
C2S: Translating Natural Language Comments to Formal
Program Specifications

Juan Zhai

juan.zhai@rutgers.edu

Rutgers University

USA

Yu Shi

shi442@purdue.edu

Purdue University

USA

Minxue Pan
∗

mxp@nju.edu.cn

Nanjing University

China

Guian Zhou

mf1832267@smail.nju.edu.cn

Nanjing University

China

Yongxiang Liu

liuyongxiang@smail.nju.edu.cn

Nanjing University

China

Chunrong Fang

fangchunrong@nju.edu.cn

Nanjing University

China

Shiqing Ma

shiqing.ma@rutgers.edu

Rutgers University

USA

Lin Tan

lintan@purdue.edu

Purdue University

USA

Xiangyu Zhang

xyzhang@cs.purdue.edu

Purdue University

USA

ABSTRACT
Formal program specifications are essential for various software

engineering tasks, such as program verification, program synthesis,

code debugging and software testing. However, manually inferring

formal program specifications is not only time-consuming but also

error-prone. In addition, it requires substantial expertise. Natural

language comments contain rich semantics about behaviors of code,

making it feasible to infer program specifications from comments.

Inspired by this, we develop a tool, named C2S, to automate the

specification synthesis task by translating natural language com-

ments into formal program specifications. Our approach firstly

constructs alignments between natural language word and speci-

fication tokens from existing comments and their corresponding

specifications. Then for a given method comment, our approach as-

sembles tokens that are associated with words in the comment from

the alignments into specifications guided by specification syntax

and the context of the target method. Our tool successfully synthe-

sizes 1,145 specifications for 511 methods of 64 classes in 5 different

projects, substantially outperforming the state-of-the-art. The gen-

erated specifications are also used to improve a number of software

engineering tasks like static taint analysis, which demonstrates the

high quality of the specifications.

CCS CONCEPTS
• Software and its engineering;

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00

https://doi.org/10.1145/3368089.3409716

KEYWORDS
Formal Specification, Comment, Natural Language Processing

ACM Reference Format:
Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang,

Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: Translating Natural

Language Comments to Formal Program Specifications. In Proceedings of the
28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’20), November 8–
13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3368089.3409716

1 INTRODUCTION
Formal specifications are vital for many software engineering tasks.

Program verification requires procedure specifications to verify

properties of interest [14, 44, 45], especially when the source code

is unavailable or too complicated to analyze. Synthesis techniques

need specifications to synthesize unknown expressions [10, 24, 38].

Software testing demands specifications to generate test oracles [15,

20, 25, 27]. Program debugging requires specifications to locate

root causes [22, 46]. As such, a lot of work has been devoted to

designing formal languages for specification composition. Java

modeling language (JML) is one of such specification languages

and widely used by developers (e.g., to provide specifications for

JDK library methods [8]). However, manually composing formal

specifications is not only time-consuming and error-prone, but

also requires substantial expertise. This motivates us to develop an

automatic approach to synthesize program specifications.

Modern software projects have abundant natural language (NL)

documentation which provides a wealth of semantic information

about code properties and behaviors. For example, in the Linux

kernel, FreeBSD, Open-Solaris, MySQL, Firefox, and Eclipse, 21.8–

29.7% (0.3–1.7 million lines) of their code bases are code com-

ments [40]. J2SE’s Javadoc [6] is a representative example document.

It contains rich information such as properties of parameters and

desired behaviors of methods. Such comments are in natural lan-

guage and describe program semantics informally. Recently, natural

language processing (NLP) techniques have achieved enormous

25

https://doi.org/10.1145/3368089.3409716
https://doi.org/10.1145/3368089.3409716
https://doi.org/10.1145/3368089.3409716


ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

progress and have been adopted in many software engineering

tasks showing fairly promising results [21, 28, 51, 52]. This inspires

us to utilize NLP techniques to address the automatic specification

generation challenge.

There are existing techniques that generate specifications from

code comments, including @tComment [43], Toradocu [20] and

Jdoctor [15]. They firstly manually define a set of patterns. Each

pattern specifies a template for NL comments and a correspond-

ing template for specifications. Then they match a given NL com-

ment against the patterns to generate specifications. However, such

pattern-matching based techniques require many manual efforts

and can hardly handle the flexibility and the diversity of natural

languages, which results in limited generality. Specifically, @tCom-

ment infers null value related properties to detect comment-code

inconsistencies. It cannot handle cases related to other properties

such as “Throws NoSuchElementException if this deque is empty”.
Toradocu generates conditional expressions from exception-related

comments to create test oracles for exceptional behaviors. The

conditions they support include “something is/are positive/nega-
tive/true/false/null/<1/<=0”. Such patterns are still limited and they

cannot handle the aforementioned (typical) comments. Based on

Toradocu, Jdoctor derives specifications from return-value-related

comments in addition to exception conditions, showing very promis-

ing results and representing the state-of-the-art. However, since it

still relies on patterns, we found that many comments cannot be

handled as they are not covered by the patterns, such as “Returns
the first element in this list”. In addition, Jdoctor is incapable of

generating specifications to describe the main functions of void

methods. For example, Jdoctor cannot generate any specification

for the void method clear() whose comment is “Removes all of
the elements from this set”. Finally, existing work cannot gener-

ate specifications to describe normal functional behaviors except

return-value-related behaviors, which are prevalent in comments.

Hence our goal is to develop a general approach that can automati-

cally synthesize specifications from different kinds of comments.

In this paper, we propose C2S, an automatic approach of trans-

lating NL comments of a target method to formal program specifi-

cations by assembling primitive tokens guided by the specification

syntax and the context of the targetmethod (method properties such

as parameters). The primitive tokens are automatically extracted

from existing JML specifications [8] written for JDK library meth-

ods. Specifically, we regard NL comments and JML specifications

as two languages expressing the same semantics, and formulate

the specification translation task as a syntax-guided synthesis prob-

lem. We automatically couple NL comments and corresponding

JML specifications to build a bilingual corpus to construct align-

ments between NL words and specification tokens. Existing JML

specifications contain information specific to their methods. Such

information is abstracted away to achieve generality. Then for the

target method with comments, we extract the generalized tokens

that are associated with the words contained in an NL comment

from the alignments and assemble them to synthesize program

specification candidates guided by the specification syntax and the

concrete context of the method. The aforementioned generalized

tokens used in the candidates are substituted with concrete ones for

each target method after the synthesis process. Testing is further

used to filter out incorrect candidates.

We make the following contributions:

• We propose a novel search-based technique to automati-

cally translate NL comments to formal program specifica-

tions that specify the expected set-ups (preconditions) of

using a method and the effects of executing a method (post-

conditions for both exceptional behaviors and normal be-

haviors). Our approach avoids the manual and error-prone

efforts of defining patterns.

• We develop a prototype C2S based on the proposed idea, and

evaluate it on 511methods of 64 classes in 5 different projects.

The applications of these specifications in dynamic testing

and Android app static taint analysis demonstrate that these

specifications precisely represent the method behaviors and

improve the efficiency and effectiveness of various analysis

and testing applications.

2 MOTIVATION
Instead of using formal program specifications to convey code se-

mantics, developers tend to use natural language comments to

informally describe semantics. Fig. 1(k) demonstrates a real-world

methodwhose semantics are explained using three natural language

sentences. Line 81 describes that the main functional behavior is

to “remove the first element from this list and also return this ele-
ment”, which is a post-condition of normal behavior. Line 82 points

out that “if this list is empty, NoSuchElementException will be
thrown” which is a post-condition of exceptional behavior. Line 83

specifies the return value. There are existing efforts in analyzing NL

comments to generate formal program specifications. However, no

existing work can infer specifications from the three comments in

Fig. 1(k). The existing approaches all rely on patterns summarized

manually from comments to derive specifications, which requires

substantial manual work and the patterns can only work on very

limited comments. Moreover, an NL comment can be interpreted

differently in different contexts. For example, “the first” in “returns
the first component” (line 62) in Fig. 1(g) means “the first compo-
nent in the receiver object before/after executing the method” (the
method execution does not change the receiver object) while “the
first” in “returns the first element” (line 83) in Fig. 1(k) means

“the first component in the receiver object before executing the
method” (the method execution removes the first element in the

receiver object). The existing work generates the same specifica-

tion for a given pattern without considering contexts, which may

induce errors. We showcase how our approach can address these

limitations using the examples in Fig. 1.

JML is a program specification language designed to specify de-

sired properties/behaviors of Java classes and methods. Fig. 1(b)

shows an excerpt of JML specification for method remove(int) of
class java.util.ArrayList. JML can specify both exceptional behav-

iors (lines 12-13) and normal behaviors (lines 16-17). There are

some existing JML specifications which can be associated with cor-

responding NL comments. This motivates us to design an approach

to leverage both NL comments and existing JML specifications to

automatically infer specifications from comments. Given that the

dataset of existing specifications is minuscule, we resort to the

search-based technique rather than machine learning techniques

which have the overfitting problem.

