation checks for arguments can be implemented by checking the
arguments of public function and message invocation (e.g., msg.sender, msg.value). Similarly, these
two types of security checks are semantically equivalent, so there is a disjunction relationship
between them. Further, we formulate the above-illustrated understanding as follows.

�4?>B8C0=3!>2: :=[�4?>B8C(D224BB, �A6D<4=C] (2)

�4?>B8C(D224BB :=2ℎ42: (�A8364�0;0=24) ∧ 2ℎ42: (*B4A�0;0=24) ∧ 2ℎ42: (�BB4C$F=4ABℎ8?) (3)

�A6D<4=C :=2ℎ42: (�D=2C8>=�A6D<4=C) ∧ 2ℎ42: ("4BB064�A6D<4=C) (4)

Category-2 - cross-chain routers: This category mainly checks the correctness of cross-chain
routers, as shown in the third entry of the second column. A correctness check for the cross-chain
router is used to prevent unexpected logic or errors in the cross-chain data transmission. This type
of check can be implemented by (1) checking the supports of the bridge (e.g., Token ID, chain ID) and
(2) checking the error of external invocation (e.g. 0 address can cause the external invocation to fail).
Obviously, these two types of checks are not semantically equivalent to each other, so SmartAxe
adopts a conjunction relationship between them. We formulate understandings as follows.

�A>BB2ℎ08='>DC4A :=[�>AA42C=4BB] (5)

�>AA42C=4BB :=2ℎ42: ((D??>AC) ∨ 2ℎ42: (�GC4A=0;�33A4BB) (6)

Category-3 - asset authorization and withdraw: This category includes a validation check
for authorization, the repetitiveness check, and the correctness check for withdrawal (as shown
in the fourth, �fth, and sixth entries of the second column). Speci�cally, the validation check
for authorization is used to ensure that the cross-chain transaction has been signed and proved
by relayers. To this end, such validation checks are implemented by checking the correctness
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Table 2. Probabilistic inference pa�ern for associating resources with security checks.

Pattern Condition Probabilistic assignment
P1 �>=CA>;�;>F�4?4=34=2~ (2, {A }) �BB>280C8>= (2, ?, A ) = CAD4 (0.95)
P2 �>=CA>;�;>F�4?4=34=2~ (2, ') ∨ A ∈ ' �BB>280C8>= (2, ?, A ) = CAD4 (0.60)

P3 (0<4�;>2: (A1, A2 ) �BB>280C8>= (2, ?1, A2 )
0.60
−→ �BB>280C8>= (2, ?1, A1 )

P4 (4<0=C82�>AA4;0C8>= (A1, A2 ) �BB>280C8>= (2, ?2, A2 )
0.70
−→ �BB>280C8>= (2, ?1, A1 )

P5 �0C0�;>F�4?4=34=2~ (A1, A2 ) �BB>280C8>= (2, ?2, A2 )
0.80
−→ �BB>280C8>= (2, ?1, A1 )

and timeout for the signature or signatory. Due to the inequivalence between them, we utilize
a conjunction operation to measure them. The check for repetitive withdrawal is used to avoid
users receiving tokens from cross-chain bridge repetitively. For this purpose, this type of check
is implemented by inspecting the speci�c lists (e.g. mapping variable) that are used to record the
withdrawal. Further, a correctness check for withdrawal is used to ensure that the transfer targets
are valid. This type of security check can be implemented by inspecting the receiver address.

�DCℎ>A8I0C8>=0=3F8Cℎ3A0F0; :=[�E>830=24> 5 '4?4C8C8>=,�DCℎ>A8I0C8>=+4A8 5 820C8>=,

F8Cℎ3A0F0;�>AA42C=4BB]
(7)

�E>830=24> 5 '4?4C8C8>= :=2ℎ42: ('42>A343!8BC) (8)

�DCℎ>A8I0C8>=+4A8 5 820C8>= :=2ℎ42: ((86=0CDA4) ∨ 2ℎ42: ()8<4>DC) (9)

F8Cℎ3A0F0;�>AA42C=4BB :=2ℎ42: ('424E84A�33A4BB) (10)

Further, by comparing the control �ow with our summarized security check model (Table 1),
SmartAxe extracts all the security checks of access control for the bridge contracts.

Associating resources with security checks. After the extraction for security checks, Smar-
tAxe identi�es the resources of access control constraints, and associates the resources with the
corresponding security checks through the probabilistic pattern inference method.

