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ABSTRACT

Deep learning (DL) frameworks are the fundamental infrastructure

for various DL applications. Framework defects can profoundly

cause disastrous accidents, thus requiring sufficient detection. In

previous studies, researchers adopt DL models as test inputs com-

binedwithmutation to generate more diversemodels. Though these

studies demonstrate promising results, most detected defects are

considered trivial (i.e., either treated as edge cases or ignored by the

developers). To identify important bugs that matter to developers,

we propose a novel DL framework testing method DevMuT, which

generates models by adopting mutation operators and constraints

derived from developer expertise. DevMuT simulates developers’

common operations in development and detects more diverse de-

fects within more stages of the DL model lifecycle (e.g., model

training and inference). We evaluate the performance of DevMuT

on three widely used DL frameworks (i.e., PyTorch, JAX, and Mind-

Spore) with 29 DL models from nine types of industry tasks. The

experiment results show that DevMuT outperforms state-of-the-art

baselines: it can achieve at least 71.68% improvement on average

in the diversity of generated models and 28.20% improvement on

average in the legal rates of generated models. Moreover, DevMuT

detects 117 defects, 63 of which are confirmed, 24 are fixed, and eight

are of high value confirmed by developers. Finally, DevMuT has

been deployed in the MindSpore community since December 2023.

These demonstrate the effectiveness of DevMuT in detecting defects

that are close to the real scenes and are of concern to developers.
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1 INTRODUCTION

Deep learning (DL) applications have achieved widespread suc-

cess in various industry applications, including safety-critical fields

such as autonomous driving [5], medical diagnosis [38], and fa-

cial recognition [54]. The development, maintenance, and deploy-

ment of such applications rely on DL frameworks. As such, frame-

work defects can cause severe damages, leading to safety accidents

and economic losses [51]. Therefore, it is imperative to test DL

frameworks and detect defects for their quality assurance. Some

researchers [18, 19, 28, 29, 42, 56] adopt DL models as the test in-

puts and combine them with different mutation operators, such

as modifying the model structure and editing layer parameters, to

generate more diverse mutants and improve the test effectiveness.

Although these methods have shown promising performance,

they still struggle to detect the defects that developers are most

concerned about. Figure 1 shows an example of the response by

PyTorch developers on a defect report [35] submitted by a previous

study [30]. It generates an edge model that is rare in the real world

and detects an inconsistency defect about the group of PyTorch’s

“Linear” and “Batchnorm2d” operators. Developers’ responses in

Figure 1: Developer Response on a Defect Report
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1© and 2© show that they prefer fixing defects in actual models

over those generated by fuzzers. Even if the submitted defect is

confirmed, developers usually ignore it since the model is rare in

real scenes. In other words, the DL framework community mainly

focuses on defects that profoundly threaten actual models applied

in real scenes, such as unreasonable resource scheduling, abnormal

performance, and substandard efficiency. This demonstrates the

gap between developers and previously proposed methods.

More specifically, previous work’s focus is misaligned with the

developers’ community and they suffer from three main limita-

tions from the perspective of DL framework developers. First, they

detect impractical defects. Existing solutions often modify the

structure, parameters, and neuron weights to generate more diverse

DL models, neglecting whether these modifications occur in real de-

velopment and whether the generated models reflect actual cases in

the real world. Though the generatedmodels can expose defects, the

triggered defects are rare in the real world and often automatically

closed without any solutions after confirmation. Second, they over-

look critical defects. They only focus on whether the generated

models can execute normally and achieve consistent results across

different frameworks in model inference while ignoring other sub-

jects (e.g., resource usage) in other stages (e.g., training) of model

lifecycles. It leads to missing the defects related to unreasonable

resource scheduling, substandard efficiency, abnormal performance,

etc, thus limiting the detection ability. These defects are more fre-

quently exposed during development and often interfere with the

users when using frameworks, which is also a concern for devel-

opers. Finally, the last limitation is the consumption of massive

resources. They lack constraints to filter illegal models that may

lead to crashes, produce abnormal outputs not caused by frame-

work defects, and trigger abundant false positives. This wastes time

analyzing low-value test inputs and requires extra manual efforts

to identify false positives, thus reducing test efficiency.

To bridge the gap, we propose a novel DL framework testing

method DevMuT, focusing on effectively exploring valuable test

input space and detecting diverse defects based on developer exper-

tise. Specifically, we collect practical experience in developing DL

models from our industry partners and design seven mutation op-

erators and nine constraints to avoid detecting impractical defects

and save efforts caused by illegal models. Particularly, the mutation

operators are designed to simulate the common operations of the de-

velopers on DL models, and the mutation constraints are adopted to

guide how to mutate models and filter models that are meaningless

in detecting defects. To detect more diverse and critical defects, we

consult our industry partners about the main subject (e.g., resource

usage) and defect type they care about during the model construc-

tion, training, and inference to design corresponding test oracles

and detect diverse defects in these stages. In particular, we analyze

common resources (such as memory, GPU, execution efficiency, and

model performance) to examine differences across different frame-

works. Besides, we detect whether there are crashes or abnormal

outputs during execution. Finally, to further improve the effective-

ness, we utilize the double-Q learning algorithm [20], a popular

reinforcement learning algorithm to select mutation operators and

seed models during the mutation process.

To evaluate DevMuT, we collect 29 models as seeds from nine

kinds of industrial tasks. We apply DevMuT on three popular DL

frameworks (i.e., PyTorch [43], JAX [24], and MindSpore [33]) with

the above DL models as the test inputs. Compared with the state-

of-the-art baseline methods [18, 28], DevMuT achieves an average

increase of 71.68% on the generated model diversity. Meanwhile,

DevMuT can effectively generate legal models with an 81.17% le-

gal rate with an improvement of 28.20% compared with baselines.

Moreover, DevMuT detects 117 defects, with three new kinds of

defects not detected by baselines (i.e., six abnormal memory us-

age defects, six abnormal performance defects, and ten train crash

defects). Among them, developers have confirmed 63 defects. 24

defects have been fixed, and eight defects are labeled with specific

tags such as “Main”, representing the defects that receive enough

attention from developers. We also successfully contributed a pull

request about fixing defects in MindSpore.

Our contributions can be summarized as follows:

• Perspective.We are the first to leverage developer expertise

in designing mutation operators and constraints. Addition-

ally, we extend the detection scope to include the construc-

tion and execution stages (including model training) of the

model lifecycles rather than only the inference stage.

• Approach. We design a practical DL framework testing

method DevMuT, which adopts the preset mutation oper-

ators and constraints combined with double-Q learning to

effectively generate new models common in real scenes and

detect more diverse defects.

• Evaluation. We collect a large-scale benchmark and con-

duct extensive experiments to evaluate the effectiveness of

DevMuT. The results show that DevMuT detects 117 de-

fects (63 confirmed) with three new types of 22 defects that

baselines cannot detect. It also detects eight defects labeled

with specific tags like “Main” to indicate higher priority for

developers.

• Practicality. DevMuT has been applied in the MindSpore

community [14] for continuous quality assurance since De-

cember 2023. We also implement DevMuT and share our

proposed method on GitHub [47] for open science.

2 BACKGROUND AND RELATEDWORK

2.1 DL Model and DL Framework

DL model comprises multiple middle layers consisting of one or

more DL operators, such as convolution, pooling, and activation.

These layers contain many neurons, and the connections between

layers depend on the differentweights of the neurons. Theseweights

are updated with the external input data to fit specific scene tasks

like image classification. The whole lifecycle of DL models includes

the construction, execution, and deployment as shown in Figure 2.