26



C2S: Translating Natural Language Comments to Formal Program Specifications ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

01 /** Removes the element at the specified position in this list. ①
02 * @throws IndexOutOfBoundsException if the index is out of        

②
03 *         range (index < 0 || index >= size())

04 * @param index - the index of the element to be removed

05 * @returns the element that was removed from the list        */ ③
06 public Object remove(int index){ ... }

(a) Java Documentation of Method ArrayList.remove(int)

ID Natural Language Comment Formal Program Specification

i Removes the element at the specified position in this list
\forall int i; index<=i && i<\old(this.size()-1); this.get(i)==null && 
\old(this.get(i+1))==null || this.get(i).equals(\old(this.get(i+1)))

ii Returns the element that was removed from the list \result==\old(this.get(index))

iii
Throws IndexOutOfBoundsException if the index is out of range 
(index < 0 || index >= size())

index<0 || index>=this.size() ⟶ throw IndexOutOfBoundsException

... ... ...

(i)  Comment-Specification Pairs 

Word Token

remove \forall, equals, \old, get, &&, …
return \result, \old, ==, this, get, …
element this, null, equals, get, p1@int, …

if throw, ⇒, &&, ||, !, …
add contains, this, \result, true, p1@E, …
empty isEmpty, this, size, 0, ==, …
first 0, this, get, \old, ==, …
... ...

(j)  Word-Token Pairs 

81 /** Removes and returns the first element from this list.

82 * @throws NoSuchElementException if this list is empty

83 * @return the first element from this list                                    */

84   public E removeFirst(){ ... }

(k) Java Documentation of Method LinkedList.removeFirst()

ⓐ
ⓑ
ⓒ
ⓓ

this.isEmpty() ⟶ throw NoSuchElementException
\result==this.get(0)
\result==\old(this.get(0))
\forall int i; 0<=i && i<\old(this.size()-1);
this.get(i)==null && \old(this.get(i+1))==null 
|| this.get(i).equals(\old(this.get(i+1)))
...

(m)  Specification Candidates of LinkedList.removeFirst()

ⓔ

ⓕ

ⓖ

this.isEmpty() ⟶ throw NoSuchElementException

\result==\old(this.get(0))

\forall int i; 0<=i && i<\old(this.size()-1);
this.get(i)==null && \old(this.get(i+1))==null 
|| this.get(i).equals(\old(this.get(i+1)))
...

(n)  Specifications of LinkedList.removeFirst()

91 /** Adds the specified vertex to this graph if not already present.

92 * @param v - vertex to be added to this graph.

93 * @returns true if this graph did not already contain the specified vertex.   */

94   public boolean addVertex(V v){ ... }

(l) Java Documentation of Method DirectedAcyclicGraph.addVertex(V)

ⓗ this.contains(p1@E)
...

(o)  IR of DirectedAcyclicGraph.addVertex(V)

21 /** Adds the specified element to this set if it is not 

22 * already present.

23 * @param e - element to be appended to this list

24 * @returns true if this set did not already contain the specified

25 * element                                              */

26   public boolean add(E e){ ... }

(c) Java Documentation of Method HashSet.add(E)

31 /** @public normal_behavior

32 * @ensures this.contains(e)

33 * @ensures \result⇒!\old(this.contains(e));                   */

34 public boolean add(E e){ ... }

(d) JML Specifications of Method HashSet.add(E)

11 /** @public exceptional_behavior

12 * @requires index < 0 || index >= this.size(); ④
13 * @signals_only java.lang.IndexOutOfBoundsException;

14 * @public normal_behavior
15 * @requires 0 <= index && index < this.size();

16 * @ensures \result == \old(this.get(index)); ⑤
17 * @ensures \forall int i; index<=i && i<\old(this.size()-1);        

this.get(i)==null && \old(this.get(i+1))==null ||    
this.get(i).equals(\old(this.get(i+1)));           */

⑥

18 public Object remove(int index){ ... }

(b) JML Specifications of Method ArrayList.remove(int)

ⓘ this.containsVertex(v)
...

(p)  Specification of DirectedAcyclicGraph.addVertex(V)

41 /** Creates an empty Stack. */

42   public Stack(){ ... }

(e) Java Documentation of Method Stack.Stack()

51 /** @public normal_behavior

52 * @ensures this.isEmpty()                                       */

53 public Stack(){ ... }

(f) JML Specifications of Method Stack.Stack()

61 /** Returns the first component of this vector. 

62 * @returns the first component of this vector.                  */

63   public E firstElement(){ ... }

(g) Java Documentation of Method Vector.firstElement()

71 /** @public normal_behavior

72 * @ensures \result==this.get(0)                                 */

73 public E firstElement(){ ... }

(h) JML Specifications of Method Vector.firstElement ()

Figure 1: Motivating Examples

Fig. 1(a), Fig. 1(c), Fig. 1(e) and Fig. 1(g) are four documentation

samples where NL comments are annotated using different tags like

@returns to describe different aspects. Fig. 1(b), Fig. 1(d), Fig. 1(f)
and Fig. 1(h) separately show the corresponding JML specifications

composed by developers. The specifications are annotated using

different tags to specify different kinds of behaviors. For example, a

specification annotated by ensures specifies a post-condition which

is a property held by a method when the method finishes execu-

tion normally. In the first stage of our technique, we automatically

couple each specification with the corresponding comment based

on annotations. By respectively coupling comments 1○, 2○, and

3○ with specifications 6○, 4○ and 5○, we get the three comment-

specification pairs shown in Fig. 1(i).

Then comments and corresponding specifications are automat-

ically pre-processed and split to obtain alignments between NL

words and specification tokens shown in Fig. 1(j). The first column

lists NL words and the second column lists all the tokens associated

with each NL word. Tokens associated with words in a method

comment are used to assemble specifications for the method.

Notice that we have a token p@int in Fig. 1(j), but it does not

occur in any JML specification. Here p@int is a parameter place-

holder used to substitute the first parameter index with the data

type int for method remove(int index). Also, we have method names

like get and contains. These are pure methods (i.e., methods that

do not have side-effects) used in the collected JML specifications

to encapsulate primitive actions. We directly use these methods

as our method placeholders. Our system substitutes information

specific to existing methods with placeholders to derive generalized

representations, making our approach more general and more effi-

cient. We refer to each processed specification as an intermediate

27



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

representation (IR) of the specification. Each IR is an AST which

contains the syntax information of the specification. Such syntax

information is essential to assembling tokens.

Given a target method with comments (Fig. 1(k)), we first pre-

process each comment into a bag of words and then retrieve the

potential IR tokens from the word-token pairs (Fig. 1(j)). Consider-

ing the comment in line 82, we can retrieve tokens like “isEmpty”
and “this” given the NL word “empty” and tokens like “→” given

the NL word “if”. With these tokens, we leverage grammar rules of

specifications to synthesize potential IRs shown in Fig. 1(m). This is

feasible since the IRs have a limited number of tokens and syntactic

structures (e.g., a method only accepts parameters of fixed types).

Next we instantiate IRs into specification candidates. Take the

IR h○ in Fig. 1(o) as an example, the instantiation consists of sev-

eral steps like replacing the parameter placeholder p1@E (first

parameter with generic type E) with the formal parameter name v
and substituting the method placeholder contains ( h○ in Fig. 1(o))

with the concrete method name containsVertex ( i○ in Fig. 1(p)),

depending on the context of the target method.

The last step is to filter out incorrect candidates via testing and

the result are shown in Fig. 1(n), in which the candidates like b○ in

Fig. 1(m) are filtered out. Notice that we generate two specification

candidates b○ and c○ for the comment “returns the first element
from this list” (line 83 in Fig. 1(k)). Specification b○ specifies “the
return value is the first element in the receiver after executing the
target method which is the case for line 62 in Fig. 1(g). Specification

c○ specifies “the return value is the first element in the receiver before
executing the target method which is the case for line 83 in Fig. 1(k).

We leverage testing to prune out the wrong one to provide the

context-aware generation.

Improving Testing. Normally, it is difficult for automatic testing

tools to have a general way to generate test cases to cover diverse

non-exceptional behaviors. However, our derived specifications can

be used to generate more accurate andmore effective tests. Consider

the method addVertex(V) in Fig. 1(l). The test cases generated by

Randoop [9] only check whether the return value is true or false,

which cannot check the core behavior of adding a vertex. In contrast,

we can use our generated specification (box i○ in Fig. 1(p)) to guide

a testing tool to check whether the input v is successfully added. As
we will show in Section 4, the generated specifications can be used

in generating new test oracles, reducing false alarms in automated

testing, and improving static taint analysis.