SmartAxe considers four types of resources for access control constraints: (1) FieldAccess, denoted
as 5 , (2) Internal method, represented as<, (3) application binary interface (ABI), denoted as 0,
and (4) event emitting statement, denoted as 4 . Further, 5 represents the statements that read
or write on state variables (i.e., global variables of smart contracts).< represents the statements
that invoke internal methods (e.g. private function) in cross-chain bridge contracts. 0 refers to
the interface of external calls (e.g. public function) in contracts. 4 refers to the event emitting
statements that record the cross-chain data transmission (e.g., deposit record �3 ). For these four
types of resources, the �rst three types of resources have been well discussed in the existing
works [El-Rewini et al. 2022]. Unlike these studies, SmartAxe introduces the dedicated type of
resource (i.e., event emitting statement) for cross-chain bridge scenario, as the most important
information of cross-chain transaction is recorded by such event emitting statement.

Before associating the resources with security checks, SmartAxe �rst collects basic facts. Specif-
ically, given the resources in bridge contracts ' = {A1, A2, ..., A=1}, for each resource A8 , SmartAxe
utilizes path-sensitive analysis to compute all reachable paths % = {?1, ?2, ..., ?=2}. Then, for each
reachable path ? 9 , SmartAxe �nds out the security checks � = {21, 22, ..., 2=3} of access control
constraints along the path. Hence, An association between resource A8 and security check 2: on
path ? 9 can be denoted as �BB>280C8>=(2: , ? 9 , A8 ).
Then, SmartAxe introduces the prior probability to represent the con�dence level of the as-

sociation �BB>280C8>=(2: , ? 9 , A8 ). A prior probability is a value between 0 and 1 representing our
degree of belief in the association �BB>280C8>=(2: , ? 9 , A8 ). Furthermore, SmartAxe determines the
prior probability by analyzing access control properties, e.g., control �ow, data �ow, and semantics
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between resources and access control checks. Inspired by prior work [El-Rewini et al. 2022], we
summarize the dedicated association patterns between resources and security checks for cross-chain
bridge contracts, as well as their corresponding prior probability, as illustrated in Table 2.

Detecting access control incompleteness. Given the extracted access control constraints of
a certain bridge, SmartAxe identi�es the bridge contracts containing CCVs of access control
incompleteness and outputs related vulnerable functions, if one of the following aspects is detected.

(1). Access control omission. SmartAxe detects access control omission by comparing the ex-
tracted access control constraints with the security check model (Table 1). If SmartAxe discovers
the omission on the security checks of a certain category (or perspective), SmartAxe reports
the corresponding vulnerable functions.

(2). Access control violation paths. Similar to prior works [Shao et al. 2016] which are designed
for identifying inconsistency access control policies of Android applications, this aspect is used
for identifying access control violation paths that allow users without su�cient permission to
access sensitive resources. For the entry points of bridge contracts, SmartAxe compares their
sub-control-�ow graphs pairwise to identify possible paths that can reach the same sensitive
resources but enforce di�erent security checks (e.g., one with checks and the other without).
SmartAxe outputs all the vulnerable functions on the access control violation paths.

4.3 Cross-Bridge Semantic Inconsistency Identification

In this subsection, SmartAxe constructs the xCFG and xDFG by aligning and connecting the single-
chain control �ow graphs. Further, based on the constructed graph, SmartAxe identi�es the CCV
of semantic inconsistency.

Graph Construction. The xCFG constructed by SmartAxe can be denoted as �2 = (#2 , �2 , -4 ).
Speci�cally, SmartAxe encodes the following information: (1) the nodes of xCFG is a set of basic
block nodes that represent the operations of the program, a relayer node that represents cross-
chain data transmission, and a client node that represents the client of the cross-chain bridge.
Here, #1 denotes the basic block nodes, #A denotes the relayer node, and #; denotes the client
node. Therefore, we have #2 := {#1 ∪ #A ∪ #; }; (2) the edges of xCFG are composed of control
�ow edges �5 , emitting edges �4 and informing edge �8 . Here, �4 denotes the information �ows
that the relayer and client watch the emitted events, i.e., the relayer watches the deposit event
emitted on the source chain or the client watches the withdrawal event on the destination chain.
And �8 denotes the information �ows that the relayers inform the contracts of the destination
chain to perform authorization and withdrawal. Similarly, we also have �2 :=

{

�5 ∪ �4 ∪ �8
}

; (3)
-4 (�2 ) → {��, �<8CC8=6, �=5 >A<8=6} is a labeling function that maps an edge to one of the three
types.
In addition, SmartAxe constructs the xDFG by performing the data �ow analysis on the xCFG.