These stages require fundamental support from DL frameworks to

ensure performance and correctness. Framework defects exposed

in the model lifecycle are more diverse and highly relevant to actual

scenes. Therefore, we introduce the model lifecycle and the corre-

lations with DL frameworks. Developing DL models involves de-

signing the architecture based on tasks, including the depth, width,

neurons, and connections of different middle layers. DL frameworks

encapsulate common-used functions as DL operators and hide the

implementation complexity [16] for implementing the model ar-

chitecture [15]. Model execution involves training and inference
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Figure 2: The Lifecycle of DL Models
processes. The training process includes forward propagation, loss

calculation, and back-propagation: (1) forward propagation: the

input data sequentially passes through the middle layers and calcu-

lates with the neuron weights; (2) loss calculation: it calculates the

difference between the model outputs and the real labels through

the loss function to evaluate the accuracy; (3) back-propagation: the

model updates the weights from the last output layer and reverses

to the first input layer by adjusting the gradients of each weight and

optimizing to reduce the loss. The three steps are repeated to reduce

losses and improvemodel performance until it stabilizes. After train-

ing, the model performs inference on new data by executing for-

ward propagation and conducting predictions. DL frameworks also

implement the functionalities for these computing tasks to improve

efficiency and simplify execution scripts. Moreover, DL frameworks

efficiently schedule computing resources for smooth execution and

optimize global resource scheduling to ensure stable and efficient

execution under parallelism requirements. Deployment involves

saving and exporting the trained DL models, converting them into

specific formats, ensuring compatibility with the target environ-

ment, and optimizing for inference speed, resource use, and stable

execution. DL frameworks efficiently support cross-platform com-

patibility for different environments and enhance inference speed

and resource utilization through optimization techniques.

2.2 Testing DL Frameworks via DL Models

Existing works that adopt DL models as test inputs for DL frame-

works can be divided into two types: (1) one kind of method utilizes

mutation operators to mutate existing DL models in public reposi-

tories [19, 28, 42, 56]; (2) another kind of methods generate models

based on predefined templates and constraints [18, 29–31, 55].

Mutation-Based Testing Methods. Pham et al. [42] proposed

CRADLE, the first model-level testing method that utilizes differ-

ential testing by analyzing model execution on different backends

of Keras [27] (e.g., TensorFlow [50], CNTK [10]). Wang et al. [56]

proposed LEMON and adopted mutation operators in DeepMu-

tation [32] and DeepMutation++ [22] combined with the MCMC

strategy, which has been widely used in many fields [8, 9] to guide

the mutation process. It utilizes differential testing on the generated

mutants to detect defects. Guo et al. [19] proposed Audee, which

combined genetic evolution strategy [53] with input-mutation to

generate mutants that can trigger higher inconsistency and outlier

output. Li et al. [28] proposed COMET and added new types of mu-

tation operators, such as parameter-mutation and outlier mutation,

compared with LEMON. Its execution process is similar to LEMON.

Generation-Based Testing Methods. Gu et al. [18] proposed

Muffin, which generates new models based on the structure of the

directed acyclic graph. It focuses on detecting inconsistency defects

in three model execution processes: forward propagation, loss cal-

culation, and back-propagation calculation. Luo et al. [31] proposed

Graphfuzz to test DL inference engines based on graph theory. It

combines six mutation operators with the MCTS algorithm [11]

to explore the generation of new model structures. Liu et al. [29]

proposed Gandalf, which generates different models using context-

free syntax combined with the DQN algorithm [34]. It introduces

15 metamorphic relationships to enhance the testing effectiveness

of different DL frameworks. Liu et al. [30] proposed Neuri, which

generates models through inductive rules. It first collects the call

relationships of framework interfaces from external resources and

analyzes legal interface groups to generate test inputs that can

explore the deeper execution behavior of DL frameworks.

ComparisonwithPrevious Studies.As themutation-basedmethod,

DevMuT shows the following novelties. (1) The mutation operators

adopted in existing methods are directly from the DL model testing

work [22, 23, 32]. In contrast, the mutation operators in DevMuT

are abstracted from the common operations of developers on DL

models. (2) Existing methods fail to filter out illegal models, while

DevMuT goes a step further by filtering them based on developer

tactics. (3) Existing work focuses on detecting the inconsistency de-

fects exposed in model inference while DevMuT detects other kinds

of defects from the lifecycle of DL models closer to real scenes.

3 MUTATION DESIGN BASED ON DEVELOPER
EXPERTISE

To detect defects that are more relevant to real scenes, we interview

developers to gather their expertise in developing DL models and

framework defects. Based on the results, we aim to design mutation

operators to simulate their common operations in development and

design mutation constraints abstracted from development tactics

to guide the mutation and filter illegal models. Next, we introduce

the interview process, present the interview result analysis, and

conclude the findings. Finally, we further introduce the design of

the mutation operators and constraints based on the findings.

3.1 Interview Process

We design an open guideline to clarify our background and inter-

view process with different types of questions, e.g., short answer,

choice, and open-ended questions. Details can be found on our

website [47]. Here are five aspects of interview questions.

Part I: We ask them five short questions about their basic profiles

including jobs, duties in DL framework development, and working

experience in years.

Part II: We ask them three short questions and one multi-choice

question about the subjects (e.g., model scripts) they often process

and their specific operations on these subjects.

Part III: We ask them five short answer questions about their

experience in identifying and dealing with those weird models that

cannot fit into real scenes.

Part IV: We ask them six short answer questions about the defect

they care about with a specific introduction about the damage to

software, symptoms, root causes, trigger frequency, etc. We also

asked how they evaluate the importance of defects.

Part V: We ask them six open-ended questions about their opin-

ions on existing frameworks and expectations for optimizations.
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We invite six professionals from leading Internet companies as

interviewees who are our industry partners, specialize in DL frame-

work quality assurance, and are responsible for developing, testing,

and detecting defects in new releases. With over four years of ex-

perience in defect detection, localization, and fixing, the interview

quality can be guaranteed. We begin by introducing the guidelines

and providing background information on our research. We inform

the participants that the interview will be recorded, obtain their

approval, and ensure confidentiality. Each interview is conducted

online and lasts approximately 30 minutes. After the interview,

we verify that no sensitive information is disclosed and send our

gratitude for their participation.

Results Analysis. After all interviews, one author transcribes

records and extracts the development operations and defect types.

The other three authors verify the results and provide optimization

suggestions. All the authors then discuss different opinions until

reaching a consensus. We conclude with three main findings from

the interview results.

Findings about the CommonOperations in Development. The

operations refer to the developers’ modifications on various model

scripts. We find two types of scripts that developers frequently mod-

ify: (1) structure scripts that design the architecture of models and

(2) execution scripts that control the training and inference. For the

structure scripts, we find that developers often introduce new struc-

tures to replace existing structures, add them to original models,

delete existing structures, and modify the parameters to improve

model performance. For the execution scripts, we find that develop-

ers often modify data, loss function, and optimizer to enhance the

generalization ability and improve convergence speed. Specifically,

they often conduct data augmentation, change the loss function and

optimizer type, and modify their parameters. These findings moti-

vate us to identify the mutation objects and operators, i.e., we adopt

the structure script and execution script as the mutation objects

while the operations are implemented as mutation operators.

Findings about the Tactics in Development. The tactics are (1)

the notes when modifying scripts and (2) the experience of identify-

ing illegal models. For the first kind of tactic, developers provide six

guidelines, covering requirements for adding or replacing new struc-

tures, shape dimensions, parameter setting ranges, and the position

for adding or deleting middle layers. For the second kind of tactic,

developers suggest three tactics, ranging from time-consuming to

output accuracy and gradient value, to identify illegal models. These

findings motivate us to design the constraints to guide the common

operations and identify those weird models after modifications.

