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ABSTRACT

Modern Android malwares tend to use advanced techniques to
cover their malicious behaviors. They usually feature multi-staged,
condition-guarded and environment-specific payloads. An increas-
ing number of them utilize WebView, particularly the two-way
communications between Java and JavaScript, to evade detection
and analysis of existing techniques. We propose Dual-Force, a forced
execution technique which simultaneously forces both Java and
JavaScript code of WebView applications to execute along differ-
ent paths without requiring any environment setup or providing
any inputs manually. As such, the hidden payloads of WebView
malwares are forcefully exposed. The technique features a novel
execution model that allows forced execution to suppress excep-
tions and continue execution. Experimental results show that Dual-
Force precisely exposes malicious payload in 119 out of 150 Web-
View malwares. Compared to the state-of-the-art, Dual-Force can
expose 23% more malicious behaviors.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation; « The-
ory of computation — Program analysis;
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1 INTRODUCTION

Nowadays, Android malware normally uses advanced techniques
to cover its malicious behaviors [22]. It usually features multi-staged,
condition-guarded and environment-specific payloads. For instance,
a potentially harmful Android application only exhibits its mali-
cious payload when it passes integrity check and is executed in a
real device, with a targeting application running, during some pe-
riod of time, in specific countries. Besides, some applications are
controlled by remote command and control (C&C) servers, through
which hackers can control what kinds of attacks can be launched,
and when and where these attacks are going to happen. To make
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things worse, an app may contain malicious payloads that are not
activated in the current version, but could be enabled in newer ver-
sions. In this case, an arbitrary dynamic execution of a potentially
harmful application is highly likely to be benign.

In addition, an increasing number of Android malware samples
utilize the WebView technique [1] to evade detection. WebView al-
lows Android applications to display web contents within an app,
which is particularly useful when the data and layouts of the con-
tents are frequently updated from servers. The power of WebView
is magnified by enabling Java and JavaScript interoperability. How-
ever, WebView makes the behaviors of potentially harmful apps
more difficult to understand and reason. For example, some An-
droid malware uses WebView to overlay phishing pages on other
popular apps like banking apps to lure users to enter credentials
like passwords and then exfiltrate them to remote servers. This is
a severe threat to privacy and property security. What’s more, a
malicious app can deliberately hide the malicious payload deeply
in the two-way communications between Java and JavaScript.

Current Android malware detection techniques have limitations
in systematically dealing with malwares implemented using Web-
View. Static analysis [7, 9, 10] cannot deal with dynamic features,
but dynamic DEX loading on Android is very common and most
JavaScript that runs on WebView is only known at runtime. Dy-
namic analysis [6, 12, 14, 24, 26, 28, 30], usually has dismal perfor-
mance when encountering apps with carefully designed and hid-
den malicious payloads, and the existence of WebView makes it
more difficult to analyse these malwares. Symbolic and concolic
analysis need to effectively model various aspects of Android and
the apps, such as intents and cross-language features, which is
highly challenging. It also suffers from potential efficiency prob-
lems for large real-world applications.

In this paper, we propose Dual-Force, a forced execution tech-
nique which forces Java and JavaScript code to execute along paths
of interest for Android applications without any environment setup
to expose malicious behaviors. Dual-Force monitors the execution
of an application from both the Android runtime perspective and
the JavaScript engine perspective. It systematically forces a small
set of instructions that could affect the execution path to have spe-
cific values, based on certain exploration strategies. When inputs
are required for apps to run, we feed random values or values col-
lected through additional analysis. Forcing execution paths and
providing random values likely cause exceptions. Dual-Force fea-
tures a novel runtime that can suppress various kinds of exceptions
and allow the execution to proceed to expose behaviors hidden
deep in the state space.
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We evaluated Dual-Force on 150 Android malware samples ran-
domly obtained from VirusTotal, Koodous and Contagio mobile
mini dump. The results demonstrate that Dual-Force is capable
of exposing potentially harmful behaviors for 119 malicious apps.
Dual-Force identifies 23% additional malicious behaviors that can-
not be found by the state-of-the-art techniques. The malicious be-
haviors detected by Dual-Force include retrieving private personal
information, targeting reputed apps for credentials, intercepting
SMS messages and incoming calls.

Our main contributions are summarized as follows:

e We propose Dual-Force, a forced execution technique that
simultaneously forces Java and JavaScript code to execute
along various paths of interest to better understand behav-
iors of WebView applications.

e We develop a crash-free forced execution model that can re-
cover from exceptions properly for WebView applications.

o We identify technical challenges of dealing with WebView
applications and propose techniques to address them, e.g.,
supplying appropriate values to the executions on-demand.

e We have applied this technique to 150 WebView malwares.
The results show that Dual-Force can expose malicious be-
haviors for 119 samples, many of which utilize WebView to
hide or complicate their malicious behaviors, and 23% of the
exposed behaviors cannot be found by exisiting techniques.