Hence, in terms of data structure, xDFG constructed by SmartAxe is similar to the traditional data
�ow graph. The xDFG can be denoted as �3 = (#3 , �3 ). Here, #3 denote the di�erent program
operation of bridge contracts, and �3 refers to the data dependencies between program operations.
To construct the above-illustrated graphs, SmartAxe utilizes two key steps for cross-chain

inter-procedure analysis.
SmartAxe constructs xCFG by adding emitting edges and informing edges to single-chain control

�ow graphs. Speci�cally, when adding emitting edges, to represent that the relayer watches the
deposit event emitted on the source chain, SmartAxe searches for the emitting statement of deposit
and lock event on the source-chain control �ow graph as the source of emitting edge, makes the
relayer nodes as the target of emitting edge, and connect them with the directed edge. Similarly, to
represent that the client watches the withdrawal event on the destination chain, SmartAxe connects
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another emitting edge. For such an edge, the source is the emitting statement of authorization
and withdrawal event on the destination-chain control �ow graph, and the target is the client
nodes. When adding the informing edge, to represent that the relayers inform the contracts of
the destination chain for authorization and withdrawal, SmartAxe makes the relayer node as the
source, further searches for the authorization statement as the target of the informing edge, and
connects them together with the directed edge.

Then, SmartAxe constructs the xDFG through our proposed dedicated data �ow analysis. Similar
to traditional data �ow analysis, SmartAxe performs the forward data �ow analysis for control
�ow edges. Unlike the traditional data �ow analysis, for emitting edges, only the arguments of the
event can propagate through the emitting edges forward, as only these arguments are recorded
in cross-chain data that transmits to the relayer. In terms of informing edges, only the arguments
invoked by the authorization method can propagate through the informing edge forward.

Cross-bridge Semantic Inconsistency Detection. Given the constructed xCFG and xDFG of a
certain bridge, SmartAxe identi�es the bridge contracts containing CCVs of semantic inconsistency.
and outputs related vulnerable functions, if one of the following aspects is detected.

(1). Semantic granularity check. The granularity insu�ciency of deposit events causes
destination-chain contracts cannot distinguish the di�erent types of deposit and enter the
same withdrawal logic. On xCFG, SmartAxe detects this aspect by comparing the cross-chain
paths pairwise to identify possible paths that converge to the same withdrawal logic on the
destination chain but enforce di�erent deposit logic on the source chain. SmartAxe outputs all
the vulnerable functions on the paths containing insu�ciently-grained deposit events.

(2). Semantic integrity check. The feature of parse error is that the amount or type of withdrawal
depends on the withdrawal function itself rather than the source-chain deposit. On xDFG,
SmartAxe detects such an aspect by identifying whether the state variables of withdrawal have
the data-�ow dependency on state variables of deposit. If SmartAxe �nds the lack of data-�ow
dependency between them, SmartAxe reports corresponding functions as vulnerable.

4.4 Vulnerability Trace Discovery

In this subsection, SmartAxe model the vulnerable functions of access control incompleteness and
cross-bridge semantic consistency as CCV indicators, and analyze the accessibility (i.e., entry trace)
and subversiveness (i.e., a�ected state variables) for CCV indicators. Finally, SmartAxe reports
vulnerability traces which contain function calls from the vulnerable function to tainted state
variable(s).

While vulnerable functions are well identi�ed by Section 4.2 and 4.3, SmartAxe still require
satisfying the following condition for locating CCVs.

Condition-1: Finding the entry trace of external call.With the CCV indicator, SmartAxe identi�es
the entry traces for each CCV indicator. This process is modeled as a process that SmartAxe utilizes
taint propagation to detect whether the CCV indicators can be tainted by external attackers.
Speci�cally, SmartAxe makes the taint propagate from the entry point (e.g., public function) of the
cross-chain bridge contracts, and further detects whether the taint can reach the CCV indicators.
Condition-2: Finding the state variables a�ected by CCVs. After �nding the entry trace of

external attackers, SmartAxe continues to conduct the forward propagation on xDFG, and identify
the state variables a�ected by the CCV. The reason for this step is to �nd out the state variables
that are a�ected by the subverted �ows of the CCV. Lastly, SmartAxe reports the tainted functions
and state variables as various vulnerable traces that reveal how the attackers can leverage the CCV.