Findings about the Defects Developers Care About.We con-

clude the subjects that developers often monitor to detect defects

and the relevant defect types. Specifically, developers often focus on

resource usage (e.g., CPU, memory, and GPU), model performance

such as training loss and inference evaluation, execution efficiency,

and output accuracy in model execution. The defects related to

these subjects (e.g., substandard performance and crashes) achieve

higher fix priority of developers since they believe these defects

frequently appear in real-world scenarios and significantly impact

users. The findings guide us to design test oracles to detect defects

and are introduced in Section 4.3.

We present these findings to our interviewees for confirmation

and obtain their approval. Moreover, they give corresponding sug-

gestions about defect detection. All the details of the interviews can

be found on our website [47]. In summary, we design seven muta-

tion operators to simulate the common operations of developers

on the structure and execution scripts based on the above results.

Meanwhile, we also design six constraints to guide mutation and

three constraints to filter illegal mutants abstracted from the tactics.

Besides, we focus on four types of defects as recommended by de-

velopers with ten test oracles for detection. The details of mutation

operators and constraints are in the following part of this section

while the defects and the test oracles are in Section 4.3.

3.2 Mutation Operator Design

We design the mutation operators based on interview insights from

three aspects. Modified Objects. Developers frequently modify

the model structure and execution script, focusing on middle layers,

layer parameters, and loss/optimizer functions to enhance perfor-

mance. This leads us to target these objects for mutation. Operator

Type. Developers often add, delete, or replace middle layers, and

expand or reduce data outputs or layer parameters. We implement

mutation operators to simulate these actions. Mutation Guide-

lines. Developers adhere to guidelines, such as not placing one

Conv2D layer immediately after another, to maintain model perfor-

mance. We incorporate these constraints to ensure the validity of

mutations. The details about the mutation operators are as follows.

We adopt (1) the model structure script and (2) the execution script

as mutation subjects and propose seven mutation operators (MOs).

As the first kind of mutation subject, the model structure can

be divided into three types: (1) backbones for extracting features

from input data such as the VGG [48], ResNet [21], Inception [49];

(2) cascade operators consisting of multiple DL operators for ex-

ecuting specific tasks (e.g., the RPN [44] structure for identifying

target area in object detection); (3) basic operators that cannot be

further subdivided, such as Conv2d, etc. The five kinds of common

operations on the above three types of structures are as follows and

each operation represents one type of mutation operator.

MO1: Existing Structure Replacement. This mutation operator

refers to inducing external model structures (such as new back-

bone, cascade operators, and basic operators) to replace the existing

structures in the seed model.

MO2: Shape and Dimension Change. This mutation operator

refers to adjusting the input/output size or dimension of the basic op-

erators or the first and last of cascade operators. Developers enlarge

dimensions or shapes to enhance learning on complex data, reduce

them to lower computing costs, and improve generalization ability.

MO3: Series Connection Addition/Deletion. This mutation op-

erator refers to changing the depth (i.e., the total number of middle

layers) of DL models by adding or deleting existing cascade or basic

operators that are ordered in series connection. Developers often

insert new structures to enlarge the model depth, learn the data

feature deeper, and delete replicate structures for higher efficiency.

MO4: Parallel Connection Addition/Deletion. This mutation

operator refers to changing the width (i.e., the total number of

neurons in each layer) of DL models by adding or deleting branches

consisting of cascade operators or basic operators. Developers add

new branches to capture multi-dimensional data features, enhance
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model robustness, and enable parallel training. Besides, They also

prune branches to avoid overfitting and simplify computation.

MO5: Parameter Value Change. This mutation operator refers

to modifying the parameter values of the basic operators. Devel-

opers modify layer parameters to adjust the model’s width and

depth, avoid overfitting, and adapt to new tasks, as changes in these

parameters influence performance.

As the second kind of mutation subject (i.e., the execution script),

the main objects include the loss function, optimizer, training/test

set, and parameters to decide training or inference execution. We

design the following two mutation operators on loss function and

optimizer as recommended by developers.

MO6: Loss Function Change. This mutation operator involves

the loss function’s type and parameter value change, as developers

often do it to adapt to different kinds of new tasks.

MO7: Optimizer Change. This mutation operator involves the

optimizer’s type and parameter value change, as developers often

do to promote the training process.

Finally, we count their proportion mentioned by interviewees:

MO1,MO2,MO3,MO4,MO5,MO6 andMO7 arementioned by 100%,

50%, 83.3%, 83.3%, 66.7%, 50% and 50% interviewees, respectively.

3.3 Mutation Constraint Design

We collect the tactics for modifying models and estimating whether

the models are legal from the interview results. Specifically, we

design two types of constraints (MCs): (1) to guide mutation on

seed models and (2) to filter illegal models. Such MCs are adopted

to reduce false positives and improve the efficiency of DevMuT. We

introduce these MCs and show the details on our website [47].

MC1: Structure Functionality Consistency Constraints. The

new structures should have the same functionality to keep the con-

sistency of the target model (e.g., replace a normal convolution with

a depthwise separable convolution) since replacing new structures

of different functions (e.g., replace a normalization layer with an ac-

tivation layer) may disrupt the stability, increasing execution costs

and reducing the interpretability. We collect five kinds of backbones

(e.g., ResNet) to extract image data features, seven kinds of cascade

operators (e.g., residual block) to enhance the feature learning, and

five kinds of basic operators (e.g., avgpool and maxpool operators)

with different functionalities for candidate replacement.

MC2: Data Calculation Scale Constraints. We set the change

rate of shape or dimension from one-fourth of the original shape

or dimension to four times as recommended by developers to avoid

excessive computing costs.

MC3: Series Structure Addition/Deletion Constraint. We only

add new cascade operators with the same task type and avoid

adding the same basic operators at the same position (e.g., add

one “Conv2d” after one “Conv2d”). Besides, we only select one of

the multiple similar structures to delete (e.g., delete the one entire

“Conv2d-Batchnorm2d-Relu” structure in VGG) for the functionality

consistency between the mutation model and the origin. According

to the developer’s recommendation, the range for adding or remov-

ing series structures for common image classification and object

detection models should not exceed 20% of the original model depth.

MC4: Parallel Structure Addition/Deletion Constraint. Sim-

ilarly to MC3, the new branch structure should share the same

functionality as the original structure. Besides, the same position

cannot be added to more than two branches to reduce time costs.

MC5: Parameter Value Range Constraints. The change value

range is decided based on their effects on model performance. We

select 12 kinds of parameters from four basic operators as the mu-

tation range followed by the recommendation of developers. For

example, for the parameter “kernel_size” of the “Conv2d” operator,

we follow the developer’s recommendation and adopt three differ-

ent sizes: “3*3”, “5*5” and “7*7” to adapt to different data features.

The other value change range can be found on our website [47].

MC6: Loss/Optimizer Modification Constraints. The types of

loss functions and optimizers with their parameters are decided

based on the model tasks. We collect four kinds of optimizers and

four kinds of loss functions as the candidates.

Besides, we propose three filter constraints to filter weird models:

MC7: Execution Time Constraints. Developers suggest that the

acceptable range for the increased training time of the generated

model is less than two to three times and the increased inference

time is less than one to two times compared with the original. We

take the inference time as the standard and set the threshold three

times to eliminate external interference.

MC8: Output Accuracy Constraints. The output value exceeding

the accuracy range (e.g., the accuracy range of MindSpore is under

1e38 at “float32”) is meaningless and produces outliers like “NAN”

“inf”. This may induce more false positives and reduce test effec-

tiveness. We adopt the accuracy range of “float16”, “float32” and

“float64” as the constraints to filter those models with invalid output.

MC9:Gradient value rangeConstraints. If the output gradient of

the generated model contains outliers (exceeds 1e2 or is lower than

1e-3), it is filtered. Suchmodels do not change performance since the

early training stage and are worthless for analyzing their execution.