3 DESIGN
Fig. 2 gives the design of our approach, which includes the search

space preparation phase (left) and the synthesis phase (right). The

inputs of the first phase are NL comments collected from Java docu-

mentation [6] and corresponding JML specifications collected from

JML website [8]. We begin by using the association engine to auto-

matically couple each specification with an NL comment and the

generated comment-specification pairs are fed into the tokenizer

to build word-token pairs which will be used to synthesize specifi-

cations in the second phase. For each comment, the pre-processor

cleans it and splits it into individual words. For each specification,

the IR translator substitutes the concrete subjects (e.g., parameter

names) specific to the subject method with placeholders to obtain

Javadoc

JML

IR Synthesizer

Specifications

Specification
Generator

Specification
Checker

Input Method 
with Comments

Pre-processor

Association 
Engine

Word-Token
Pairs

IR Translator

Pre-processor

Tokenizer

Comment-
Specification

Pairs

Figure 2: Overview of C2S

a general specification, and builds an AST from the generalized

specification. After that, NL words are coupled with AST tokens

that will be used as the search space for synthesis.

The goal of the second phase is to generate specifications for

a target method with NL comments. Firstly, we obtain NL words

from a cleaned NL comment using the pre-processor. Then the

IR synthesizer generates IR candidates by obtaining AST tokens

that are associated with the NL words from the word-token pairs

and assembling the tokens into candidates based on grammar rules

and the context of the method. After that, the specification gener-

ator instantiates each IR candidate with the context of the target

method (e.g., parameters of the method) to obtain a formal specifi-

cation. Specifically, candidates are generated from tokens extracted

from existing specifications and thus parameter placeholders and

method placeholders used in the candidates are specific to the orig-

inal data. As such, they need to be separately instantiated with

formal parameters of the target method and concrete Java methods

in the class/superclass containing the target method. Lastly, the

specification checker leverages existing developer test cases to filter

out incorrect specifications.

3.1 Specification Language
JML specifications are used to specify properties and behaviors of

Java methods. We simplify and formalize the specification language

and present the abstract language model in Table 1. Our approach

generates both normal specifications and exceptional specifications

for a given method. Normal specifications specify preconditions

and post-conditions when a method terminates execution with-

out throwing an exception. Exceptional specifications specify a

specific exception is thrown under a certain condition. Logical ex-

pressions (LE) lists different types of specifications that can be used

to describe normal specifications. Throw expression (TE) speci-

fies when a certain conditional expression (CE) is true, a specific

exception (EL) will be thrown.

Specifications cannot have side effects on objects, otherwise

the program state may be changed. Therefore, expressions like

assignments and increments are not allowed in the specification

language. Also only methods that have no side-effects on a program

state can be used in specifications.

In addition to the logical expressions supported by Java, forall

expressions (FE) and implication expressions (IE) are introduced

to describe program states after executing a method. FE represents

universal quantification expressions. For example, the specification

28



C2S: Translating Natural Language Comments to Formal Program Specifications ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: Specification Language Model

Specification S ::= LE | TE

Logical Expression LE ::= CE | FE | IE | CE LOP LE

Throw Expressin TE ::= CE→ throw EL /*if CE is true, throw exception EL*/

Implication Expression IE ::= CE⇒ CE | CE⇒ FE

Forall Expression FE ::= forall int ID; CE; CE

Conditional Expression CE ::= NE | NE LOP CE

Negation Expression NE ::= LEP | !LEP

Logical Expression Primitive LEP ::= BC | RE | MI | \result /*the type of \result is boolean*/

Relational Expression RE ::= AE ROP AE | AE EOP AE | AE EOP null

Arithmetic Expression AE ::= AEP | AEP AOP AEP

Arithmetic Expression Primitive AEP ::= IC | ID | AA | MI | \result /*the type of \result is int*/

Method Invocation MI ::= OBJ.ID(PL?) | MI.ID(PL?) | \old(MI)

Arithmetic Operator AOP ::= + | -

Equality Operator EOP ::= == | !=

Logical Operator LOP ::= && | ||

Relational Operator ROP ::= > | >= | < | <=

Array Access AA ::= OBJ.length

Object OBJ ::= ID | this | \result /*the type of \result is non-primitive*/

Integer Constant IC ::= -1 | 0 | 1

Boolean Constant BC ::= true | false

Exception Literal EL ::= NullPointerExpcetion | IndexOutOfBoundsException

| IllegalArgumentException | NoSuchElementException

| ArrayIndexOutOfBoundsException

Parameter List PL

Identify ID

\f orall int i; 0 ≤ i&&i < a.lenдth; a[i] == null means “for each i
in the range from 0 (inclusive) to the length of the arraya (exclusive),
the i-th element is null”. An IE in the form p ⇒ q means “if p is
true, then q must also be true for p ⇒ q to be true, and if p is false,
then p ⇒ q is always true”.

The method “\old” is introduced to describe properties that in-

volve program states before calling a method. This enables us to

describe the changes that a method invocation induces. Considering

the program statement list.remove(i), we can use \old(list .дet(i)) to
represent “the element previously at the position i of the receiver
list when the method remove has not been called”.

In order to represent the return value of calling a method, the

keyword “\result” is introduced. The data type of \result depends
on the return type of the method. With \result , we can have the

specification \result == \old(list .дet(i)) for the above-mentioned

example to convey that “the method remove(int) is expected to
return the element previously at the position i of the receiver list
before being modified by the method invocation”.

3.2 Association Engine
The association engine automatically couples specifications with

corresponding comments based on annotations to prepare comment-

specification pairs.

In documentation, a method has comments for method param-

eters, exceptional-behaviors and normal-behaviors. As shown in

Fig. 1(a), a parameter comment annotated by @param (e.g., line

04) gives a brief parameter description. In some cases, a parameter

comment may describe the condition that the parameter should

satisfy in order not to make the method execute exceptionally. For

example, method subtract(Iterable a, Iterable b) of class CollectionU-
tils in project Apache Commons Collections [1] has a parameter

comment “a must not be null” which indicates a precondition. An

exceptional-behavior comment annotated by @throws (e.g., line 02)
describes the condition that triggers an exception of a specific type.

For normal behaviors, the first sentence (e.g., line 01) of the com-

ments of a method is a concise but complete description of what the

method does [5, 23], and the comment annotated by @returns (e.g.,
line 05) describes the return value of the method.

Similarly, a method has both exceptional-behavior specifications

and normal-behavior specifications, which also can be distinguished

by their annotations. Take Fig. 1(b) as an example, in exceptional

behaviors, the specification index < 0 | | index ≥ this .size() an-
notated by requires (line 12) specifies the condition of throwing

exception java.lang.IndexOutOfBoundsException (line 13 annotated

by signals_only). Based on the exception type, we can associate the

specification in line 12 with the comment “if the index is out of
range (index < 0 | | index ≤ size())” in line 02 (pair iii○ in Fig. 1(i)).

In normal behaviors, when the precondition annotated by requires
in line 15 is met, the method will terminate the execution normally

in a program state that satisfies the post-conditions annotated by

ensures (lines 16-17). The specification in line 16 is an equality ex-

pression with one operand as \result meaning the specification de-

scribes the return value. And hence we associate such specifications

with comments annotated by @returns (pair ii○ in Fig. 1(i)). Other

types of post-conditions describe execution effects of a method and

they are associated with the first sentence that summarizes the

method (pair i○ in Fig. 1(i)).

3.3 Tokenizer
The tokenizer accepts a comment-specification pair and transforms

it into pairs of NL words and AST tokens. For each input pair, the

pre-processor is leveraged to clean the NL comment and split it

into separate words, and the IR translator is leveraged to convert

the specification into an AST. Then the tokenizer constructs pairs

of NL words and AST tokens by coupling each word in the cleaned

comment with each leaf node in the AST.

3.3.1 Pre-processor. To acquire more general comments by re-

moving unnecessary information and normalizing texts, the pre-

processormainly performs three tasks: 1) Removing stopwords (com-

mon words appearing frequently [37]) like “the”; 2) Reducing de-
rived words to their word stem, namely root form, by applying the

Porter stemming algorithm [34]. For example, the word “inserts” is
transformed into “insert”; and 3) Lowercasing all the words. After

the cleaning, each comment is split into individual words by space.

3.3.2 IR Translator. The IR translator generalizes a JML specifica-

tion in the text form to an abstract form and parses the abstracted

specification to an IR represented using AST.

Each generalized specification is called an IR with the semantics

preserved. There are two main reasons for using IRs. The first one

is to reduce the search space for the synthesis process and the

second one is to facilitate the instantiation of the synthesis results

with concrete information belonging to the target method (i.e., the

method whose specifications are being synthesized). We will use

the specification this .contains(e) of method add(E e) in Fig. 1(d) to

demonstrate the reasons as well as the process.

Firstly, we substitute all concrete parameter names with parame-

ter placeholders in the form of pi@t (the i-th parameter with type t).