2 BACKGROUND
2.1 Entry Points

Each application has entry points for the system or a user to enter.
The entry points can be divided into two categories. The first cat-
egory refers to app components, which are building blocks of an
Android app. To be launched by the Android system, a component
must have itself registered in the Android manifest file Android-
Manifest.xml. There are four different types of app components:
activities, services, broadcast receivers and content providers. Ac-
tivities, services, and broadcast receivers are activated by an asyn-
chronous message called an intent. Intents bind individual compo-
nents to each other at runtime. The second category refers to Java
methods annotated with @Javascriptinterface that can be invoked
by JavaScript running in WebView.

2.2 WebView

WebView is a fully functional browser that can be integrated into
Android applications. Android applications utilize WebView to dis-
play web contents within the app. This technique offers great flex-
ibility for developers as well as simplifies user interface (UI) de-
sign. Developers can put rich contents in web pages without using
widgets provided by the Android system. Views are basically web
pages and the app just needs to render it using WebView without
considering the details such as layouts. Many Android apps make
heavy use of this technique. For instance, Amazon and eBay use
WebView to display home pages with ongoing and upcoming pro-
motions, and the details of newly added items.

To make this technique more powerful, Android also allows We-
bView to run JavaScript. Java code and JavaScript code can in-
voke each other at runtime: 1) Java calls JavaScript through the
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invocation to the Android API, such as WebView.loadUrl. The argu-
ments of loadUrl can be a web page containing JavaScript scripts
or a dynamically generated JavaScript string literal starting with
“javascript:”; 2) JavaScript code invokes Java methods annotated
with @Javascriptinterface. Note that Java methods can be dynam-
ically attached with this annotation by invoking the API method
WebView.addJavascriptinterface. With WebView, Android apps can
achieve cross-language interoperability between Java and JavaScript.

2.3 Execution

An Android app starts its execution by initiating one of its compo-
nents. Typically, clicking the app icon in the top-level application
launcher triggers its main activity. Besides, a component can be in-
voked programmatically by other components from the same app
and other apps through inter-component communications (ICC)
[16].

WebView starts as a demon service when the Android system
boots up. It starts working when an app calls the WebView API at
some point. JavaScript code is eventually passed to the back-end
JavaScript engine, in which it is interpreted and executed asyn-
chronously. JavaScript may call Java methods in turn in a synchro-
nous way.

3 MOTIVATING EXAMPLE

In this section, we use a WebView malware sample to illustrate the
challenges of exposing its payload effectively and how we address
the challenges using our forced execution approach.

In this example, the malicious app pretends to be the banking
app of Sberbank, a reputable Russian bank. From Fig. 1(a) we can
see that the fake app looks exactly the same as the official one.
Among all its malicious behaviors, the most dangerous feature of
the malware is the capability of targeting other apps via overlay
WebView pages, which lures users to enter their private informa-
tion and sends it to the remote servers. Naturally, the official app
is one of the targets, as specified in a configurable preference file
named interceptor.xml in Fig. 2.

The malicious app attacks the official banking app whose pack-
age name is “ru.sberbankmobile” by starting the phishing pages
that are stored locally. When the official app is launched, the phish-
ing pages are displayed right over the official banking app, as shown
in Fig. 1(b). We can confirm this by checking the task manager in
Fig. 1(c), which shows that it is the fake app instead of the official
one that is running in the foreground. When the user clicks the
buttons on the phishing pages, another two phishing pages are
displayed asking the user to enter his/her user name, password
and bank account information, as shown in Fig. 1(d) and Fig. 1(e).
When the user enters his/her credentials and tries to login/register,
the private information is uploaded to a remote C&C server. This
leak is a direct threat to privacy security and property safety.

To show the logic of this attack, we reverse-engineered the code
from the malicious app and simplify it by removing irrelevant state-
ments and exception handlers, as well as renaming variable names
for readability. The simplified code is shown in Fig. 3.

The attack is initially launched by the method doInBackground
of the class MasterInterceptor, which repeatedly reads the shared
preference file interceptor.xml (line 5). It parses the file and stores
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Figure 1: How the attack is launched and the deceiving phishing pages.

<?xml version="1.0" encoding="UTF-8” standalone="yes” 7>

\

‘ <map>

‘ <string name="ru.sberbankmobile”>

| javascript:

| MeSetting.startPage(”http://android__asset/2/index.html”);
‘ </string>

| </map>

Figure 2: An instance of interceptor.xml that would trigger
the overlay payloads of the malicious app.

the entries in a map, where each entry is a mapping between a
package name and a string. If the map is empty, which means there
is no targeted app, the loop breaks and starts over (lines 6-7). Oth-
erwise, it tries to get the currently running app in the foreground
(line 9). After that, the map is iterated to check if it contains a key
that equals to the name of the running app (lines 10-13). If so, it
creates an intent of the class GlobeCode and puts extra staff includ-
ing the string it reads from the preference file into the intent (lines
14-16). Then the intent is started as a service at line 18. When the
intent is started, the method onStartCommand of the class Globe-
Code begins to run. It first retrieves the string from the “content”
field (line 26) and makes all the methods in class MeSetting callable
from JavaScript (lines 27-28). It then checks if the string starts with
“javascript:”. If so, the JavaScript code is then called in lines 31-32.