4 APPROACH
4.1 Overview

Figure 3 presents the workflow of DevMuT. It consists of two parts:

Model Mutation that generates mutants, and Defect Detection that

performs defect detection. In Model Mutation, DevMuT adopts two

deep Q-networks to select mutation operators and seed models.

DevMuT mutates the seed model under the guideline constraints

(MCs 1-6 in Section 3.3) and updates the Q-networks based on the

reward calculated from the evaluation of the current mutation. It

filters out mutants that violate constraints (MCs 7-9 in Section 3.3)

and adds legitimate ones into the generatedmodel pool. The process

iterates until mutation finishes (Section 4.2). In Defect Detection,

DevMuT first detects and records the defects exposed in mutants.

Based on rewards, DevMuT selects part of the models and further

executes them to detect defects in resource scheduling, execution

crashes, model performance, and output accuracy (Section 4.3).

4.2 Model Mutation

This section introduces how DevMuT mutates models as shown in

Algorithm 1 (Lines 1− 22) while the core is to select mutation oper-

ators and seed models. DL models contain complex structures and

numerous parameters and are more complicated after mutation, fur-

ther increasing the exploration difficulty of the test input space. To

overcome this challenge, DevMuT adopts double-Q learning [20], a
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Figure 3: Workflow of DevMuT

Algorithm 1: The DevMuT Algorithm

Input :𝑀 : the original DL model; 𝑆𝑝𝑜𝑜𝑙 : the mutation operator pool; 𝑁 : the number of

mutation execution rounds; 𝑘 : the selected number of models;
Output :𝐷𝑒𝑓 𝑒𝑐𝑡𝑆𝑒𝑡 : the set of all the detected defects;

1 𝑛 ← 0, d← 𝑀 , 𝐷𝑒𝑓 𝑒𝑐𝑡𝑆𝑒𝑡 ← ∅, 𝐷 ← {𝑀 }, init(𝑄1,𝑄2);

2 while n ≤ N do
3 𝑝 ← random.uniform(0, 1);

4 if 𝑝 ≤ 𝜖 then
5 s← 𝑟𝑎𝑛𝑑𝑜𝑚.𝑐ℎ𝑜𝑖𝑐𝑒 (𝑆𝑝𝑜𝑜𝑙 ) ;

6 else

7 s← 𝑆𝑝𝑜𝑜𝑙 [argmax(
𝑄1 (𝑑,∗)+𝑄2 (𝑑,∗)

2 ) ];

8 𝑑′ ← s(𝑑);
9 d.select_num++, d.snums[indexof(s)]++;

10 if judge(𝑑′) == 1 then
11 r← -1, 𝑑′ .r← r;

12 𝑑′ ← 𝑈𝐶𝐵𝑆𝑜𝑟𝑡 (𝐷 ) ;

13 else
14 r← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑑′, 𝑑 ) , 𝑑′ .r← r;

15 if 𝑑′ not in 𝐷 then
16 𝐷 .add(𝑑′ .copy());

17 p← random.uniform(0, 1);

18 if p ≤ 0.5 then
19 s’← 𝑆𝑝𝑜𝑜𝑙 argmax(𝑄1 (𝑑

′, ∗) )

𝑄1 .𝑢𝑝𝑑𝑎𝑡𝑒 (𝑄1 (𝑑, 𝑠 ) + 𝛼 [𝑟 + 𝛾𝑄2 (𝑑
′, 𝑠′ ) − 𝑄1 (𝑑, 𝑠 ) ] )

20 else
21 s’← 𝑆𝑝𝑜𝑜𝑙 argmax(𝑄2 (𝑑

′, ∗) )

𝑄2 .𝑢𝑝𝑑𝑎𝑡𝑒 (𝑄2 (𝑑, 𝑠 ) + 𝛼 [𝑟 + 𝛾𝑄1 (𝑑
′, 𝑠′ ) − 𝑄2 (𝑑, 𝑠 ) ] )

22 d← d’.copy(), n++;

23 foreach 𝑑 in D do
24 ifbug← 𝑑𝑒𝑡𝑒𝑐𝑡_𝑏𝑢𝑔(𝑑 , 𝐷𝑒𝑓 𝑒𝑐𝑡𝑆𝑒𝑡 , ”𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛”);
25 if ifbug then
26 𝐷 .remove(𝑑);

27 𝐷 ← 𝑆𝑜𝑟𝑡 (𝐷 ) [: 𝑘 ];
28 foreach 𝑑 in 𝐷 do
29 𝑑𝑒𝑡𝑒𝑐𝑡_𝑏𝑢𝑔(𝑑 , 𝐷𝑒𝑓 𝑒𝑐𝑡𝑆𝑒𝑡 , ”𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛”);

30 return 𝐷𝑒𝑓 𝑒𝑐𝑡𝑆𝑒𝑡 ;

reinforcement learning strategy that utilizes two deep Q-networks

for selection. It can efficiently identify valuable parts of the test

input space and continuously explore it with two Q-networks.

The problem in our scene is modeled using reinforcement learn-

ing (RL) to explore the test input space. Key elements of RL are

“state” which represents the current situation of the environment,

“action” which represents the transformations between two states,

and “reward” which represents the feedback received from the en-

vironment. In our scenario, “state” is the generated model, while

“action” is the mutation operator. Since we aim to generate more

diverse models and different from the original model, we adopt the

output distance between the generated and original models as the

“reward”. The workflow based on the above definition is shown in

the following parts.

DevMuT first initializes the parameters (Line 1): (1) the selected

seed model 𝑑 to mutate; (2) two networks 𝑄1 and 𝑄2 for selecting

mutation operators; (3) the set 𝐷𝑒𝑓 𝑒𝑐𝑡𝑆𝑒𝑡 that stores detected de-

fects; (4) the mutation counter 𝑛; (5) the set 𝐷 stores the generated

models. Then it executes 𝑁 rounds of mutation (Lines 2-22). To

effectively select mutation operators, DevMuT utilizes the 𝜖-greedy
policy [34] strategy: it generates a probability 𝑝 from the symmetric

distribution (0,1) (Line 3) and compares it with the preset threshold

𝜖 (Line 4). If 𝑝 is smaller than 𝜖 , DevMuT randomly selects one

mutation operator (Line 5). Otherwise, it calculates the output av-

erage of 𝑄1 and 𝑄2 for selecting the mutation operator 𝑠 (Line 6-7).
The probability 𝑝 determines the likelihood of selecting a mutation

operator strategy. Operators are more likely selected based on the

output of two Q-networks with larger 𝑝 values, as this double Q-

network strategy explores a more diverse test input space. Then

DevMuT mutates 𝑑 with 𝑠 to generate the model 𝑑′ (Line 8). If the
current mutation fails (e.g., generate crash models) or generates

those illegal models that violate three constraints (Line 10), Dev-

MuT sets the reward 𝑟 to -1 for punishing the selection of 𝑠 based
on 𝑑 (Line 11) and selects a new seed model with the maximum

value of𝑈𝐶𝐵 (Line 12) and assign it to 𝑑′.𝑈𝐶𝐵 [2] is often adopted

to avoid trapping into the local optimum and give more chances

to explore new space. The definition of𝑈𝐶𝐵 is shown as follows:

𝑈𝐶𝐵(𝑑) = 𝑑.𝑟 + 𝑐 ∗

√
ln (𝑑.𝑠𝑒𝑙𝑒𝑐𝑡_𝑛𝑢𝑚)

𝑑.𝑠𝑛𝑢𝑚𝑠 [𝑖𝑛𝑑𝑒𝑥𝑜 𝑓 (𝑠)]
(1)

In the above formula, 𝑑.𝑟 represents the current reward of 𝑑 ,
𝑑.𝑠𝑒𝑙𝑒𝑐𝑡_𝑛𝑢𝑚 represents the selected counts of the seed model,

𝑑.𝑠𝑛𝑢𝑚𝑠 represents the selected counts of 𝑠 in 𝑑 , 𝑐 is the weight

to balance the left and right parts, respectively. 𝑑.𝑠𝑒𝑙𝑒𝑐𝑡_𝑛𝑢𝑚 and

𝑑.𝑠𝑛𝑢𝑚𝑠 are updated after the mutation (Line 9).