Such substitution enables us to achieve better generality and higher

efficiency. For example, assume the parameter e is not generalized
and hence becomes part of the token set that would be used to syn-

thesize a specification. However, it is very likely a target method

29



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

Algorithm 1 Synthesizing IR Candidates from a NL Comment

Input: commentC , parameters P , return type T , word-token pairsM
Output: a set of IR candidates S

1: procedure synthesizeIR(C , P , T ,M )

2: wordSet ← preprocess(C)
3: tokenSet ← extractTokens(wordSet ,M )
4: S ← f il terTokens(tokenSet , P ,T )
5: while true do
6: r emoveSet ← ∅
7: oldSet ← S
8: set1← S
9: set2← S
10: for each ast1 ∈ set1 do
11: for each ast2 ∈ set2 do
12: S ← S ∪ assemble(ast1, ast2, P ,T )
13: if S == oldSet then
14: r emoveSet ← r emoveSet + ast1
15: if S == oldSet then
16: break
17: S ← S \ r emoveSet
18: return f il ter (S )

with similar specifications does not have a parameter e. As such,
the generated specification is invalid. It would be very difficult to

replace it with some other parameter name as we do not know

what e represents. However, with p1@E, we know that it is the first

parameter with a generic type and thus finding a replacement is

much easier. Another benefit of using placeholders is to reduce the

search space by decreasing the number of tokens used to construct

specifications since parameter names can be diverse.

Pure methods which do not have side-effects are used in JML

specifications to encapsulate primitive actions. For example, the

method contains in the specification this .contains(e) is a puremethod.

We use the puremethods asmethod placeholders in our IRs and they

will be substituted with concrete methods when IRs are instantiated

into specifications for a target method (Section 3.5).

After generalization, IR translator parses a specification to an

AST. The parser performs lexical analysis and syntax analysis,

which is very similar to that in a compiler [11].

ASTs. We represent IRs using ASTs, and use leaf nodes to represent

tokens and non-leaf nodes to represent the IR’s grammatical terms.

As shown in Fig. 3, leaf nodes like “\result” and “==” are tokens

used to constitute an expression, and a non-leaf node like “Equality
Expression” represents a term having its inner structure.

3.4 IR Synthesizer
In this section, we introduce our search-based approach of synthe-

sizing IRs for a method with NL comments.

The process of synthesizing IRs is presented in Algorithm 1. It

takes a method comment C, the parameters with type information

P, the return type T, and the word-token pairs M as inputs and

the output is a set of IR candidates, denoted as S. Given a method

comment, we first obtain the initial token set fromword-token pairs

M based on words of the pre-processed comment (lines 2-3). Then

we leverage the parameter data type(s) P and the return type T of

the target method to eliminate some tokens from the initial token

set (line 4). For example, if the target method has no parameters,

then the token p1@int should be removed from the token set. The

result set of tokens is stored in S to be used to synthesize IRs.

With the token set, the main procedure iteratively assembles

two ASTs in the set S into a larger AST based on the specification

language model shown in Table 1. When a fixed point is reached, we

Implication
Expression

Equality
Expression

Method
Expression

Object Equality 
Operator

Integer 
Constant

Implication
Operator⇒

Negation 
Operator

Method 
Invocation

Object ID
Parameter 

List

\result == -1 !

this contains

P1@Object

ID

①

③

⑤

②

④

⑥

\result == -1 ⟹ !this.contains(p1@Object)

(a) IR Candidates

\r esult −1 == ! = get() && ! ⇒ null this contains() p1@Object

(b) Tokens Used for Synthesis

Figure 3: Synthesis Example

terminate the assembling process. The assembling procedure in line

12 treats the two input ASTs (i.e., ast1 and ast2) as siblings to form

a new AST. Note that the assemble procedure only generates an

AST with correct syntax. In addition to the syntax rules in Table 1,

we also check the syntax based on the following properties of the

target method: 1) the number of parameters; 2) the data type of

each parameter; and 3) the return type. Suppose that we have two

ASTs separately for “\result” and “, null”, the IR \result , null is
not generated for a target method whose return type is int although
it is a correct IR for some methods. Note that two different ASTs

may have the same semantic, such as ASTs of \result , null and
null , \result . Such ASTs are regarded as duplicated and they will

not exist simultaneously in the set S .
Line 13 checks whether a new AST is produced in the loop (lines

11-12). If not, it is highly possible that no new ASTs can be con-

structed from ast1 in the following iterations and thus we add it to

removeSet and remove it from S in line 17. Consequently, ast1 will
not be used to synthesize IRs in later iterations.

After the assembling process, we get an AST forest, which may

contain incomplete ASTs (e.g., a relational expression missing one

operand) and complete ASTs that do not denote logic assertions (e.g.,

this .size() whose value is not boolean). We eliminate such ASTs

and return the remaining ones as IR candidates (line 18).

Example. Fig. 3(a) presents some IR candidates assembled from

the tokens listed in Fig. 3(b). Some non-leaf nodes are omitted

for the limitation of space. In the first iteration, ASTs 1○ and 2○
are constructed. Then based on the initial tokens in Fig. 3(b) and

the ASTs created in the first iteration, 3○ and 4○ are assembled

in the second iteration. After that, the third iteration produces 5○
and 6○. Finally, the whole tree in Fig. 3(a) is built in the fourth

iteration. In addition to the whole tree, three other complete logical

specifications are synthesized in this process, namely 3○, 4○ and

6○. All the four IRs are returned by the synthesis algorithm and

the ones that do not specify the desired behaviors of the method

will be eliminated by the specification checker in Section 3.6. Other

synthesized IRs like \result , −1 && this .дet(\result) , null ⇒
this .дet(\result).equals(p1@Object) are omitted here.

3.5 Specification Generator
The specification generator translates an abstract IR to a concrete

specification, leveraging the contextual information of the target

30



C2S: Translating Natural Language Comments to Formal Program Specifications ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

method. The placeholders that need to be instantiated include pa-

rameters and methods.

For each parameter placeholder, we directly substitute pi@t with
the i-th parameter of the method being specified. For each method

placeholder, we need to find the matching concrete method in the

class that contains our target method. The initial concrete method

candidates include all the methods that can be invoked by this class

or by an instance of this class. We first leverage the number of

parameters and parameter types to select the candidates. Suppose

that a parameter of the abstract method in the IR is of the type int.
If a method candidate does not contain a parameter with type int,
it is discarded. If the abstract method does not have any parameter,

then no candidate is discarded in this step. In the remaining candi-

dates, we use word embeddings to measure the similarity between

the concrete method name and the abstract method name. We use

the value 90% as a threshold for the similarity. The value is picked

based on our experimental results. If no concrete method name has

a similarity higher than the threshold, it is highly likely that there

is no concrete method having the behavior specified by the abstract

method, and hence we do not generate any specification for this

IR. Otherwise, the one with the highest similarity is selected to

instantiate the abstract method. The embedding of a CamelCase

method name is calculated as the average of word vectors of individ-

ual words. Notice that overloaded methods with the same method

name have already been pruned out in the first step.

Take the target method addVertex(V v) of class DirectedAcyclic-
Graph in project JGraphT [7] in Fig. 1(l) as an example. One syn-

thesized IR is this.contains(p1@E) ( h○ in Fig. 1(o)). After parameter

instantiation, the IR is transformed into this .contains(v) (E and V

here are generic types and they are the same). Then C2S uses the pa-

rameter type V to select potential concrete methods in the concrete

class. Any method that does not have parameters and any method

whose first parameter type is not V are eliminated. Then we com-

pare the word vector of the abstract method name “contains” with
the word vector of each concrete method name, and the one that

has the highest similarity (greater than the threshold) is the method

“containsVertex”. By instantiating the method placeholder “contains”
with the concrete method “containsVertex”, the final specification
this .containsVertex(v) is generated ( i○ in Fig. 1(p)).

3.6 Specification Checker
The goal of the specification checker is to eliminate invalid specifi-

cation candidates. It works by first transforming the specification

candidates into test oracles and then adding these oracles to exist-

ing project test cases written by developers. Here, we trust these

project test cases as they were the ones used in unit testing and

regression testing. As such, any specification candidates that trigger

violations in these tests are deemed invalid.

The specification checker consists of two main steps. The first

step is to instantiate a specification by substituting general infor-

mation (e.g., formal parameters) with concrete information (e.g.,

actual parameters). The second step is to instrument existing test

cases with assertions generated from instantiated specifications

and necessary Java statements.