The JavaScript code shown in Fig. 3 is embedded in the login
phishing web pages. It first checks if the user name and password
fields are correctly filled in (lines 47-48). If either field has a length
less than five, then the HTML form cannot be submitted (line 51).
It then registers a callback function for the submit button for sub-
mitting the form (lines 54-60). Finally, it changes the default action
of the form to a uniform resource identifier (URI) at lines 61-62.
The URI is constructed by string concatenation, where the domain
name is retrieved by calling a Java method MeSetting.getDomain,
which returns the domain name that is stored in the Android man-
ifest file (lines 37-43). Note that all methods in the class MeSetting
are designed to be callable from JavaScript, as shown in lines 27-28,

where the method addJavasriptinterface is called for an instance of
class MeSetting.

This example poses challenges for traditional and the state-of-
the-art analyses. Static analysis cannot expose the complete logic
behind the malicious behavior since it is unaware of the existence
of the JavaScript code (lines 46-62). Dynamic analysis is unable
to find the overlay payload unless the target app specified by the
preference file is actually running in the foreground. Symbolic/-
concolic analysis needs to model files (line 5), intents (line 16) and
cross-language communications (lines 31, 32 and 61), which is highly
challenging. The state-of-the-art work [21], which proposes a tar-
geted fuzzing framework that combines an extensive number of
hybrid techniques, is unlikely to generate an environment that trig-
gers the payload because it has to make the targeted app run in the
foreground. It also needs to fill in the login information with two
strings whose lengths are bigger than five and then click the sub-
mit button.

Dual-Force deals with this example by force-executing the app
on both Android and WebView. The basic idea is to forcefully switch
the outcomes of a small number of branch predicates. Choosing
which branch outcomes depends on specific exploration strategies.
For example, if a branch condition is evaluated to be the same
value for consecutive five times, then we switch its outcome. Be-
cause of space limitation, here we omit the branch switchings that
do not produce useful information. Suppose that we are analyzing
the behavior of the malicious app. Then it is probably always run-
ning in the foreground. Consequently, the branch outcome at line
13 is always false for the first five executions, because the pack-
age name of the running app does not match “ru.sberbankmobile”.
Then Dual-Force switches the branch outcome to true, which makes
the app run into the method GlobeCode.onStartCommand through
inter-component communications. In this method, the overlay phish-
ing pages are displayed by WebView (lines 31-32), where the JavaScript
code is going to be executed. The user name and the password fields
on the phishing pages are initially empty and we do not fill them
in manually. As a result, the branch condition at lines 47 to 48 al-
ways resolves to be false for the first five executions, making the
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// Java code
1 class MasterInterceptor {

2 protected Object doInBackground(Object... paramVarArgs) {
3 for (;;) {
4 Thread.sleep (500L) ;
5 Map localMap = getSharedPreferences ("interceptor", 0).getAll();
6 if (localMap.size() <= 0)
] break;
8 String runningApp;
9 runningApp = getActivePackagesCompat () ;
10 Iterator iter = localMap.keySet().iterator();
11 while (iter.hasNext()) {
2 String str = iter.next();

13 if (str.equals(runningApp))q {

14 Intent locallIntent = new Intent (getApplicationContext(),
1 GlobalCode.class) ;
locallntent.putExtra("content", localMap.get(str));

MasterInterceptor.this.startService (locallntent);
P}
}
class GlobeCode ({
public int onStartCommand(Intent paramIntent, /*...*/) {
if (paramIntent != null) {
Object localObject = paramIntent.getExtras();
if (localObject != null) {
String content = getexstras((Bundle)localObject, "content");
localWebView.addJavascriptInterface (
new MeSetting(getApplicationContext()), "MeSetting");
if (content.substring(0, 11).contains("javascript:")) {

32 + "</script>", "text/html; charset=UTF-8", null);
3 Frhy

localWebView.loadData ("<script>" + paramIntent.substring(1l1l)
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// JavaScript interfaces: Java methods callable from JavaScript

35 public class MeSetting {

37 public String getDomain () {

38 String str = "";
39 e
40 str = localBApplicationInfo.metaData.getString("domain");
41 eee
42 return str;
43 '}
44
45 }
// JavaScript code
<script>