If the generated model 𝑑′ does not violate the constraints (Line
13), DevMuT calculates reward 𝑟 between the current seed model

𝑑 and 𝑑′ (Line 14) and update the model pool 𝐷 (Lines 15-16). The

definition of the reward is as follows: Given two models𝐷1, 𝐷2 with

𝑛 layers 𝑓 = 〈𝐿0, 𝐿1, · · · , 𝐿𝑛〉 and an input tensor 𝑥 , the output of the
𝑖-th layer is recorded as 𝑓𝐿𝑖 (𝑥). We adopt Chebyshev distance [4]

for calculating the distance between 𝐷1 and 𝐷2 on layer 𝑖:

𝑟𝐷1,𝐷2

𝑓𝐿𝑖
(𝑥) =𝑚𝑒𝑎𝑛( |𝐷1 𝑓𝐿𝑖

(𝑥) − 𝐷2 𝑓𝐿𝑖
(𝑥) |) (2)

We adopt the final layer as the basis for calculating reward. Then,

DevMuT randomly updates one of the two Q-networks (Lines 17-

21). We follow the original update process of double Q-learning, i.e.,

combine the currently expected reward𝑄1 (𝑑, 𝑠) or𝑄2 (𝑑, 𝑠) (left part
of the Lines 19 and 21) with the future expected reward 𝑄1 (𝑑

′, 𝑠′)
or 𝑄2 (𝑑

′, 𝑠′) (right part of the Lines 19 and 21). The parameters
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𝛼 and 𝛾 are adopted to control the update speed and measure the

contribution of the future reward, respectively. Finally, DevMuT

utilizes 𝑑′ as the seed model of the next round (Line 22).

4.3 Defect Detection

This section introduces DevMuT for defect detection and presents

the test oracles. As shown in Algorithm 1 (Lines 23-29), DevMuT

further detects defects within mutation by analyzing the models in

set 𝐷 that stores generated legal models (Line 24) and removes the

defective models from 𝐷 (Lines 25-26). DevMuT then sorts 𝐷 based

on the reward value and selects the top𝑘 models (Line 27) for further

analysis. It further trains the selected models and executes inference

to detect defects (Lines 28-29). Finally, DevMuT returns 𝐷𝑒𝑓 𝑒𝑐𝑡𝑆𝑒𝑡
as the output (Line 30). Since these subjects have different value

ranges on different models due to the input data, scene task types,

etc, we run all the models across different frameworks to collect

preliminary results (e.g., memory usage size) about these subjects.

Then, we further set the thresholds for determining the generated

models expose the relevant defects. It also records crashes during

execution. We use a table to show the thresholds of each model

about these subjects, which can be found on our website [47]. The

test oracles for determining whether these subjects expose defects

are as follows.

Performance Defect. The performance involves the training loss,

execution efficiency, and inference evaluation. We design two test

oracles about loss: (1) the model outputs an abnormal loss value

(e.g., NAN and inf) on one framework but not on another; (2) when

the loss value is normal, we adopt dynamic time warping (DTW)

distance [36] to measure the loss similarity of the models across

different DL frameworks and report defect if the DTW distance

exceeds the preset threshold. It is commonly used in speech recogni-

tion [57] tomeasure the similarity between two time series. Suppose

one model executes 𝑛 rounds and records the average loss value

of each round across different DL frameworks. Record two frame-

works as 𝑋 and 𝑌 and the two loss series are 𝑋𝑙𝑜𝑠𝑠 = (𝑥1, 𝑥2, ..., 𝑥𝑛),
and 𝑌𝑙𝑜𝑠𝑠 = (𝑦1, 𝑦2, ..., 𝑦𝑛). 𝐷 (𝑖, 𝑗) is the DTW distance between the

first 𝑖 elements of 𝑋 and the first 𝑗 elements of 𝑌 . The calculation
of DTW is shown in the following formula:

𝐷 (𝑖, 𝑗) = 𝑑 (𝑥𝑖 , 𝑦 𝑗 ) +𝑚𝑖𝑛(𝐷 (𝑖 − 1, 𝑗), 𝐷 (𝑖, 𝑗 − 1), 𝐷 (𝑖 − 1, 𝑗 − 1)) (3)

In Formula (3), 𝑑 (𝑥𝑖 , 𝑦 𝑗 ) represents the euclidean distance be-

tween𝑥𝑖 and𝑦 𝑗 andWe set𝐷 (0, 0) = 0,𝐷 (𝑖, 0) = ∞ and𝐷 (0, 𝑗) = ∞

to ensure the correctness. We calculate 𝐷 (𝑛, 𝑛) as the distance be-
tween 𝑋𝑙𝑜𝑠𝑠 and 𝑌𝑙𝑜𝑠𝑠 .

Besides, we record the time of the model across different frame-

works during model training and inference. If the time of one frame-

work far exceeds the other compared with the preset threshold,

DevMuT reports an efficiency defect. We also compare the evalua-

tion metric of the models across different frameworks and report a

performance defect when the evaluationmetric difference of models

across different frameworks exceeds the preset threshold.

Resource Defect. The resources refer to the GPU and memory, and

the defects are related to unreasonable scheduling, such as memory

leaks. DevMuT records the size of memory and GPU used across

different DL frameworks during execution and detects defects from

the perspective of the three aspects: (1) the used resources anoma-

lously increase and lead to memory or GPU leak; (2) the maximum

used resource exceeds the preset threshold; (3) the cosine similarity

calculated by the memory or GPU size of the models across different

DL frameworks is lower than the preset threshold.

Accuracy Defect. The accuracy is related to the model outputs in

forward propagation and back-propagation. If the model outputs

across different frameworks exceed the preset distance threshold,

DevMuT reports an accuracy defect. We also adopt Chebyshev

distance [4] to measure the output distance, and its calculation is

shown in Formula 2. Besides, if the model’s output contains outliers

on one framework but not on another or contains different outliers,

DevMuT also indicates an accuracy defect.

Crash Defect. We detect the crashes exposed in the mutation

process and model execution (i.e. training and inference). More

specifically, if a model mutates successfully on one framework but

fails on another or exposes crashes during the training or inference

on one framework but not on another, we report a crash defect.

5 EXPERIMENT DESIGN

5.1 Research Questions

Our study investigates the following three research questions:

• RQ1: How does DevMuT perform compared to existing

work? We evaluate the performance of DevMuT from the perspec-

tive of the diversity of the generated test inputs and detected defects

compared to the existing methods.

• RQ2: What kind of defects are detected by DevMuT? We

analyze the defects detected by DevMuT and show the typical cases

in detail, including the types, symptoms, and root causes.

• RQ3: How does the search strategy contribute to DevMuT?

We perform an ablation experiment to evaluate the double-Q search

strategy’s effectiveness and its contribution to DevMuT.

5.2 Benchmark

The benchmark used in our study includes DL frameworks, DL

models, and the corresponding datasets. The details are as follows.

DL Frameworks.We select the latest versions of three DL frame-

works as the test objects, i.e., PyTorch 1.10.1, MindSpore 2.2.0, and

JAX 0.4.27. PyTorch is a popular DL framework that supports flexi-

ble conversion to different mobile systems and dynamic computing

graphs for convenience in development. MindSpore is a new DL

framework designed for various running environments with an

efficient execution engine to enable users to manage computing

resources and optimize task execution efficiently. JAX provides pow-

erful automatic differentiation and GPU/TPU support and is widely

used in DL development and scientific computing. Both three DL

frameworks have been widely adopted in prior work [29, 30, 58]

and have active developer communities in the recent three years.