SmartAxe performs taint propagation via the method proposed in SmartState [Liao et al. 2023].
The taint sources can be divided into two types: the parameters passed by contract callers and the
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Fig. 6. The process of vulnerability detection for motivating examples in Figure 2.

parameters of public functions. The taint sinks of SmartAxe consist of either those external calls or
state variables of the smart contracts (including the CCV indicators and client node). More detailed
information regarding the taint sources and sinks is summarized in table 3.
Again, we take the motivating example of Figure 2 as an instance to show the CCV discovery,

and the process is shown in Figure 6. For the contract in the left example, SmartAxe identi�es
the function Receive contains access control incompleteness as the CCV indicator, because Receive
omits the validation check for signatory (line 6 and 7). Then, SmartAxe searches for the Condition-
2, and identi�es that function Receive is the entry point of the execution paths, as Receive is a
public function that can be accessed by an external attacker. Lastly, SmartAxe investigates the
Condition-3 by screening for state variables a�ected by the vulnerability through taint analysis. As
a result, SmartAxe reports the vulnerability in contract ContextUPgradeSafe as follows, '4248E4 →
_CA0=B 5 4A → {A4248E43, 10;0=24}.

Similarly, SmartAxe identi�es vulnerability in contract Chain_Router of right example as follows,
�4?>B8C →,8Cℎ3A0F0; → {�)�10;0=24}

Table 3. EVM instructions defined as taint sources and taint sinks by SmartAxe.

Type EVM Instruction or Keyword or Statement

Source
(1) Parameter passed by user

CALLDATALOAD, CALLDATACOPY, CALLER, ORIGIN,
CALLVALUE, CALLDATASIZE

(2) Parameter of public function Public, External

Sink
(1) External calls CALL, CALLCODE, STATICCALL, DELEGATECALL
(2) State variables SSTORE, BALANCE, ADDRESS, CCV indicators, Client node

5 EVALUATION

In this section, we �rst introduce the evaluation setup and two datasets used for evaluation (i.e.,
manually-labeled CCV dataset and large-scale dataset). Then, we show the e�ectiveness of SmartAxe
and its individual components by evaluating SmartAxe in terms of precision and recall on the
manually-labeled CCV dataset. Lastly, we evaluate the real-world performance of SmartAxe by
conducting the analysis on the large-scale dataset, and identi�ed new CCVs in the wild.

5.1 Implementation and Evaluation Setup

We implement SmartAxe with around 3200 Line-of-Code in Python 3.8.10. Then, we conduct all
the evaluation experiments for SmartAxe on a Ubuntu 20.04 server, which is equipped with the
Intel i9- 10980XE CPU (3.0GHz), RTX3090 GPU, and 250 GB RAM.
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Dataset and Ground-truth Establishment. We collect the following datasets for the evaluation
experiment.
Manually-labeled CCV dataset (�<0=D0; ). We establish the ground truth for evaluating the ef-

fectiveness of SmartAxe in this dataset. Speci�cally, we collect 16 vulnerable cross-chain bridge
applications (i.e., a total of 203 smart contracts) according to 20 real CCV attacks reported by public
news and reports. Then, we annotate CCVs in the bridge contract by reviewing such attack reports.
Speci�cally, each CCV is determined by two essential parts, (1) a vulnerable smart contract and (2)
one or multiple vulnerable traces trigger the vulnerability. Here, a vulnerable trace contains function
calls from the vulnerable function to tainted state variable(s) that can be a�ected by external call(s).
In this way, we annotate a total of 88 CCV traces for 16 vulnerable bridge applications. To avoid
bias, we invite three domain experts for the manual annotation, each expert separately performs
the annotation. Only the vulnerability agreed by all three experts is con�rmed as a valid CCV. To
the best of our knowledge, this is the most comprehensive collection of CCVs from public sources.

Large-scale dataset (�;0A64 ). We collect the large-scale dataset to show the e�ectiveness of Smar-
tAxe in identifying CCVs in the wild. The large-scale dataset contains 129 cross-chain bridge
applications (i.e., a total of 1703 smart contracts). Speci�cally, we searched for the cross-chain
bridge project in the community and Internet exhaustively, and �nally looked up a total of 148
cross-chain bridge applications. Further, we manually con�rm these applications, and �nd out both
the source code and bytecode for 129 cross-chain bridge applications among them (i.e., the coverage
rate is over 87%). Finally, we comb the source code and bytecode of these 129 cross-chain bridge
applications and obtain the large-scale dataset. Our collection actually covers the mainstream
of cross-chain bridges. For example, 86 of 129 cross-chain bridges are contained in the top 100
cross-chain bridges ranked by the Chainspot [Chainspot 2023]. To the best of our knowledge, this
is the most comprehensive collection of cross-chain bridge contracts from public sources.

Evaluation Metrics. We lay out the following research questions (RQs) for the evaluation experi-
ments.