3.6.1 Specification Instantiation. General information in specifica-

tions is instantiated in this step. Recall that our specifications are

Algorithm 2 Instantiating a Specification for a Method Invocation

Statement

Input: method specification S , method invocation statement ST , methodM
Output: an instantiated specification specific to statement ST

1: procedure instantiateSpecification(S , ST ,M )

2: switch S do
3: case \r esult
4: return дetRetV alue(ST )
5: case parm ▷ parm is one formal parameter ofM
6: return дetActualParameter (parm, ST , M )
7: case this
8: return дetReceiver (ST , M ) ▷ get the receiver ofM in ST
9: case \old (e)
10: e′← instantiateSpecif ication(e , ST , M )
11: r ← дetReceiver (ST , M )
12: return e′[rc /r ] ▷ r ′ is a clone of r before executing ST
13: default
14: newSpec ← S
15: for each operand ∈ S do
16: newOpnd ← instantiateSpecif ication(operand , ST , M )
17: newSpec ← updateOperand (newSpec , operand , newOpnd)
18: return newSpec

generated for individual method. These specifications use formal

parameters, this and \result to respectively represent inputs, the

receiver and the return value of a method, which has to be instanti-

ated in order to generate test oracles. For a statement (in a project

test case) that invokes the target method, the specification checker

automatically instantiates them by using values in the method in-

vocation statement. Notice that these concrete values are also used

to generate assertion statements for the test case (Section 3.6.2).

This instantiation process is shown in Algorithm 2. It takes a

specification S of the methodM , a statement ST that invokes the

methodM as well as the methodM as inputs, and returns the instan-

tiated specification that is specific to the input statement ST . We

will use the example in Fig. 4 to show how it works. Fig. 4(a) gives

a statement from an existing test case which invokes method re-
move(int index) with two generated specifications listed in Fig. 4(b).

The instantiateSpecification procedure defined in line 1 recur-

sively calls itself to do substitution. It has three base cases separately

for return value, parameters and receiver. When the expression

\result is found (line 3), we call the procedure getRetValue in line 4

to get the actual return value of the given statement ST . For exam-

ple, the statement in Fig. 4(a) uses variable ret to store the return
value and thus ret is used to substitute \result ( 1○ to 3○). When one

01 LinkedList oldList = list.clone();                              ⑤
02 String ret = list.remove(2);

03 org.junit.Assert.assertTrue(ret == oldList.get(2));             ⑥
04 boolean flag = true;

05 for(int i = 0; 0 <= i && i < 2; i++)

06    flag = flag && (list.get(2) == oldList.get(2));

07 org.junit.Assert.assertTrue(flag);

③ ret == oldList.get(2)  

④ \forall int i; 0 <= i && i < 2; list.get(i) == oldList.get(i) 

java.util.LinkedList: remove(int index)
① \result == \old(this.get(index))

② \forall int i; 0 <= i && i < index; this.get(i) == \old(this.get(i))

01 String ret = list.remove(2);

⑦

(a) A Statement Calling remove(int) in (b) From a Test Case

(b) Specifications of Method remove(int)

(c)  Instantiated Specifications Based on (a) and (b)

(d)  Test Oracle Generated Based on Specifications in (b)

Figure 4: Test Oracle Translation Example

31



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

formal parameterparm of methodM is found (line 5), the procedure

getActualParameter in line 6 is called to retrieve the correspond-

ing actual parameter. For example, the formal parameter index in
Fig. 4(b) is substituted with the actual parameter 2 in Fig. 4(c) ( 1○
to 3○, and 2○ to 4○). When the keyword this is found (line 7), we

substitute it with the actual receiver of methodM returned by the

procedure getReceiver (line 8). The statement in Fig. 4(a) has list as
the receiver, and thus this is substituted by list.

To express the semantics of \old , we propose to save the pro-

gram state (i.e., the state of the receiver in Java) before executing a

statement into a new variable rc , a clone of the receiver, and later

retrieves from rc . More specifically, when the expression \old(e) is
found (line 9), we recursively call the procedure instantiateSpecifica-
tion to substitute the aforementioned general information in e and
store the substituted expression to e ′ (line 10). Then we substitute

the receiver ofM in ST (r in line 11) in e ′ with our cloned receiver

rc (line 12). Consequently, we can retrieve the program state before

executing ST from rc . For example, in Fig. 4(d), we can get the third

element in the original linked list (i.e., before calling remove(int) in
line 02) from receiver oldList cloned in line 01. The previous third

element cannot be obtained from the receiver list in line 03 since it

has been removed by calling remove(int) in line 02.

For other expression types, each operand is substituted by re-

cursively calling the procedure instantiateSpecification to get the

whole expression instantiated (lines 13-18).

3.6.2 Assertion Instrumentation. After deriving instantiated spec-

ifications, the specification checker instruments test cases with

assertions (and related code). The rules of instrumenting asser-

tions and code into existing test cases are shown in Fig. 5. The

instrumentation process works recursively and is named as genera-
teOralce. The first column lists the instantiated specifications and

the transformed test cases are boxed in the third column. The state-

ment st here calls a target method for which we have synthesized

specifications, namely the input parameter ST in Algorithm 2.

Rule [T-IMPLY] separately generates an oracle for each operand

of the implication operator and then generates an assertion based

on the definition of the implication expression. Similarly, we have

Rule [T-AND], Rule [T-OR] and Rule [T-NOT] for conditional ex-

pressions in our specification language model.

Rule [T-UQ] is used to generate test oracles from universal quan-

tification specifications with a for loop. For example, we can use

Rule [T-UQ] to transform the specification 4○ in Fig. 4(c) into the

oracle in lines 4-7 of Fig. 4(d), in which the initial value 0 (value
in Rule [T-UQ]) of the loop control variable is obtained from the

condition 0 <= i && i < index of 4○.

Rule [T-OLD] shows how to instrument a test case based on an

instantiated specification containing the cloned receiver rc . Firstly,
we insert a code snippet to clone the receiver of the target method

in st as rc before st. Then the specification is treated as others.

Considering the example in Fig. 4(d), line 01 is inserted before line

02 to clone the receiver list, and the specification 3○ is transformed

to the oracle in line 3.

4 EVALUATION
We have implemented a prototype C2S and empirically evaluated

C2S to address the following questions:

Table 2: Specifications Generated

Project #Class #Method #Pre #Except Post #Nor Post
JDK 8.0 10 201 64 99 348

Commons Collections 4.1 27 170 140 115 187

Guava 19 8 81 10 13 98

GraphStream 1.3 4 25 0 6 32

JGraphT 0.9.2 15 34 4 10 19

Total 64 511 218 243 684

RQ1: How effective is C2S in synthesizing formal program specifi-

cations from NL comments?

RQ2: How does C2S compare with state-of-the-art approaches in

improving dynamic testing?

RQ3: How useful is C2S in improving static taint analysis?

The evaluationwas conducted on amachinewith Intel(R) Core(TM)

i5-8259U CPU (2.30GHz) and 8GB main memory. The operating

system is macOS High Sierra 10.13.6, and the JDK version is 8.

4.1 Data Collection
To prepare the search space of tokens for synthesizing specifica-

tions, we collected all available JML method specifications and their

corresponding NL comments. All the specifications are composed

for the project JDK [6]. In total, we have 3,547 couplings between

comments and specifications. On average, each NL word is mapped

to 18 IR tokens. The time used to synthesize specifications for each

comment is on average 26.40s.

4.2 Effectiveness in Specification Generation
To answer RQ1, we synthesize specifications for 5 frequently-used

Java libraries with well-maintained documentation, namely JDK [6],

Apache Commons Collections [1], Guava [4], GraphStream [3], and

JGraphT [7], The results are shown in Table 2, which presents

the project (column 1), the number of classes/methods (columns

2/3) that are analyzed, and the number of generated precondi-

tions/exceptional behavior post-conditions/normal behavior post-

conditions (columns 4/5/6). Note that the search space of IR tokens

used in C2S is collected only from project JDK. However, specifica-

tions for other projects can be generated using C2S, meaning that

C2S is cross-project.

From Table 2, we make a few observations. Firstly, the number of

normal post-conditions is a bit more than the number of methods.

This is because executing one method can lead to multiple effects.

Take method add(int index, Object element) of class ArrayList as an
example. If it executes normally, it would achieve at least the follow-

ing two effects: 1) The receiver list contains the parameter element;
and 2) The element at the position specified by the parameter index
equals to the parameter element. C2S generates a specification for

each effect. Secondly, the number of preconditions is less than that

of exceptional post-conditions except for project Apache Commons
Collections. Based on our analysis on these comments, we observe

that, in many projects, developers rarely comment on precondi-

tions although normally the negation of the exception triggering

condition could be considered as essentially a precondition.