DLModels andDatasets.We collect 17 DLmodels from real indus-

try scene tasks to ensure the practical meaning of our study. Specif-

ically, VGG16, ResNet50, MobileNetv2, and VIT are four image clas-

sification models used in facial recognition. The YoLoV3, YoLoV4,

and two SSD models conduct object detection tasks and are widely

applied in autonomous driving. The Unet, Unet++, DeeplabV3, and

DeeplabV3++ are semantic segmentation models for medical diag-

nosis. The TextCNN conducts sentiment analysis on movie reviews.

Lastly, SSIM-AE, PatchCore, OpenPose, and CRNN handle image-

based defects, anomaly detection, key point detection, and scene
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Table 1: Statistics of DL Models in Our Study
Scene Task Model Parameters Depth Width

Image classification

VGG16-1 134,314,186 53 4,096

ResNet50-1 23,581,642 126 2,048

MobileNetV2-1 2,270,794 141 1,280

VIT 87,423,754 150 3,072

AlexNet* 24,736,682 17 4,096

LeNet5-1* 107,764 10 120

LeNet5-2* 218,302 11 120

ResNet50-2* 123,914,152 126 2,048

VGG19* 143,661,736 45 4,096

InceptionV3* 1,254,998,216 26 1,000

DenseNet121* 7,045,504 248 1,000

VGG16-2* 138,353,320 39 4,096

Xception* 29,384,336 153 2,048

MobileNetV2-2* 4,234,024 57 1,024

Regression Prediction
LSTM-1* 81,301 7 1

LSTM-2* 3,726 4 1

Object Detection

SSD-resnet50-fpn 33,370,814 232 2,048

SSD-mobilenetv1 11,329,461 143 1,024

YoloV3 62,001,757 222 1,024

YoloV4 65,741,916 334 1024

Semantic Segmentation

DeeplabV3 58,149,077 263 2,048

DeeplabV3++ 59,453,824 272 2,048

Unet 31,029,698 53 1,024

Unet++ 9,045,280 88 512

Text Classification TextCNN 859,146 12 96

Anomaly Detection PatchCore 68,951,464 129 2,048

Defect Detection SSIM-AE 2,720,768 39 500

Key Point Detection OpenPose 52,311,446 112 512

Scene recognition CRNN 4,339,621 29 512

recognition. Besides, we also collect 12 DL models (labeled with “*”

in Table 1) from existing work [19, 28, 56] to ensure the fairness of

our study. The details are shown in Table 1. The first and second

columns show the task and name of the DL models. The third to

fifth columns show the parameter scale, model depth, and width.

5.3 Baseline Methods

We select two state-of-the-art DL framework testing methods, i.e.,

COMET [28] and Muffin [18]. COMET is the latest mutation-based

testing method with comprehensive types of mutation operators

ranging from weight-mutation, input-mutation, and parameter-

mutation to structure-mutation, which shares the same type as

DevMuT. It aims to improve the middle layer coverage and generate

new model structures with more diversity. Muffin generates new

models based on the directed acyclic graph structure and detects

defects in the model training stage, including forward calculation,

loss calculation, and backward calculation, which shares the most

common detection scope with DevMuT.

5.4 Measurements

We evaluate DevMuT based on two measurements, i.e., generated

mutants and detected defects. For the first kind of measurement,

we adopt three kinds of layer coverage to evaluate the diversity of

the generated models adopted in previous work [28]:

Layer Input Coverage (LIC). Record the total number of data

types as 𝑁𝑡𝑦𝑝𝑒 , the total number of dimensions as 𝑁𝑑𝑖𝑚 , and the to-

tal number of shapes as 𝑁𝑠ℎ𝑎𝑝𝑒 . The number of data types covered

is 𝑛𝑡𝑦𝑝𝑒 , the number of dimensions covered is 𝑛𝑑𝑖𝑚 , and the num-

ber of shapes covered is 𝑛𝑠ℎ𝑎𝑝𝑒 . The layer input coverage 𝐼𝑛𝑝𝑢𝑡𝑐𝑜𝑣
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Figure 4: Comparison on the Diversity of Generated Models

is calculated as the result of the sum of 𝑁𝑡𝑦𝑝𝑒 , 𝑁𝑑𝑖𝑚 , and 𝑁𝑠ℎ𝑎𝑝𝑒 ,

divided by the sum of 𝑛𝑡𝑦𝑝𝑒 , 𝑛𝑑𝑖𝑚 , and 𝑛𝑠ℎ𝑎𝑝𝑒 .
Layer Parameter Coverage (LPC). Record the number of different

middle layers in the current generated models as 𝑛𝑢𝑡 , and the num-

ber of different edges in all the generated models as 𝑁𝑢𝑡 . The layer

parameter coverage is calculated as the result of 𝑁𝑢𝑡 divided by 𝑛𝑢𝑡 .
Layer Sequence Coverage (LSC). The layer sequence refers to

the groups consisting of two different framework interfaces. Record

the total number of all the interface groups that appeared in the

execution as 𝐴𝑃𝑠𝑢𝑚 and the number of current generated models

as 𝐴𝑃𝑐𝑢𝑟 . The layer sequence coverage is calculated as the result

of 𝐴𝑃𝑠𝑢𝑚 divided by 𝐴𝑃𝑐𝑢𝑟 .
Besides, we further adopt the Scott Knott ESD test [6, 7, 25]

to analyze the performance of 𝐷𝑒𝑣𝑀𝑢𝑇 and baseline methods on

these three metrics. This statistical test method is often used to

effectively identify significant differences and categorize the results

of different methods into distinct classes.

For the second kind of measurement, we measure the defect

detection ability of different testing methods based on the type and

count of detected defects. Then we further count the number of re-

ported defects, the confirmed defects, and the fixed defects in detail.

6 RESULT ANALYSIS

6.1 RQ1: Compared with Baseline Methods

We evaluate DevMuT from two aspects: (1) the diversity of gen-

erated models and (2) the detected defects compared to baseline

methods. For the first aspect, we run DevMuT and baseline meth-

ods for 100 rounds followed by the experiment settings of existing

work [56] and calculate the 𝐿𝐼𝐶 , 𝐿𝑃𝐶 , and 𝐿𝑆𝐶 metrics. Besides, we

also count the illegal models that violate the mutation constraints.

For the second aspect, we analyze the defects detected by baselines

exposed in our experiment and previous studies with those de-

tected by DevMuT. Besides, COMET cannot execute on DL models

collected in our study (models are not labeled with “*” in Table 1)

for the following reasons. (1) Its implementations cannot fit the

new models since their structures are more complex than those

previously used, thus always leading to crashes. (2) Modifying the

implementations to accommodate new models may lead to uncon-

trollable effects on COMET and compromise fairness. Therefore,

we only run DevMuT and COMET on those 12 DL models applied

in existing work for fairness.