6 function SBank() {
7 if ($('#sbol-login').val().length >= 5 &&
$ ('#sbol-password') .val() .length >= 5)3{
$('#send-sbol') .prop("disabled", false);
} else {
$ ('#send-sbol') .prop("disabled", true);
}
}i
$('#send-sbol') .click (function() {
$ ('#myformsboll') .fadeOut (1000, function() {
56 $('#error2') .fadeIn(500) .delay (100, function() {
57 document.myformsboll.submit () ;
58 )i
59 b
60 1) 4
61 document.myformsboll.action = "http://"+MeSetting.getDomain () +
62 "/api/indata.php?type=SBankFull";
</script>

Figure 3: The simplified code that shows the logic behind the overlaying attack.

form unable to be submitted (line 51). Dual-Force then switches the
outcome to true to make the form enabled (line 49). Note that the
function SBank is triggered by timeout events (not shown here in
the code though) and the anonymous function (lines 54-60) is trig-
gered by clicking events on a button. We force them to run after
the web page is loaded. Consequently, an overlay phishing payload
is successfully exposed using Dual-Force, by switching one branch
outcome for Java on Android (box 1) and another for JavaScript on
WebView (box 3).

Finally, Dual-Force produces an execution path annotated with
the following information: 1) the switched branches (boxes 1 and
3), 2) the suppressed exceptions (none in this case), and 3) the val-
ues fed to the execution (none in this case). Also, the two-way com-
munications between Java and JavaScript are also recorded, e.g.,
the invocations to loadData (box 2) and the JavaScript interfaces
(box 4), as well as their arguments. Similar to existing techniques
that expose hidden behaviors in malware analysis [8, 11], human
domain knowledge is needed to determine if a specific execution
is malicious. Essentially, the value of Dual-Force lies in producing
a (hidden) behavior report for a (potentially malicious) app, which
can hardly be generated by other approaches.

4 OVERVIEW

Fig. 4 illustrates the workflow of Dual-Force. Dual-Force takes an
Android application package as the input, which is a zip file con-
taining an Android manifest file, one or more DEX executables and
other resources. To be analyzed, these contents are extracted first.
Then Dual-Force performs a static analysis on the Android mani-
fest file as well as DEX files, and instruments the DEX executables

with forced execution semantics. Note that we add forced execu-
tion semantics to JavaScript by hacking Chromium, the back-end
of WebView, instead of instrumention. One important reason is
that JavaScript code is highly dynamic and it may only be known at
runtime. After that, the static analysis results, instrumented DEX
and JavaScript code are fed into the forced execution engine, which
forces both Java and JavaScript code of WebView applications to
execute along different paths to expose malwares.

4.1 Static Analysis

The static analysis engine aims to acquire four kinds of information
for the forced execution engine, namely, entry points, control flow
graphs (CFGs) and call graphs (CGs), values that can be statically
determined, and locations where Java and JavaScript interact.

Entry points. We obtain all the registered entry points from
AndroidManifest.xml where they are declared and then relate them
to the corresponding classes.

CFGs and CGs. We first generate CFGs and CGs based on the
extracted files from the package and then update them incremen-
tally and iteratively with the dynamic results of the forced execu-
tion engine.

Values that can be statically determined. We also collect val-
ues that can be statically determined, such as string literals. Con-
stant values, random values and other values of various types and
formats (e.g., configuration files with an .xml extension and data-
base files with a .sqlite extension) constitute a pool, whose values
are supplied to the forced execution engine when values of specific
types are required by the app to execute. The pool is also updated
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Figure 4: Overview of Dual-Force’s workflow.

on-the-fly during execution, by dynamically intercepting the ar-
guments of the invocations to a list of Java and Android APIs of
interest, such as String.equals and WebView.loadUrl.

Locations where Java and JavaScript interoperate. For most
cases, the values that are supplied to the engine are merely to allow
the execution to proceed instead of driving the execution along dif-
ferent paths, except for strings. String values are special because
they can be JavaScript code. If we feed arbitrary strings to Web-
View, we possibly cause fatal exceptions, not to mention exposing
WebView related malicious payloads. And thus we use static anal-
ysis to find all the locations where an app is potentially asking for
JavaScript code. Such locations include the following.

o Methods that are annotated with @Javascriptinterface.

e Statements that invoke methods of the class WebView, such
as addjavaScriptinterface, setJavascriptEnabled, loadUrl, load-
Data, and so on.

e Statements that invoke string comparison methods whose
arguments contain “http://”, “file:///” or “javascript:”.

These locations are identified for further use at runtime. When
the forced execution engine finds that string types are required by
an app to continue execution, it checks whether or not the app
is asking for JavaScript code according to the analysis results on
such locations. If so, we synthesize JavaScript code and feed it to
the app. Otherwise, a normal string is sufficient.

4.2 Instrumentation

We instrument the DEX executables to achieve the following pur-
poses at runtime.

Adding forced execution semantics. We add statements to
log whether a branch is taken and the frequency of a branch being
taken. Such information is used by the forced execution engine to
decide what branches ought to be explored.