To further answer RQ1, we measure precision and recall of C2S

in synthesizing specifications. Like other projects of deriving speci-

fications from comments [15, 20, 43], there is no ground truth for

32



C2S: Translating Natural Language Comments to Formal Program Specifications ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

e1 ⇒ e2 −→

1 st ;
2 boolean f laд1 = дenerateOracle(e1);
3 boolean f laд2 = дenerateOracle(e2);
4 Asser tT rue(f laд1 == false ∥ f laд2 == true && f laд2 == true);

[T-IMPLY] Note:
• st : a statement which calls a methodm with specifications

• e /e1/e2 : a specification after instantiation using Algorithm 2

• r : receiver, the object on which the methodm is called in st
• rc : a clone of the receiver r before executing st
• f (rc ): a instantiated specification that contains cloned receiver rc

e1 && e2 −→

1 st ;
2 boolean f laд1 = дenerateOracle(e1);
3 boolean f laд2 = дenerateOracle(e2);
4 Asser tT rue(f laд1 && f laд2);

[T-AND]

e1 ∥ e2 −→

1 st ;
2 boolean f laд1 = дenerateOracle(e1);
3 boolean f laд2 = дenerateOracle(e2);
4 Asser tT rue(f laд1 ∥ f laд2);

[T-OR]

!e −→
1 st ;
2 boolean f laд = дenerateOracle(e);
3 Asser tT rue(!f laд);

[T-NOT] e −→ 1 st ;
2 Asser tT rue(e); [T-E]

\forall int x ; e1 ; e2 −→

1 st ;
2 boolean f laд = true;
3 for (int x = initalV alue ; e1 ; x + +) f laд = f laд && e2 ;
4 Asser tT rue(f laд);

[T-UQ] f (rc ) −→

1 Type rc = clone(r );
2 st ;
3 boolean f laд = дenerateOracle(f (rc ));
4 Asser tT rue(f laд);

[T-OLD]

Figure 5: Transformation Rules

ideal specifications. We follow a similar evaluation method to ex-

isting work [15], which manually checks generated specifications.

We asked 8 developers (6 graduate students and 2 developers from

industry) to participate in the manual checking. All the developers

had at least four years of programming experience and were ac-

quainted with program comments. In the process, all specifications

are checked against source code with the help of corresponding

comments. There are two main reasons: 1) specifications are ex-

pected to specify code behaviors; and 2) one NL sentence may

express different meanings in different contexts (e.g., “returns the
first component in Fig. 1(g) and in Fig. 1(k) introduced in Section 2).

As we manually check specifications, it is inevitable to introduce

subjectivity. To minimize such subjectivity, we utilized cross verifi-

cation by assigning each specification to two different developers.

When a disagreement occurs, all the developers would involve

to have an open discussion to resolve it. Moreover, we mix our

synthesized specifications and specifications generated using the

other three approaches, and thus the developers are unaware of

whether a specification is generated using our approach or not. Note

that @tComment aims at detecting comment-code inconsistencies,

meaning that it does not assume the correctness of source code. In

order to have a fair comparison, during the study, the users were

instructed to preclude cases in which specifications are inconsistent

with code due to inconsistencies between comments and code.

If a specification is inconsistent with the source code, it is con-

sidered as false positive. If we fail to generate a specification for

a comment, we consider there is a false negative. Note that there

are comments that do not have corresponding specifications (e.g.,

those explaining time, authors, and implementation details). We

preclude such comments. Specifically, a specification is correct (C)

when it is consistent with the corresponding source code; it is

wrong (W) when it is inconsistent. For example, the specifica-

tion this .containsVertex(sourceVertex) is generated for method

Table 3: Specification Synthesis Precision and Recall

Tool Pre Except Post Normal Post OverallReturn Non-return
P R P R P R P R P R

@tComment 0.98 0.64 0.80 0.18 n.a. 0.00 n.a. 0.00 0.91 0.26

Toradocu n.a. 0.00 0.58 0.42 n.a. 0.00 n.a. 0.00 0.58 0.41

Jdoctor 0.94 0.92 0.93 0.77 0.66 0.39 n.a. 0.00 0.85 0.76

C2S 0.98 0.97 0.98 0.91 0.93 0.90 0.92 0.88 0.96 0.91

addEdge(V sourceVertex, V targetVertex, E e) in class EdgeReversed-
Graph of project JGraphT. However, method addEdge is to add

an edge which goes from the sourceVertex rather than adding the

parameter sourceVertex. Such wrong specifications are generated

because C2S does not analyze the semantic of a natural language

comment. A specification is missing (M) when no specification is

generated for a comment or when a comment describes two or

more behaviors, but C2S fails to synthesize specifications for all of

them. Consider the comment “Throws IllegalArgumentException if
collection is empty or contains more than one element” of method

extractSingleton(Collection<E> collection) in class CollectionUtils of
project Apache Common Collections. C2S can generate a specifica-

tion for “collection is empty”, but cannot generate for the later part
due to the incompleteness of the word-token pairs.

We define precision as the ratio between the number of correct

specifications and the total number of generated specifications,

namely C/(C +W ) and recall as the ratio between the number of

correct specifications to the total number of correct specifications

that are expected to be generated, namely C/(C +M).
Note that our manual validation efforts are only needed for eval-

uating precision and recall, not during deployment. For example,

in real deployment of using our specifications to improve testing,

we will simply utilize all the generated specifications and report

all test failures. The developers will manually go through such fail-

ures. Some failures may be due to incorrect specifications but our

precision and recall results indicate that such cases are very rare.

Table 3 reports precision and recall of @tComment, Toradocu,

Jdoctor and C2S on the target methods of Table 2. The columns P
and R separately show precision and recall. As mentioned in intro-

duction, @tComment does not handle normal post-conditions (i.e.,

post-conditions for normal behaviors), Toradocu cannot generate

preconditions or normal post-conditions, and Jdoctor does not han-

dle normal post-conditions that are unrelated to return value (as

n.a. shown in the table). The data shows that the precision of C2S

is comparable with the state-of-the-art approaches while the recall

of C2S is substantially higher.

For the return-related normal post-conditions, Jdoctor’s preci-

sion and recall are much lower than those of C2S since return

comments are too complicated for pattern-matching and lexical

similarity to work well.

33



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

C2S is the only technique capable of generating non-return-

related normal post-conditions. For example, C2S can generate the

desired specification this .дet(index) == object for the comment

“Sets the value at the specified index avoiding duplicates.”.
Finally, we want to point out that there are still comments be-

yond the capabilities of C2S. For example, C2S cannot handle the

comment “Returns the n’th item down (zero-relative) from the top
of this stack without removing it.”, limited by the incompleteness

of existing specifications.

The overall precision of 0.96 and the recall of 0.91 illustrate

that C2S is more effective in translating NL comments to formal

specifications than the state-of-the-art approaches.

Our generated specifications are publicly available [2].

4.3 Improving Automatic Test Case Generation
To answer RQ2, we conduct an experiment to show how our spec-

ifications improve automatic test cases generation by Randoop

compared with Jdoctor’s specifications. We choose Jdoctor because

of its diverse specification types. For example, @tComment and

Toradocu cannot generate post-conditions for normal behaviors

while Jdoctor can. Tomake a comprehensive comparison, we choose

to compare C2S with Jdoctor. This experiment follows Jdoctor’s

experiment setup.

Randoop is an automatic testing tool that explores method se-

quences randomly for a given class and checks whether executing

these sequences would violate default specifications as well as user-

provided specifications that describe expected behaviors. Randoop

outputs two types of test cases, namely failing ones that reveal

potential bugs, and passing ones that are used as regression tests.

Randoop has limitations in supporting our generated specifi-

cations. To address this, we enhance Randoop in three aspects,

and we refer to our enhanced Randoop as C2SRandoop. Firstly,

C2SRandoop allows adding oracles between program statements

whereas Randoop only adds oracles after the last statement, mak-

ing it impossible to check some properties before that. For in-

stance, the property list.isEmpty() holds after executing the state-
ment list.clear(), and we need to add this oracle after the invoca-

tion. Otherwise, list may be updated by following statements like

list.add(“paper”) and it would become invalid to test the property

isEmpty() after the last statement. Secondly, we modify Randoop to

generate oracles for void methods whose specifications are skipped.

For example, Randoop does not generate assertions to test the void-

return method add(int index, E element) of class ArrayList, and
thus its properties like this .contains(element) cannot be checked.
Thirdly, Randoop does not accept some of our specification types in-

cluding implication expressions, forall expressions and expressions

containing keyword \old . Based on the rules shown in Fig. 5 (intro-

duced in Section 3.6), C2SRandoop can generate oracles from these

specifications to test target methods.