Comparison based on the Generated Models. We show the

average results in Figure 4. The 𝑥 axis represents the mutation

rounds while the 𝑦 axis represents the average value of three diver-

sity metrics of each generated model. Among the three diversity

measurements, DevMuT outperforms the other two strategies in
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𝐿𝑆𝐶 and ranks second in the other two metrics. However, DevMuT

achieves the best performance based on the average of the three

indicators as shown in Figure 4. More specifically, DevMuT can

introduce richer cascade operators (such as FPN structures) into the

original model, thus increasing more diverse layer sequences. Since

DevMuT follows the default setting of new structures, the param-

eter settings and input/output sequence are lower than Muffin and

COMET, respectively. COMET combines the three metrics to select

the mutation operator and seed model with no constraint, e.g., the

value range of parameter mutation, so it can achieve higher 𝐿𝑃𝐶 .
However, the generated models of COMET greatly differ from the

real-world model, with 36.69% percent (434 illegal models in 1183

models) of models that violate the mutation constraints. DevMuT

only generates 226 illegal models and achieves 81.17% legal rates in

total. Muffin has a strong shape/dimension matching mechanism

and can effectively avoid models with crashes. Meanwhile, it can

generate more diverse groups of input/output sequences of middle

layers, thus achieving higher 𝐿𝐼𝐶 than the other twomethods. How-

ever, although the generated model does not violate the mutation

constraints, they are only a combination of several DL operators and

not actual models that can adapt to industrial tasks. Besides, we con-

duct Scott Knott ESD test on these three metrics and show results in

Figure 5. The 𝑥-axis represents different methods, while the 𝑦 -axis

shows the values of the three metrics. The dashed line perpendic-

ular to the 𝑥-axis separates methods with significant performance

differences; methods on opposite sides show statistically significant

differences, whereas those on the same side do not. In this figure,

though DevMuT may not always achieve the highest model diver-

sity, it maintains a comparable ability to generate diverse models

while ensuring the model’s validity and practical significance, and

its overall performance is superior to existing methods.

Comparison based on the Detected Defects.We count the de-

fects detected by different methods and show the results in Figure 6.

In particular, the 𝑥 axis represents the method name; the 𝑦 axis

represents the counts of the total detected defects, the confirmed

defects, and the fixed defects. Specifically, COMET reports no in-

consistency defects, four NAN defects, and six crash defects in

our study after manual inspection. Four NAN defects and three

crash defects receive confirmation. Besides, COMET previously

reports 28 defects, of which developers confirm 20, including five

inconsistency defects, three wrong output defects, one NAN defect,

seven interface implementation defects, two conversion failure de-

fects that are related to the conversion frameworks, and two “Core

Dump” defects related to two DL operators. Muffin does not run

on new DL frameworks and reports 17 inconsistency detects, one

NAN defect, and 21 crash defects in their previous studies. Since

they do not report further confirmed information, we fix “N/A”

on the count of confirmed and fixed defects of Muffin in Figure 8.

Among all inconsistency defects, over 66.7% are due to operator

implementation errors, with only one defect related to the incorrect

use of the “BinaryCrossentropy” loss function in TensorFlow. The

back-propagation inconsistency defect stems from the improper im-

plementation of the “ReLU” function. One NAN defect is attributed

to an implementation error in the “GlobalMaxPooling” function

while the remaining 21 crash defects have not been reported or

analyzed in detail. DevMuT detects 17 defects during execution,

and 14 are confirmed. Except for one inconsistency defect and three

NAN defects, DevMuT can detect three new types of defects (i.e.,

memory leak, efficiency and performance decrease during training,

and crashes exposed in training) that cannot be detected by exist-

ing work. The number of three types is all two. The remaining six

defects are related to the wrong implementations, unreasonable re-

source scheduling of DL operators, and other framework interfaces.

Answer to RQ1. (1) DevMuT achieves 71.68% diversity average

improvement on the generated models and achieves a higher 81.17%

legal rate exceeding baselines by 28.20%. (2) DevMuT can detect

three new kinds of defects that baselines cannot detect and shows

a higher detection ability that meets the expectations of developers

on defect detection.

6.2 RQ2: Analysis on Detected Defects

DevMuT detects 117 defects, and 63 are confirmed; eight are la-

beled with specific tags like “Main”, and 24 defects have been fixed.

Throughout the DL model lifecycle, which includes construction,

execution, and deployment, we count seven defects (e.g., failure
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Figure 7: Defects Detected by DevMuT

to initialize the middle layer) in the construction stage, 21 defects

(e.g., abnormal loss) in the training stage, 12 defects (e.g., inference

performance degradation) in the inference stage and 14 defects (e.g.,

crashes in pre-trained weight load) in the deployment stage among

the 63 confirmed defects (the left 9 defects are document and frame-

work functionality defects). We use Figure 7 to show the defects

detected by different test oracles: the 𝑥 axis represents the names

of different types of defects; the 𝑦 axis represents the number of the

total detected defects, the confirmed defects, and the fixed defects.

The typical cases of each type are shown in the following part.

Performance Defect. DevMuT detects 9 loss defects, 3 inference

evaluation defects, and 3 efficiency defects. Firstly, we present

a defect related [39] to NAN loss. Specifically, DevMuT mutates

“TextCNN” for 20 rounds and detects the loss of MindSpore model

changes from “NAN” to “inf” during the first train epoch while the

loss of PyTorch model changes from 0.171 to 5.969. We find the

output distances of the middle layers across different frameworks

range from 1e-1 to 1e3 after training on 200 batches, indicating a

defect in the framework interfaces related to weight updates. De-

velopers have confirmed the defect report and replied to fix it. Next,

we show two examples of the performance defect [40] in model

inference and efficiency defect [41], respectively. The inference eval

of the “LeNet-5” from MindSpore remains at 11.35% with the loss

hovering between 2.0-2.9 in the first 46 epochs. Then, it begins to

increase to 30.60% until it rises to around 99% with the loss in 1e-5-

1e-7. However, from the 164th epoch, although the accuracy was

still around 98.64%, the loss value changed to -inf, and then the loss

value remained unchanged at NAN, with the accuracy plummeting

to 9.8%. After the analysis, developers find the implementation of

the loss function, i.e., the “CrossEntropyLoss” contains defects. It is

fixed in the latest version. Another example of an efficiency defect is

“Openpose”. The generated model from MindSpore is 45.86% slower

than that of PyTorch after 50 mutations. After preliminary analysis,

we find the calculation time is mainly spent on the “Flatten” opera-

tor. Developers confirm that the “Flatten” operator of MindSpore

lacks necessary optimization and is not supported in the current

version. This defect will be fixed in future updates.

Resource Defect. Among the 11 defects, they can be subdivided

into two types: (1) six are memory leaks caused by resource sched-

uling mechanisms during training, and (2) five are unreasonable

memory allocations for single DL operators. For the first type, we

list an example [45] of the “LeNet-5-1” model to present. We find

the memory usage rate slowly increases during the execution stage.

Specifically, memory usage starts at 0.704GB, reaches 5.696GB after

one day, and 9.408GB the next day. This is caused by continuous

caching and failure to timely recycle unused memory by the Mind-

Spore decorator “ms.jit”. Developers label it as a valuable defect

report and decide to fix it with their highest priority. The next ex-

ample [46] shows a typical case of the second defect type. After 50

mutations of “VGG16-1”, we find that the MindSpore model threw a

memory allocation exception, while the equivalent PyTorch model

normally executed because the “Pad” operator within the model

cannot process the input data size. The developers confirmed that

it is caused by the wrong implementations of the “Pad” operator

on secure memory settings.

Accuracy Defect. DevMuT detects 29 accuracy defects, and 13

of them have been confirmed. Among the confirmed defects, nine

are related to NAN outputs, and we list one typical example [1]

related to the Ascend hardware. Specifically, the output of “VGG16-

1” changes to NAN on MindSpore and PyTorch after six mutation

rounds. However, when we reproduce it from GPU v100 to Ascend

910, the output changes from NAN to normal values. Developers

detect the defect in the output design of Ascend 910 hardware. This

defect is labeled with “Main” and achieves the focus of developers.