• RQ1. How does SmartAxe perform in detecting CCVs?
• RQ2. How e�ective is SmartAxe in �nding access control incompleteness?
• RQ3. How e�ective is SmartAxe in �nding cross-bridge semantic inconsistencies?
• RQ4. Can SmartAxe detect CCVs from real-world cross-chain bridge applications?

5.2 E�ectiveness of SmartAxe

To answer RQ1, we run SmartAxe over the manually-labeled CCV dataset and evaluate its precision
and recall rate. Particularly, we give the same time budget (i.e., 10-mins timeout following prior
works [Liao et al. 2023, 2022]) for every smart contract in the dataset. More speci�cally, we compute
the precision and recall rate by manually comparing the results reported by SmartAxe with the
ground truth of �<0=D0; (i.e., 88 CCVs in 203 cross-chain bridges). Note that we do not conduct
comparison experiments, as SmartAxe is the �rst CCV detection approach for cross-chain bridge
contracts.

Table 4. Overall e�ectiveness for SmartAxe on the Manual-labelled CCV Dataset (�<0=D0; ).

CCV Precision Recall
TP FP rate TP FN rate

Access control incompleteness 54 10 84.38% 54 5 91.53%
Semantic inconsistency 25 4 85.71% 25 4 86.21%
Total 79 14 84.95% 79 9 89.77%
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Table 4 demonstrates the precision and recall of SmartAxe. As can be seen, SmartAxe achieves
high precision (i.e., 84.95%) and recall (i.e., 89.77%) for CCV detection. To this end, we can conclude
that SmartAxe can identify CCVs for cross-chain bridge contracts e�ectively.

False Positives and False Negatives. We manually investigate all the false positives and false
negatives reported by SmartAxe. Our investigation result shows that most of the 14 false positives
are caused by the limitation of basic facts produced by SmartDagger (i.e., the basic control-�ow
analyzer in SmartAxe). For instance, SmartDagger is insu�ciently precise in recovering the type
and semantics of state variables for smart contracts, which causes SmartAxe to report false positives.
To overcome these false positives, SmartAxe can integrate a more advanced analyzer to improve
the e�ectiveness of type and semantic recovery. In terms of false negatives, the reason for them
is that SmartAxe ignores a tiny amount of access control that relies on the on-chain query (e.g.,
checking ownership of on-chain asset). Actually, such problems are unable to be solved through a
static analysis approach like ours, because they require real-time on-chain data.

5.3 Impact of Security Check Modeling and Resource Association

To answer RQ2, we evaluate the e�ectiveness of the security check modeling and resource associa-
tion respectively.

E�ectiveness of Security CheckModeling. As illustrated in Section 4.2, security check modeling
is the important advantage of SmartAxe. The security check modeling helps for covering the
diverse security checks and facilitates the discovery for access control omission e�ectively, so
SmartAxe can utilize such advantage to identifymore vulnerable traces. The security checkmodeling
ensures soundness (i.e., avoiding false negatives) for vulnerability analysis. To evaluate this, we
compare the recall rate of SmartAxe with two state-of-the-art tools (i.e. Ethainter [Brent et al. 2020],
Achecker [Ghaleb et al. 2023]). Note that we do not compare SmartAxe with SPCon, as AChecker
has been proven to perform better than SPCon in prior work [Ghaleb et al. 2023]. We ran SmartAxe,
Ethainter, and AChecker over the manually-labeled dataset �<0=D0; to compare their recall rate.

Table 5. E�ectiveness of security check modeling with other SOTA static analyzers over �<0=D0; .

Approach Ethainter [Brent et al. 2020] AChecker [Ghaleb et al. 2023] SmartAxe
TP FN Recall TP FN Recall TP FN Recall

CCV 6 82 6.82% 3 85 3.41% 79 9 89.77%

Table 6. Comparison results between SmartAxe and SmartAxe without resource allocation on the Manual-

labelled CCV Dataset (�<0=D0; ), for evaluating the e�ectiveness of resource allocation

Approach SmartAxe w/o resource allocation SmartAxe
TP FP Precision TP FP Precision

CCV 79 23 77.45% 79 14 84.95%

As can be seen in table 5, the recall rate of SmartAxe is much higher compared with the other
two tools. To identify why SmartAxe performs better, we manually inspect all the false negatives
for the other two state-of-the-art tools. Particularly, the manual inspection results demonstrate
that, most false negatives are caused by the limitation of these state-of-the-art tools, as they cannot
overcome the diversity of security checks in cross-chain bridge contracts. In contrast, SmartAxe can
utilize the proposed normalized access control model ( i.e., Table 1) to avoid these false negatives.
To illustrate, we take the motivating example of Figure 2 (a) as an instance again, which has been
discussed in Section 2.2 earlier. Noting that Ethainter and AChecker produce false negatives for
Figure 2, but SmartAxe can avoid such false negatives by security check modeling. With the security
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check model of Table 1, SmartAxe identi�es that function Receive omits the validation check on
signatory by comparing function Receive with perspective P4 of Table 1, and reports a CCV of
access control incompleteness.