Injecting a top-level exception handler. Such a handler is
used to record the exceptions raised at runtime, which helps the
forced execution engine to supress them so that the execution can
continue.

Monitoring dynamic class loading. Dynamic DEX executa-
bles are loaded by a set of class loaders. We instrument such loaders

to obtain the dynamic DEX files and then additionally instrument
new dynamic DEX files to understand their behaviors.

4.3 Forced Execution Engine

The forced execution engine shown in Fig. 4 is the key part of Dual-
Force. It consists of two components:

e An execution model that forces WebView applications to ex-
ecute along various paths of interest in a crash-free manner,
which will be introduced in Section 5.

e A path exploration algorithm that steers forced execution
to paths of interest, according to specific strategies, which
will be introduced in Section 6.

The forced execution engine runs iteratively until an app is con-
sidered to be sufficiently explored by the path exploration algo-
rithm, according to specific criteria. It forces both Java on Android
and JavaScript on WebView to run. Particularly, it tries to make
them actively interoperate, considering the nature of WebView mal-
ware.

5 CRASH-FREE EXECUTION MODEL

The essence of forced execution is an execution model that drives
an app to execute along different paths, together with the ability
to recover from exceptions and continue execution. The idea of
forced execution is to make an app to execute along various paths
forcefully by switching the branch outcomes. However, forced exe-
cution tends to raise exceptions as it may get into infeasible states.
While pior works on forced execution have shown that such fea-
sibility violations are in limited scale and do not incur problems
in practice for malware analysis [8, 11, 13, 19], an execution model
that can suppress WebView app related exceptions is critical. Dual-
Force provides such a crash-free execution model from two aspects:
the Android runtime and the WebView environment.

5.1 Android Runtime

The crash-free execution model on Android virtual machines mainly
deals with Java unchecked exceptions which are not typically han-
dled by the app. Checked exceptions are supposed to be dealt with
by the exception handlers of the app and we let them remain what
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they are. When an unchecked exception is thrown, the app is typi-
cally terminated by Android. We use a top-level exception handler
to deal with the exceptions that are not caught by the app. Before
the app is killed by the system, this handler attempts to collect in-
formation like the causes of the exceptions and the stack traces.
When an exception is caught, Dual-Force analyzes the causes of
the exception and tries to recover the execution. Note that, once
the global exception handler catches an exception, the app has lost
the control of the current execution. We recover the execution by
restarting a new execution that is the same as the current one.

Algorithm 1 describes how we recover executions from excep-
tions. For a stack trace ST and the last switched branch Isb, we first
get the locations where they are initially thrown at line 2, and try
to suppress the exceptions based on the rules described in Table 1
(line 3). Then we restart the execution at line 4. But these actions
do not guarantee that the exceptions are properly suppressed. Sub-
sequent exceptions may follow in the following executions. We set
a threshold maxEx to limit the max number of exceptions we deal
with for one switched branch. Then we repeat the above steps un-
til no exceptions are thrown or the threshold is reached. If more
than maxEx exceptions are raised, we first locate the method in-
vocation in ST that follows Isb in the same method (lines 7-11),
which is the root method that causes too many exceptions. Then
we replace it with a simple method which has the same return type
as the original one (line 12). Table 2 shows the rules to construct
such a method. Finally, the recovery is completed by restarting the
execution at line 13.

Algorithm 1 Exception Recovery Algorithm

Inputs: ST - stack trace of the exception; exec - current execution; Isb - the last
switched branch; maxEx - max number of exceptions we deal with for one branch
switch

1: while ST# 0 A maxEx > 0 do

2: loc < code location of ST.pop()

3: Patch the code at loc according to the rules in Table 1
4:

5:

ST « restart(exec)
maxEx < maxEx—1

6: end while

7: while ST # 0 do

8: m < null

9: trace < ST.pop()
10: if trace follows Isb in the same method then
11: m « trace.method()
12: Patch m according to the rules in Table 2
13: restart(exec)
14: break
15: end if

16: end while

Table 1: Unchecked Exception Handling Rules for Java

Exception Type Action

ArithmeticException Replace the arithmetic computation with a random number
ArrayStoreException Replace the instance to be stored with a constructed one
ClassCastException Replace the instance to be casted with a constructed one
Tllegal ArgumentException Replace the argument with a value of specific values
IndexOutOfBoundsException  Replace the index value with a small positive integral value
NegativeArraySizeException Replace the negative with with its absolute value
NullPointerException Replace the reference with a constructed instance
NumberFormatException Replace the conversion with a random number

Table 1 shows how we deal with the common unchecked excep-
tions for Java at the locations where they are initially thrown. For
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Table 2: Method Generation Rules for Java

Return Type Generation
Numeric types Randomized/Collected
Normal strings Randomized/Collected
JavaScript strings Synthesized

Non-recognizable types  Constructed via available constructors

example, we suppress number related exceptions by supplying nu-
meric values, and for reference or type related exceptions, we sup-
press them by constructing objects of specific types. Table 2 shows
the rules of generating simple methods to replace the original ones.
For primitive types and normal string values, the method chooses
among all the candidates and return one of them. For JavaScript
types, we generate JavaScript code that calls Java methods anno-
tated as JavaScript interfaces.