Crash Defect. DevMuT detects 12 crash defects during mutation

and 19 in execution. Defects in mutation arise from the imple-

mentation differences of various framework interfaces, leading to

inconsistent results. For example, when the kernel size exceeds the

input data size, the “Conv2d" operator in MindSpore can execute

normally, whereas in PyTorch, it cannot [12]. Defects exposed in

execution are often exposed in complex invoking scenarios. One

defect [13] is exposed during the forward progress in model train-

ing. For example, “Vit” failed to execute forward propagation after

mutations. Developers locate the defect of the optimization mecha-

nism in MindSpore. Since we select the lower optimization degree

during execution, it cannot trigger “constant folding” and eliminate

the redundant layer that leads to the “slice error” crash.

Other Defects. Except for the four kinds of defects detected by our

designed test oracles, we detect 31 defects during our experiments.

Specifically, we detect nine document defects about the wrong

description of the framework interfaces and existing incomplete

functionalities of frameworks.

Answer to RQ2. DevMuT is good at detecting the crash defects

exposed in complex invoking scenarios while also detecting new

types of detects like resource scheduling defects and abnormal

model performance defects, which shows better defect detection

ability than existing methods.

6.3 RQ3: Ablation Study on Mutation Guideline

The mutation guideline is designed to determine the selection of

seed models and mutation operators for DevMuT and can affect the

performance.We conduct an ablation study to evaluate the contribu-

tion of the double-Q learning strategy to DevMuT. In particular, we

implement two baselines named 𝐷𝑒𝑣𝑀𝑢𝑇𝑟 and 𝐷𝑒𝑣𝑀𝑢𝑇𝑚𝑐𝑚𝑐 that

select mutation operators and seed models by the random strategy

and the MCMC strategy [3], respectively. These two strategies are

widely applied in existing work [28, 56] and show encouraging per-

formance. We run DevMuT, 𝐷𝑒𝑣𝑀𝑢𝑇𝑚𝑐𝑚𝑐 , and 𝐷𝑒𝑣𝑀𝑢𝑇𝑟 for 100
iterations and analyze the generated models from the perspective

of model diversity and the number of legal ones.
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Figure 8: Model Diversity Comparison onDifferent Strategies

We show the average results for all models in Figure 8. The 𝑥
axis represents the mutation rounds while the 𝑦 axis represents the

average value of three diversity metrics of each generated model.

As shown in Figure 8, 𝐷𝑒𝑣𝑀𝑢𝑇𝑟 can reach the peak earlier than the

other two strategies, but as the mutation deepens (after 20 rounds

of mutation), it is prone to falling into “local optima” and often

produces illegal models, and the performance is no longer stable;

The mutation process of 𝐷𝑒𝑣𝑀𝑢𝑇𝑚𝑐𝑚𝑐 is relatively stable, with

the variance on three metrics being the smallest among the three

strategies. The generated model with maximum value on three

metrics is, on average 15.04% and 14.86% lower than 𝐷𝑒𝑣𝑀𝑢𝑇𝑟
and 𝐷𝑒𝑣𝑀𝑢𝑇𝑚𝑐𝑚𝑐 , respectively. The model generated by DevMuT

gradually increases with execution, reaching a peak between 60-80

rounds before slowly decreasing. Compared with the other two

strategies, the model generated by DevMuT has better average

values of 𝐿𝑆𝐶 , but its stability is slightly lower than 𝐷𝑒𝑣𝑀𝑢𝑇𝑚𝑐𝑚𝑐 .

Besides, DevMuT achieves the highest legal rate, 81.17%, and outper-

forms𝐷𝑒𝑣𝑀𝑢𝑡𝑇𝑚𝑐𝑚𝑐 and𝐷𝑒𝑣𝑀𝑢𝑡𝑇𝑟 with 73.83% and 51.92% among

all the generated models across three strategies, respectively. The

average time of DevMuT, 𝐷𝑒𝑣𝑀𝑢𝑇𝑚𝑐𝑚𝑐 , and 𝐷𝑒𝑣𝑀𝑢𝑇𝑟 to generate

each model is 95.08s, 97.92s, and 244.917s since 𝐷𝑒𝑣𝑀𝑢𝑇𝑟 often

generate illegal models and need to spend extra time on backtrack

to explore previously test input space.

Answer to RQ3. Results show that double-Q learning performs

better than the random and MCMC strategy regarding the diversity

and legitimacy of generated models and execution efficiency.

7 DISCUSSION

This section discusses DevMuT’s performance in efficiency and

false positives. Its computational cost includes (1) model mutation

and (2) defect detection. For model mutation, the average times

for DevMuT, COMET, and Muffin are 95.08, 98.18, and 14.45 sec-

onds, respectively. DevMuT takes longer than Muffin due to its

enhanced validation process, which improves legal rates of gen-

erated models by 28.20%, improving test effectiveness. For defect

detection, DevMuT requires around 45 minutes per model, com-

pared to a few seconds for baselines, but it identifies four new defect

types: abnormal loss, low training efficiency, training crashes, and

unreasonable resource scheduling that are valuable to developers

with eight confirmed as “Serious” by developers. Baseline methods,

which focus on accuracy defects during inference, fail to detect

these defects. We argue that the execution time of DevMuT is not

a concern in practice, especially in industry: (1) the critical nature

of detected defects justifies the testing, as undetected defects may

cause longer delays; (2) the process is fully automated and can run

in backgrounds; (3) advancements in AI accelerators (e.g. GPU [17],

NPU [37], and TPU [52]) can rapidly improve efficiency.

To deal with false positives, DevMuT employs nine mutation

constraints to avoid and filter illegal models, supplemented by man-

ual inspections for the remaining cases. The first six constraints

are designed to guide mutation with the development experience

of developers. The second three leverage tactics in identifying and

filtering illegal models, reducing the false positive rate to 22.22%.

Remaining false positives often include accuracy defects like loss

inconsistency or crashes due to incorrect parameters, migration

failures, or unreasonable configurations. For loss defects, if DevMuT

reports loss inconsistency that does not affect inference, develop-

ers reject it. Crashes caused by missing settings are addressed by

experienced developers, while other false positives are filtered via

manual inspection. Experiments show these measures effectively

handle false positives in DevMuT’s defect reports.

8 THREATS TO VALIDITY

Internal Validity. It mainly comes from the correctness of imple-

mentation. To address this, three authors alternately conduct cross-

validation to ensure the implementation is correct and compare the

original DL models’ equivalence across different frameworks.

External Validity. It mainly comes from the benchmark: DL frame-

works and models may affect the generality of our study. To address

this, we plan to encompass other frameworks like Jittor [26] and

TensorFlow [50] to enhance our study’s breadth. Besides, future

research will expand to new model tasks, such as audio recognition.

Construct Validity. It mainly comes from the experiment param-

eter and interview guideline settings in the experiments and may

affect the reliability of experimental results. For the parameter set-

tings, we follow the recommendation of previous studies [18, 28]

when running baseline methods. Besides, we set the threshold of

the test oracles and the parameters of DevMuT based on the ex-

perimental results to reduce the false positives and achieve better

performance. For the interview, we send the collected interview

results to the interviewees for confirmation.

Conclusion Validity. It mainly comes from the rationality of eval-

uation metrics and may affect the effectiveness of our conclusions

in real scenes. To address this, we follow previous studies’ metrics

for evaluation and conduct manual inspections to exclude false

positives and enhance robustness.

9 CONCLUSION

In this study, we propose a mutation-based DL framework testing

method DevMuT based on developers’ expertise. To detect defects

that are more relevant to real scenes, DevMuT designs seven muta-

tion operators and nine extra constraints to simulate the common

operations of developers on DL models and expand the detection

scope to more stages of the model lifecycle (i.e., model training and

inference). DevMuT further utilizes the double-Q learning strategy

to guide the mutation. Our comprehensive evaluation shows the

effectiveness and efficiency of our proposed method.
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