E�ectiveness of Resource Allocation. Another advantage of SmartAxe is that SmartAxe
reduces the false positives by associating resources with the security checks. To evaluate this, we
compare the SmartAxe with SmartAxe without resource allocation, i.e., SmartAxe without resource
association. To evaluate the e�ectiveness of resource association. We ran the SmartAxe without
resource allocation and SmartAxe over manually-labeled dataset �<0=D0; .
Table 6 presents the precision of SmartAxe and SmartAxe without resource allocation. Due

to unloading the resource allocation method, the precision of the SmartAxe without resource
allocation is only 77.45%, and the SmartAxe without resource allocation reports more false positives
(i.e., 11 new false positives). To this end, we can summarize that the resource allocation method
helps SmartAxe improve the precision for CCV detection.
Further, we manually inspect each false negative reported by the SmartAxe without resource

allocation. The inspection results demonstrate that 11 of 23 false positives (i.e., 47.83%) can be
eliminated by utilizing the resource allocation method, which are missed by the SmartAxe without
resource allocation. To illustrate, we take the motivating example of Figure 4 as an instance again,
which has been discussed in Section 3.1 earlier. SmartAxe without resource allocation produces
false positives for Figure 4, and report function withdrawal omits validation check for signatory,
as it cannot identify the association between the security check of line 8 and resource of line
12. With the probabilistic inference pattern of resource allocation in Table 2, SmartAxe identi�es
that security checks of line 5 and 8 should be associated with the resource of line 12, and further
eliminate such false positives.

5.4 Impact of Graph Construction

As illustrated in Section 4.3, another advantage possessed by SmartAxe is our constructed compre-
hensive xCFG and xDFG, which facilitate the detection for CCV of semantic inconsistency.

Hence, the constructed graphs help for performing more semantic inconsistency discovery and
taint tracking, so that it can identify more vulnerability traces. Therefore, the e�ectiveness of graph
construction re�ects on the recall rate. Similarly, we compare the SmartAxe with SmartAxe without
xCFG and xDFG construction, to evaluate the e�ectiveness of graph construction. We ran all of
these tools on the manually-labeled dataset (�<0=D0; ) to evaluate their recall.
Table 7 shows the comparison results between SmartAxe and the SmartAxe without graph

construction. Due to ignoring graph construction, the recall rate of the SmartAxe without graph
construction is only 65.91% and drops rapidly. In contrast, SmartAxe presents a better performance
(i.e., 89.77%). In conclusion, the constructed xCFG and xDFG help SmartAxe improve the recall of
CCV detection e�ectively.

Table 7. Impact of graph construction over �<0=D0; .

Approach SmartAxe w/o xACG and xDFG SmartAxe
TP FN Recall TP FN Recall

CCV 56 32 65.91% 79 9 89.77%

In addition, we manually investigate all the false negative results for SmartAxe without graph
construction. The manual analysis results show that 23 of 32 false negatives actually can be
eliminated through performing end-to-end analysis on xCFG and xDFG, which are missed by the
SmartAxe without graph construction.
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5.5 Cross-Chain Vulnerability in Real world

To answer RQ4, we run SmartAxe over the large-scale dataset (�;0A64 ) to evaluate the real-world
performance of SmartAxe. Our domain experts manually inspected all the reported results via
majority voting, and �nally con�rmed that SmartAxe detects 232 new CCV from 129 cross-chain
bridge applications (i.e., a�ecting 126 smart contracts). To detail, SmartAxe outputs 324 warnings.
Among them, our manual investigation showed that 278 are true positives and the rest 46 are false
positives. By inspecting the amount of assets a�ected by these CCV, we �nd that these 232 new
CCVs a�ect a total asset of 1,885,250 USD as of our paper submission. Figure 8 presents the top 5
cross-chain bridges in terms of assets a�ected by CCV. For more detail, we discuss two case studies
for illustration.