The synthesis of JavaScript code is based on the results pro-
duced by static analysis. It works as follows. First, we identify all
the Java methods that serve as JavaScript interfaces. Then, for a
code location, we generate a piece of JavaScript code that invokes
all the Java methods that are potentially callable from JavaScript.
These include the methods that are statically annotated, as well
as the ones that are dynamically annotated by calling the method
WebView.addJavaScriptInterface. The argument values that are pro-
vided to the calls from JavaScript to Java are randomly generated.
Note that we only synthesize JavaScript code that is used to trigger
Java methods with the @JavascriptInterface annotation.

For types that are not recognized, we create an instance of it
through one of its constructors. We preferentially choose default
constructors and those whose parameters are primitive types or
other recognized types. The arguments that are used to create the
instance are randomly fed.

5.2 WebView

WebView is indeed a fully functional browser without the UI frame,
which has many features including networking, rendering and run-
ning JavaScript. We address two challenges for forced execution
on WebView in terms of JavaScript. One is to deal with web page
related operations, whereas the other is to handle JavaScript excep-
tions.

In WebView, JavaScript code can manipulate web pages, such as
accessing DOM (Document Object Model) objects and registering
callbacks for events. The most common scenarios are to access the
(DOM) elements and check if values of certain HTML input con-
trols have the correct formats. For example, phishing pages that
lure users to enter their credentials are likely to check if the text in-
puts for bank account numbers are correctly filled. JavaScript code
may try to access a DOM element that does not exist. To deal with
cases that JavaScript tries to access missing DOM elements, we first
find all the available DOM elements in the current web page and
put them into different categories, such as input controls, select
controls and labels. When the access to a missing DOM element
happens, we identify its category by checking what operations are
done on it or what fields are to be fetched. Then we randomly se-
lect one object from all the objects in the category and replace the
missing DOM element with this object. If there is no object in the
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category, we generate a DOM element of its category and add it to
the DOM tree of the web page.

JavaScript code contained in a web page often acts as callback
functions that are only executed when specific events are triggered.
For example, a click on a button triggers the callback function reg-
istered on the clicking event of the button. When WebView loads
a web page containing several pieces of JavaScript code, most of
them will not run until specific events are triggered. We force these
JavaScript functions to run by calling them after the page is loaded.
To be specific, they are called in the callback function correspond-
ing to the window.onload event of the web page.

Another aspect of the forced execution on WebView is the abil-
ity to recover from JavaScript exceptions. The exceptions raised
in WebView come from two places: first, the forced execution on
JavaScript; second, the synthesis of JavaScript code. As mentioned
before, sometimes we feed synthesized JavaScript code to Web-
View to make executions continue. Since the synthesis only takes
syntaxes rather than semantics into consideration, JavaScript code
can potentially contain exceptions. A JavaScript engine will throw
an exception if an error occurs. For example, exceptions occur when
a script or a function attempts to read a property that does not ex-
ist. Note that, JavaScript does not distinguish between exceptions
and errors explicitly. They only differ in naming convention: errors
are thrown by JavaScript engines while exceptions are thrown by
developers. We do not distinguish these two terms in this paper.

All the JavaScript code fed to WebView is embedded in web
pages, which may contain only JavaScript code. We register a top-
level exception handler to the window.onerror, which reports the
exception message, the script source, line and column numbers, as
well as the error object. We then recover from the exception and
continue the execution accordingly.

We handle JavaScript exceptions according to the rules shown
in Table 3. The name of SyntaxError is self-explanatory. We re-
place the JavaScript code containing syntax errors with a synthe-
sized one that simply calls the available JavaScript interfaces. Ref-
erenceError occurs when an unknown variable is referenced or a
right-hand-side value is assigned. To deal with this, we collect all
the references in the JavaScript function and then replace the in-
valid reference with a random one from all the available references.
If none exists, we create one for it. RangeError is handled by re-
placing the index with a smaller positive integral value. TypeEr-
ror is coped with by replacing the object with another one in the
same scope whose prototype has certain fields. If no such object
exists, we create one for it. URIError indicates that there is some-
thing wrong with the URI value. We prepare a set of URI values to
replace the problematic ones.

Table 3: Exception Handling Rules for JavaScript

Exception Type Action

SyntaxError Synthesize a new piece of JavaScript code
ReferenceError Replace the reference with a reference candidate
RangeError Replace index with a small positive integral value
TypeError Replace type with a type candidate

URIError Replace the URI values with one of prepared ones
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6 PATH EXPLORATION

Dual-Force needs a path exploration algorithm that directs an app
to execute towards specific parts of interest and to expose hidden
behaviors. In this section, we introduce the path exploration algo-
rithm and policies of Dual-Force.