We use C2SRandoop to generate test cases based on Jdoctor’s

specifications and our specifications, and the time limit is set as

15 minutes. Table 4 summarizes the comparison results. The first

column lists the projects. The columns #FC, #TA, #FA and % re-

spectively show the number of failing cases, the number of true

alarms, the number of false alarms and the ratio between false

alarms and the number of failing cases. As we manually check the

Table 4: Test Case Generation Improvement

Project Jdoctor C2S
#FC #TA #FA % #NO #FC #TA #FA % #NO

JDK 8.0 60 40 20 33.33% 9 40 40 5 12.50% 178

Collections 4.1 105 30 75 71.43 % 17 30 30 10 33.33 % 106

Guava 19 20 10 10 50.00 % 2 10 10 0 0.00 % 22

GraphStream 1.3 20 20 0 0.00 % 1 20 20 0 0.00 % 12

JGraphT 0.9.2 114 64 50 43.86 % 0 64 64 10 15.63 % 5

Total 356 189 167 46.91 % 29 189 189 25 13.23 % 323

failing test cases, subjectivity might be introduced. To reduce such

subjectivity, we mix failing test cases from Jdoctor and C2S, and

developers are unaware of whether test cases belong to Jdoctor or

C2S. Moreover, false alarms are checked by multiple developers in-

dependently. When a disagreement occurs, all 8 developers involve

to discuss to resolve it. From the results, we can see that Jdoctor’s

specifications lead to a much higher false alarm than our specifi-

cations do (46.91% vs. 12.23% on average). This results from two

main reasons. The first one is that Jdoctor’s pattern-matching and

lexical similarity to identify subjects (e.g., parameters) in comments

are relatively inaccurate. The second one is that Jdoctor does not

have an automatic approach to eliminate wrong specifications. By

contrast, we leverage our specification checker to automatically

prune out incorrect specifications. The columns #NO shows the

number of new oracles generated based on specifications. Multiple

test cases may be generated for a method using the same oracle.

Such cases are only counted as one oracle. Note that the number

of new oracles generated using our specifications is much higher

than that of Jdoctor beacause C2S can generate much more normal

post-conditions than Jdoctor.

4.4 Improving Identifying Leak Paths
To answer RQ3, we leverage FlowDroid [12] to conduct taint analy-

sis on 10 Android applications to detect undesirable information

leak paths. Flowdroid does not analyze library functions. Instead,

it accepts taint wrappers to model the information flow of library

methods to achieve more precise results. Consider the method re-
move(int) of class ArrayList, we can specify the flow from the first

parameter of remove(int) to the return value and thus FlowDroid

can use the flow to analyze code that invokes remove(int), without
analyzing the body of the method. Our specifications describe re-

lations between parameters and the return value and thus can be

utilized to extract information flow model of a library method.

We limit the sinks to Internet access and files writing, and set

a 30 minutes timeout for each app in our experiments. We ran

FlowDroid on 10 Android apps in three modes: 1) without using

any taint wrapper; 2) with taint wrappers containing data-flow

information extracted from Jdoctor’s specifications; and 3) with

taint wrappers from our specifications. We compare the number of

reported information leak warnings and the performance, which

are summarized in Table 5. The first column lists the apps, among

which, some are from the DroidBench micro-benchmark suite such

as ArrayAccess1 and they are selected since they use library meth-

ods. In order to demonstrate our specifications are beneficial to

identify leak paths for different kinds of applications, including

open-source and commercial software, benign applications and

malwares, we classify applications that use these library methods

34



C2S: Translating Natural Language Comments to Formal Program Specifications ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 5: Static Taint Analysis Comparison Result

APK

No TW Jdoctor TW C2S TW

#P #T #P #T #ATP #P #T #ATP

ArrayAccess1 1 3.85 1 4.56 0 1 5.37 0

Alipay 39 1450.89 40 1482.32 1 52 1542.43 13

Broncos News 1 32.26 1 30.35 0 5 32.35 4

OpenTable 32 1251.142 32 1253.52 0 47 1799.66 15

Wikipedia 0 5.20 0 5.20 0 2 9.43 2

TencentNews 89 1061.75 89 1293.74 0 93 1305.57 4

DroidKungFu 1 11.02 1 19.41 0 5 27.12 4

santander 4 11.86 4 14.20 0 5 16.85 1

enriched1 1 4.83 1 5.08 0 1 5.50 0

Avira Antivirus Security 20 1682.14 26 1786.43 6 27 1927.86 7

Total 188 - 195 - 7 238 - 50

into the aforementioned categories, and randomly pick some out

of each category.

The number of leak paths and the time (in seconds) used to do

the analysis in the three experiments are shown in columns #P and

#T. The #ATP columns 6 and 9 present the additional number of

true leak paths that are identified using Jdoctor’s specifications and

our specifications but cannot be identified when no taint wrapper is

used. In summary, the results illustrate that with our specifications,

50 more leak paths can be identified for 8 apps within an acceptable

time that is comparable to the analysis time when no taint wrapper

is used, while only 7 more leak paths can be identified for 2 apps

using Jdoctor’s specification.

5 DISCUSSION
5.1 Threats to Validity
One threat to external validity is that it is possible the space of

tokens that compose specifications collected from JDK would cause

low accuracy when synthesizing specifications for other projects.

To mitigate this, we introduce an intermediate representation to

capture the expected behaviors of a method which can be instan-

tiated into a concrete specification for a target method. Another

threat lies in that our subject projects and classes might not be

representative of true practice. To minimize this, we conducted

the evaluation on 5 representative projects that provide diverse

functionalities from graph handling to efficient data structures.

The threat to internal validity is the accuracy of our C2S in syn-

thesizing specifications. To alleviate this, we verified the correctness

of each generated specification by running developer-written test

cases. In addition, as part of our evaluation, each specification was

manually checked against source code by two developers.

5.2 Generality
Our technique assumes good quality comments. Empirical stud-

ies on comments/documentation like [26, 31] have demonstrated

over 50% comments/documentation are of good quality and useful

in practice. Furthermore, such assumption/limitation is general

for most existing work that extracts information from comments

like [32, 40, 42, 47, 53]. Despite such limitation, these existing efforts

and C2S, have shown that comments in existing projects can be

used to improve various aspects of software engineering.

The value of C2S lies in generating specifications for methods

whose specifications do not exist or are incomplete. It achieves the

goal by learning from a small number of existing specifications

(for alignments). Our technique is general in principle and it is a

valuable step towards automated specification generation, which is

difficult in general. Although we did not present in the paper, C2S

works well for C# documentation, and we believe it can be applied

to derive specifications for other programming languages.

6 RELATEDWORK
There are many efforts of generating specifications from source

code or natural language comments, based on static analysis tech-

niques [16, 17, 36, 48–50], dynamic analysis approaches [13, 18,

19, 30], mining large-scale repositories [29, 35, 39], and NLP tech-

niques [15, 20, 32, 43, 54].

Our work is closely related to approaches that infer specifica-

tions by analyzing comments written in a natural language. These

approaches [15, 20, 32, 41–43, 54] extract specifications from com-

ments by matching handcrafted patterns. Specifically, [53] builds an

automaton based on the predefined specification template to infer

a resource specification to detect bugs. ALICS [32] generates pro-

cedure pre/post-conditions that are relevant with strings, integers,

null, return and exceptions. iComment [41] extracts usage rules, i.e.,

lock-related and call-related rules, to detect bugs or bad comments.

Similarly, [54] generates parameter constraints to detect directive

defects. aComment [42] generates interrupt-related annotations

to detect concurrency bugs. @tComment [43] infers null-value

related properties of method parameters to detect comment-code

inconsistencies. Toradocu [20] synthesizes conditions that can trig-

ger exceptions to create test oracles for exceptional behaviors, and

Jdoctor [15] translates code comments to procedure specifications

to generate better test cases. Unlike these textual pattern match-

ing approaches, our work does not require predefined patterns

that demand manual efforts and may be incomplete. There are

other approaches that combine NLP and ML techniques to analyze

comments. In [33], researchers use statistical machine translation

techniques to translate exception-related documentation to code.

Our work leverages alignments which is part of statistical machine

translation techniques, but we focus on formal specifications and

we generate specifications of various perspectives in addition to

exceptions.

7 CONCLUSION
We propose an automatic technique to derive formal program spec-

ifications from method NL comments by assembling primitive to-

kens guided by specification syntax and properties of the target

method. We develop a prototype C2S. Our experiments show that

C2S can derive specifications efficiently and effectively, with 0.96

precision and 0.91 recall, substantially outperforming the state-of-

the-art like Jdoctor. We leverage the generated specifications in a

number of software engineering tasks including static taint analysis.

The results show our specifications can improve these tasks.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-

ments. This research was supported, in part by NSF-China 61802166,

61972193 and 61802171, DARPA FA8650-15-C-7562, NSF 1748764,

1901242 and 1910300, ONRN000141410468 and N000141712947, and

Sandia National Lab under award 1701331. Any opinions, findings,

and conclusions in this paper are those of the authors only and do

not necessarily reflect the views of our sponsors.

35



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

REFERENCES
[1] 2020. Apache Commons Collections. https://commons.apache.org/proper/

commons-collections/.

[2] 2020. C2S Specifications. https://c2s-fse.github.io/C2S/.

[3] 2020. GraphStream. http://graphstream-project.org/.

[4] 2020. Guava. https://opensource.google.com/projects/guava/.

[5] 2020. Javadoc Style. https://www.oracle.com/technetwork/articles/java/index-

137868.html.

[6] 2020. JDK. https://www.oracle.com/technetwork/java/javase/downloads/index.

html.