Case study 1. at 0x915861959D2feBCCF37795Fd93c6094DdeBf34Bd. This smart contract is from a
real-world bridge ranking in the top 40 cross-chain bridges [Chainspot 2023]. However, such a smart
contract contains a CCV of access control incompleteness. Speci�cally, this contract implements the
authorization and withdrawal via two functions, i.e., function saveWithdrawNative for native tokens
of the bridge and function saveWithdrawAlien for alien tokens outside the bridge. Unfortunately,
both two functions omit the security checks on token type (i.e., native token or alien token).
Hence, the deposit record of the native token can unexpectedly pass the authorization of function
saveWithdrawAlien, and cause the alien token to be withdrawn, and it is the same the other way
around. For this case, by comparing functions (i.e., saveWithdrawNative and saveWithdrawAlien)
with perspective P3 of Table 1, SmartAxe e�ectively identi�es them as vulnerable functions and
utilizes the taint analysis to determine that state variable balance is manipulated by the CCV.

Case study 2. at 0x2d6775C1673d4cE55e1f827A0D53e62C43d1F304. This smart contract is from a
real-world bridge, which ranks in the top 30 cross-chain bridges [Chainspot 2023]. Particularly,
this contract also involves a CCV of access control incompleteness. Speci�cally, such a contract
implements the deposit of liquidity via function preFill. Particularly, preFill receives a calldata argu-
ment _message which contains the sender, destination, and amount of the deposit. Unfortunately,
SmartAxe omits the validation check on such an argument. Hence, an attacker can construct the
fake _message to obtain a malicious deposit. For this case, by comparing functions (i.e., preFill) with
perspective P2 of Table 1 , SmartAxe e�ectively identi�es function preFill as vulnerable functions
and utilizes the taint analysis to determine that state variable balance and liquidityProvider is
manipulated by the CCV.

Table 8. Top 5 cross-chain bridge in terms of asset a�ected by CCV

Bridge Hop.Exchanxx bridge Terxx Bridge Sifchxxx Bridge RenBridxx Ocuxx Bridge
Vulnerability number 4 6 1 3 3
A�ected asset 1445827 28038.67 16743.31 12896.52 8093.08

5.6 Discussion and Limitation

SmartAxe shares the following advantages in CCV detection: (1) As demonstrated in evaluation,
SmartAxe is obviously e�ective in locating CCVs for cross-chain bridge contracts, which lack of
prior works can support [Zheng et al. 2023]; (2) SmartAxe establishes comprehensive extraction for
access control constraints, and cover the diverse and complex access control for cross-chain bridge
contract e�ectively, which overcome the limitation of prior works [Brent et al. 2020; Ghaleb et al.
2023; Liu et al. 2022]; (3) SmartAxe propose unique a graph construction (i.e., xCFG and xDFG) to
locate the CCVs of semantic inconsistency e�ectively, which lack of prior works can support. With
the above-illustrated advantages, SmartAxe can identify CCV precisely and comprehensively. All
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of the developers, participants, and third-party authorities can utilize SmartAxe to investigate the
security of cross-chain bridge contracts.
While SmartAxe leverages prede�ned patterns (Table 1) and probability values (Table 2), it

remains a highly generalizable framework for CCV detection. This is attributed to the following
reasons: (1) The prede�ned patterns are derived from three fundamental work�ows of the bridge,
namely asset deposit, cross-chain communication, and asset withdrawal. These security checks
are essential and universally applicable across all bridges. (2) In terms of comprehensiveness, our
investigation covers the top 100 bridges, which represent 67.57% (100/148) of bridges in existence,
thereby a�ecting over 90% of all cross-chain transactions. Given the prevalence and signi�cance of
these top bridges, the proposed patterns adequately address most CCVs. (3) The probability values
are derived from the control-�ow and data-�ow dependencies inherent in the bridge contract. As
all bridges rely on similar dependencies (such as reachability and variable dependency) to facilitate
resource protection, the probability values hold true across all bridges.

Responsible disclosure. To prevent real economic damage to the bridge contracts, we anonymize
the reported results in this paper and only showcase the Top 5 cross-chain bridges in terms of
assets a�ected by our con�rmed CCVs, as illustrated in Table 8.
We are gradually reporting the identi�ed CCVs to bridge developers, a process that is time-

consuming and nontrivial. Con�rming such CCVs ourselves poses signi�cant challenges: (1) Con-
ducting on-chain testing for vulnerability con�rmation may lead to economic loss or damage. (2)
O�-chain simulation for con�rming CCVs necessitates setting up the entire cross-bridge infrastruc-
ture (e.g., relayers and underlying protocols), demanding substantial engineering e�ort. Presently,
all reports are awaiting acknowledgment by the corresponding parties such as project developers.