6.1 Algorithm

Algorithm 2 describes a general worklist algorithm that produces
new execution paths that are to be explored according to previous
executions. The worklist stores a list of switches indicating which
branch outcomes should be switched for path exploration. Note
that Dual-Force only forcefully changes the branch outcome of a
small set of predicate instances. It lets the other predicate instances
remain untouched.

Algorithm 2 Path Exploration Algorithm

Inputs: EP - the set of entry points of a WebView app

Definitions: switches - a sequence of switched predicates by a forced execu-
tion, e.g., 1-3-5 means that the 1st, 3rd, and 5th predicates are

switched

Ex - a set of pairs, where the first element of the pair is an entry
point and the second element is a set of switches that has been
executed

WL - a worklist of switches to be executed

exec - a concrete execution, denoted by a sequence of
pairs that maps predicates to branch outcomes, e.g.,
(1,true)-(2,false)-(3,true) means that the execution has
three predicates, the 1st takes true branch, the 2nd takes false
branch, and 3rd takes true branch

1: for each entry € EPdo

2 WL « {nil}

3 Ex.first < entry

4: Ex.second «— null

5: while WL # 0 do

6: switches «— WL.pop()

7 Ex.second < Ex.second U switches
8 exec < forceExecute(entry,switches)

9: t < the last integer in switches
10: exec «— remove the first ¢ elements in exec
11: for each (p,b) € exec do
12: if strategy(p,b) then
13: WL < WL U switches - t
14: end if
15: te—t+1
16: end for
17: end while
18: end for

The input of this algorithm is the set of all the entry points of
a WebView application. For each entry point entry of the app, the
worklist is a singleton set with a null sequence representing an
execution without forcebly switching any predicate (line 2). This
means that when an entry point of an app is executed for the first
time, the algorithm just allows the execution to proceed naturally.
Line 8 is where forced execution is done by the function forceExe-
cute. The app is forced to run from the current entry with switched
branch outcomes. Then in lines 9-16, we try to determine if it would
be of interest to further switch more predicate instances. Lines 9-10
compute the sequence of predicate instances eligible for switch-
ing. Note that it cannot be a predicate before the last switched
predicate specified in switches as switching such a predicate may
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change the control flow such that the specification in switches be-
comes invalid. In lines 11-16, for each eligible predicate and its cur-
rent branch outcome, we query the function strategy which will
be introduced in Subsection 6.2, to determine if we should further
switch it to generate a new forced execution. If so, we add it to the
worklist. Note that in each new forced execution, we essentially
switch one more predicate. The algorithm is terminated there is
no more paths execute, which indicates that there is no space of
interest to explore.

6.2 Exploration Strategies

There exist many exploration strategies, ranging from simple ones
based on instruction coverage and sophisticated ones based on evo-
lutionary algorithms. However, each of them has specific advan-
tages over others for different scenarios. A good and suitable ex-
ploration strategy is crucial for inspecting the target app. Here we
introduce three strategies we adopted for Dual-Force.

o Branch-coverage-based exploration. This exploration strategy
is based on the intuition that the less a branch is executed,
the more likely an uncovered payload is located in it. Ac-
tually, this strategy proves to be effective in test case gen-
erations through symbolic execution [17]. In this strategy,
forced execution is preferentially steered to less traveled
branches.

o Cross-language-interoperation-directed exploration. This strat-

egy regards the cross-language interoperability nature of

WebView malware as the main factor that would lead to

deeply concealed payloads. In this strategy, forced execu-

tion on Java is preferentially steered to locations that con-
tain WebView related operations and vice versa.

Hybrid exploration.This strategy takes both branch coverage

and cross-language interoperation between Java and JavaScript

into consideration.

7 IMPLEMENTATION AND EVALUATION

We implement the forced execution model for Android using Soot [25],

FlowDroid [7] and Xposed [5]. Soot is used to instrument the DEX
executables of the application to switch branch outcomes, record
execution paths, add top-level exception handlers, and monitor dy-
namic DEX loading. FlowDroid is used to perform static analysis
and compute the CGs and CFGs of the apps. Xposed is used to
dynamically intercept method calls in Java. For example, we can
use it to invoke a simpler method instead of a complicated one to
suppress exceptions.

In addition, we enable forced execution on WebView by hack-
ing Chromium, the back-end of WebView on Android L (5.0) and
later versions, where WebView has moved to an APK so it can
be updated separately to the Android platform. We modify the
JavaScript engine to make it forcefully switch branch outcomes
as needed. We also deal with all the problems that may be raised
by forced execution in WebView, e.g. exception handling.

We evaluate the effectiveness of Dual-Force by applying it to
150 Android malware samples. Our evaluation tries to answer the
following research questions.

o How effective is Dual-Force at exposing malicious payloads
in WebView applications, compared with other approaches?