[7] 2020. JGraphT. https://jgrapht.org/.

[8] 2020. JML Specification Examples. http://www.eecs.ucf.edu/~leavens/JML/

examples.shtml.

[9] 2020. Randoop. https://randoop.github.io/randoop/.

[10] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund

Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina

Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In 2013 Formal
Methods in Computer-Aided Design. IEEE, 1–8.

[11] W Appel Andrew and P Jens. 2002. Modern compiler implementation in Java.

[12] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.

Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.
[13] Angello Astorga, Siwakorn Srisakaokul, Xusheng Xiao, and Tao Xie. 2018. PreIn-

fer: Automatic Inference of Preconditions via Symbolic Analysis. In 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 678–689.

[14] Osbert Bastani, Saswat Anand, and Alex Aiken. 2015. Specification inference

using context-free language reachability. In ACM SIGPLAN Notices, Vol. 50. ACM,

553–566.

[15] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D

Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code

comments to procedure specifications. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, 242–253.

[16] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and Marcus Peinado.

2007. Bouncer: Securing software by blocking bad input. ACM SIGOPS Operating
Systems Review 41, 6 (2007), 117–130.

[17] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. 2013.

Automatic inference of necessary preconditions. In International Workshop on
Verification, Model Checking, and Abstract Interpretation. Springer, 128–148.

[18] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy:

Dynamic Symbolic Execution for Invariant Inference. In Proceedings of the 30th
International Conference on Software Engineering. ICSE 2008. IEEE.

[19] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. 2001.

Dynamically discovering likely program invariants to support program evolution.

IEEE Transactions on Software Engineering 27, 2 (2001), 99–123.

[20] Alberto Goffi, Alessandra Gorla, Michael D Ernst, and Mauro Pezzè. 2016. Auto-

matic generation of oracles for exceptional behaviors. In Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM, 213–224.

[21] Jianjun Huang, Xiangyu Zhang, and Lin Tan. 2016. Detecting sensitive data dis-

closure via bi-directional text correlation analysis. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 169–180.

[22] James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test

information to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002. IEEE, 467–477.

[23] Douglas Kramer. 1999. API documentation from source code comments: a case

study of Javadoc. In Proceedings of the 17th annual international conference on
Computer documentation. 147–153.

[24] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. 2010. Complete

functional synthesis. In ACM Sigplan Notices, Vol. 45. ACM, 316–329.

[25] Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand Meyer, and Arno Fiva.

2007. Contract driven development= test driven development-writing test cases.

In Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering. ACM, 425–434.

[26] WalidMaalej andMartin P Robillard. 2013. Patterns of knowledge inAPI reference

documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264–

1282.

[27] BertrandMeyer, Ilinca Ciupa, Andreas Leitner, and Lisa Ling Liu. 2007. Automatic

testing of object-oriented software. In International Conference on Current Trends
in Theory and Practice of Computer Science. Springer, 114–129.

[28] Manish Motwani and Yuriy Brun. 201. Automatically Generating Precise Oracles

from Structured Natural Language Specifications. In Proceedings of the 41th
International Conference on Software Engineering (ICSE’19).

[29] HoanAnhNguyen, Robert Dyer, Tien NNguyen, andHridesh Rajan. 2014. Mining

preconditions of APIs in large-scale code corpus. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering. ACM,

166–177.

[30] Jeremy W Nimmer and Michael D Ernst. 2002. Automatic generation of program

specifications. ACM SIGSOFT Software Engineering Notes 27, 4 (2002), 229–239.
[31] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009. Listening to program-

mers Taxonomies and characteristics of comments in operating system code. In

Proceedings of the 31st International Conference on Software Engineering. IEEE
Computer Society, 331–341.

[32] Rahul Pandita, XushengXiao, Hao Zhong, Tao Xie, StephenOney, andAmit Parad-

kar. 2012. Inferring method specifications from natural language API descriptions.

In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 815–825.

[33] Hung Phan, Hoan Anh Nguyen, Tien N Nguyen, and Hridesh Rajan. 2017. Sta-

tistical learning for inference between implementations and documentation. In

Proceedings of the 39th International Conference on Software Engineering: New
Ideas and Emerging Results Track. IEEE Press, 27–30.

[34] M.F. Porter. 1980. An algorithm for suffix stripping. Program 14, 3 (1980), 130–137.

[35] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007.

Static specification inference using predicate mining. In ACM SIGPLAN Notices,
Vol. 42. ACM, 123–134.

[36] Mohamed Nassim Seghir and Daniel Kroening. 2013. Counterexample-guided

precondition inference. In European Symposium on Programming. Springer, 451–
471.

[37] C. Silva and B. Ribeiro. 2003. The importance of stop word removal on recall

values in text categorization. In Proceedings of the International Joint Conference
on Neural Networks. IEEE.

[38] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. 2010. From program

verification to program synthesis. InACM Sigplan Notices, Vol. 45. ACM, 313–326.

[39] Jingyi Su, Mohd Arafat, and Robert Dyer. 2018. Poster: Using Consensus to

Automatically Infer Post-conditions. (2018).

[40] Lin Tan. 2009. Leveraging Code Comments To Improve Software Reliability. Ph.D.
Dissertation. University of Illinois at Urbana-Champaign.

[41] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:

Bugs or bad comments?*. In ACM SIGOPS Operating Systems Review, Vol. 41.
ACM, 145–158.

[42] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: mining anno-

tations from comments and code to detect interrupt related concurrency bugs. In

Software Engineering (ICSE), 2011 33rd International Conference on. IEEE, 11–20.
[43] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. 2012. @tcomment:

Testing javadoc comments to detect comment-code inconsistencies. In Software
Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference
on. IEEE, 260–269.

[44] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-

Jones. 2014. Refinement types for Haskell. In ACM SIGPLAN Notices, Vol. 49.
ACM, 269–282.

[45] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio

Lerda. 2003. Model checking programs. Automated software engineering 10, 2

(2003), 203–232.

[46] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-

inducing input. IEEE Transactions on Software Engineering 28, 2 (2002), 183–200.

[47] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jianhua Zhao,

and Feng Qin. 2016. Automatic model generation from documentation for Java

API functions. In 2016 IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE). IEEE, 380–391.

[48] Juan Zhai, Bin Li, Zhenhao Tang, Jianhua Zhao, and Xuandong Li. 2016. Pre-

condition Calculation for Loops Iterating over Data Structures. In 2016 IEEE
International Conference on Software Quality, Reliability and Security (QRS). IEEE,
132–143.

[49] Juan Zhai, Hanfei Wang, and Jianhua Zhao. 2014. Post-condition-directed invari-

ant inference for loops over data structures. In Software Security and Reliability-
Companion (SERE-C), 2014 IEEE Eighth International Conference on. IEEE, 204–212.

[50] Juan Zhai, HanfeiWang, and Jianhua Zhao. 2015. Assertion-directed precondition

synthesis for loops over data structures. In International Symposium on Depend-
able Software Engineering: Theories, Tools, and Applications. Springer, 258–274.

[51] Juan Zhai, Xiangzhe Xu, Yu Shi, Minxue Pan, Shiqing Ma, Lei Xu, Weifeng

Zhang, Lin Tan, and Xiangyu Zhang. 2020. CPC: Automatically classifying

and propagating natural language comments via program analysis. In Software
Engineering (ICSE), 2020 IEEE/ACM 42nd International Conference on. IEEE, 1359–
1371.

[52] Shiyu Zhang, Juan Zhai, Bu Lei, Wang Linzhang, and Xuandong Li. 2020. Au-

tomated Generation of LTL Specifications For Smart Home IoT Using Natural

Language. In 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE.

[53] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring resource speci-

fications from natural language API documentation. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Computer Society, 307–318.

36

https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/
https://c2s-fse.github.io/C2S/
http://graphstream-project.org/
https://opensource.google.com/projects/guava/
https://www.oracle.com/technetwork/articles/java/index-137868.html
https://www.oracle.com/technetwork/articles/java/index-137868.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://jgrapht.org/
http://www.eecs.ucf.edu/~leavens/JML/examples.shtml
http://www.eecs.ucf.edu/~leavens/JML/examples.shtml
https://randoop.github.io/randoop/


C2S: Translating Natural Language Comments to Formal Program Specifications ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

[54] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and

Harald Gall. 2017. Analyzing APIs documentation and code to detect directive

defects. In Proceedings of the 39th International Conference on Software Engineering.
IEEE Press, 27–37.

37


	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 Specification Language
	3.2 Association Engine
	3.3 Tokenizer
	3.4 IR Synthesizer
	3.5 Specification Generator
	3.6 Specification Checker

	4 Evaluation
	4.1 Data Collection
	4.2 Effectiveness in Specification Generation
	4.3 Improving Automatic Test Case Generation
	4.4 Improving Identifying Leak Paths

	5 Discussion
	5.1 Threats to Validity
	5.2 Generality

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