Threats to validity. Below we discuss the soundness and completeness of individual components
of SmartAxe. (1) For security check extraction, the completeness of SmartAxe is threatened by the
insu�ciently precise basic fact (produced by SmartDagger); (2) For the resource allocation, the
soundness of SmartAxe is in�uenced and subverted by the uncertainty of the probabilistic method.
(3) The semantic inconsistency identi�cation and vulnerability trace location part of SmartAxe are
sound and complete, because they neither introduce false information nor miss valid information.
Note that SmartAxe currently lacks support for analyzing non-EVM chains, as its core control-

�ow analyzer, SmartDagger, is speci�cally designed for EVM chains. Nevertheless, SmartAxe o�ers
the �exibility to integrate alternative analyzers tailored for non-EVM chains to extend its capabilities
in supporting such networks. Importantly, the e�ectiveness of SmartAxe remains una�ected by this
limitation for the following reasons: (1) The vast majority of bridge Dapps predominantly operate
on or support EVM chains, as evidenced by prior research [Lee et al. 2023]. (2) The smart contracts
deployed by bridge Dapps across their supported chains, including both EVM and non-EVM chains,
exhibit consistent program logic. Therefore, the absence of support for non-EVM chains does not
compromise the e�cacy of SmartAxe in detecting vulnerabilities.

6 RELATED WORK

Smart Contract Vulnerability Detection. In recent years, many security tools have been pro-
posed to detect vulnerabilities in smart contracts. They can be divided into static analysis tools and
dynamic analysis tools. For example, static tools include Oyente [Luu et al. 2016], MadMax [Grech
et al. 2018], Securify [Tsankov et al. 2018], Zeus [Kalra et al. 2018], Clairvoyance [Xue et al. 2020],
SailFish [Bose et al. 2022], eTainter [Ghaleb et al. 2022], SmartState [Liao et al. 2023], etc. Other tools
such as ContractFuzzer [Jiang et al. 2018], Harvey [Wüstholz and Christakis 2020], Echidna [Grieco
et al. 2020], sFuzz [Nguyen et al. 2020], SMARTIAN [Choi et al. 2021], and ItyFuzz [Shou et al.
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2023] belong to dynamic analysis or testing. As for access control in smart contracts, early re-
search like Mythril [Consensys 2017] only focuses on unprotected Ether withdrawal and speci�c
instructions. While recent works such as Ethainer [Brent et al. 2020], SPCon [Liu et al. 2022], and
AChecker [Ghaleb et al. 2023] consider the access control policy or model, they are limited to
analyzing contracts of a single address. Therefore, These frameworks cannot identify access control
constraints of cross-chain bridges that involve multiple addresses. As all these tools do not consider
cross-chain analysis, they are not e�ective in detecting CCVs.

Cross-chain Attack Detection. Our work is also closely related to various cross-chain attack
detection mechanisms. Cross-chain systems have become necessary infrastructures for decentral-
ized applications [Lee et al. 2023]. Previous work mainly focuses on the security of designing a
cross-chain system, such as zkBridge [Xie et al. 2022] and CrossLedger [Vishwakarma et al. 2023].
In addition, Duan et.al [Duan et al. 2023] and Lee et.al [Lee et al. 2023] conduct the survey on
cross-chain attacks and propose advice on designing cross-chain systems. These studies discuss the
severity of cross-chain attacks and vulnerabilities. To the best of our knowledge, the most relevant
work on identifying CCV is Xscope [Zhang et al. 2022]. It collects the transactions and status on
di�erent blockchains for existing attack detection with a set of security properties and patterns.
Nonetheless, as smart contracts are hard to �x after deployment, such a framework cannot �nd
vulnerabilities in contract code before deployment and further eliminate economic losses. Our
proposed framework, SmartAxe, is the �rst of its kind to detect cross-chain vulnerabilities in smart
contracts.

7 CONCLUSION

In this paper, we propose a new static analysis framework, SmartAxe, for locating cross-chain
vulnerabilities in cross-chain bridge contracts. We evaluate SmartAxe over a manually-labeled
dataset of 16 real attack cross-chain bridge applications (i.e., 203 smart contracts) and a large-scale
dataset of 129 real-world cross-chain bridge applications (i.e., 1703 smart contracts). Evaluation
results show that SmartAxe can identify cross-chain vulnerability e�ectively, with a high precision
of 84.95% and a high recall of 89.77%. In addition, we �nd that 232 new CCVs exist in 126 on-chain
smart contracts, a�ecting a total asset of 1,885,250 USD.
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