Z.Tang, J. Zhai, M. Pan, Y. Aafer, S. Ma, X. Zhang, J. Zhao

e How efficient is Dual-Force?

7.1 Experimental Setup

We randomly collected 150 WebView malware samples from on-
line malware databases including VirusTotal [2], Koodous [3] and
Contagio mobile mini dump [4]. We conduct the experiments on a
PC with an Intel Core i7-4790 (3.6G Hz) CPU and 16 GB RAM. The
PC runs an emulator on which these Android malware samples are
evaluated.

7.2 Effectiveness

Table 4 shows basic results of Dual-Force. Only 21.3% of the We-
bView malwares show their payloads when they are launched by
starting their main activities. More malwares (46.7% of them) ex-
pose their malicious payloads by starting the main activities and
triggering random events. With Dual-Force, we can expose at least
one harmful behavior in 119 out of 150 (79.3%) WebView malwares.
This table also shows the minimum, average, and maximum results
for one app. On average, 4.8 malicious behaviors are exposed tak-
ing 35.8 executions for one app. Dual-Force exposes at most 16
malicious behaviors and takes up to 98 executions to run an app.
Note that human domain knowledge is needed here to determine
if a specific execution is malicious. It is possible to use other ap-
proaches (e.g. rule-based filters and data mining) to help domain
experts to simplify this process, which is not the focus of this work
though.

Table 4: Basic Results

Approach
Launch | Launch & [ Dual-Force
Trigger
Apps with > 1 payload exposed | 21.3% 46.7% 79.3%
Results per app (min/avg/max)
- # of malicious behaviors 0/0.6/1 0/1.2/5 0/4.8/16
- Executions 1/3.1/7 3/13.1/22 9/35.8/98

As Fig. 5 illustrates, among all the 150 WebView malwares, 121
of them call JavaScript from Java and 78 of them invoke Java from
JavaScript. 66 samples uses the two-way communications between
Java and JavaScript. 133 samples of them use at least one way com-
munications. Only 17 of them use WebView to display pure HTML
pages without JavaScript.

Table 5 shows that the JavaScript interfaces callable from JavaScript

code are typically sensitive APIs. Many of the Android system func-
tionalities, such as sending SMS messages and getting device in-
formation are exposed to JavaScript code, making sensitive infor-
mation easy to be leaked. This also makes it more difficult to un-
derstand how malicious payloads in WebView malware work. Of
all the JavaScript interfaces, only 31.3% are called by other Java
methods, and the rest 68.7% are only called by JavaScript code. It
indicates that if we merely look at the call graphs of Java code,
there are no ingoing edges to the methods that are only called by
JavaScript. As such, static analysis is very likely to miss a lot of
malicious behaviors.

We also compare the analysis results of Dual-Force with two
malware databases: VirusTotal and Koodous, both of which are
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Figure 5: Cross-language interoperation of the samples.

Table 5: Top 10 Java functionalities called by JavaScript

Functionality Occurrence
Sending SMS messages 70.7%
Getting IMEI 68.7%
Getting device name 59.3%
Getting phone number 56.0%
Intercepting SMS messages 51.3%
Reading private files 50.0%
Getting SDK versions 46.7%
Obtaining installed packages 45.3%
Running JavaScript 44.0%
Judging if running on an emulator 41.3%

equipped with multiple detection engines and behavior analysis
functionalities: Droidy for VirusTotal and Droidbox for Koodous.

The overall comparison is shown in Fig. 6. On average, Virus-
Total, Koodous, and Dual-Force expose 3.9, 3.3, and 4.8 malicious
payloads respectively. Dual-Force exposes roughly 23% more mali-
cious payloads than VirusTotal and 41% more than Koodous. Note
that, this result is calculated on 150 WebView samples instead of
119 ones that contains at least one malicious behavior. The results
shows clearly that Dual-Force has prominent advantages at expos-
ing behaviors of WebView malwares.

Among all the undiscovered maliciousness by Droidy and Droid-
box, most of them are WebView related. They are complicated by
the interaction between Android and WebView, two totally differ-
ent running environments. Existing approaches can hardly trigger
carefully designed and deeply concealed actions. Even such an ac-
tion is triggered, these approaches cannot obtain a complete exe-
cution trace for the action because it cannot handle the interoper-
ation between Java and JavaScript. Consequently, they usually fail
to find the attacks and expose the logic behind the attacks, thus
making such payloads evade analysis and detection.

Fig. 7 shows the effectiveness of three different exploration strate-
gies introduced in Subsection 6.2. We can see that branch-coverage-
based strategy is overall better the cross-language-interoperation-
directed one. However, the latter is better at discovering WebView-
related payloads, which is intuitive because it is designed to be so.
Hybrid exploration strategy that takes both into consideration is

ASE ’18, September 3-7, 2018, Montpellier, France

||EEE3 Per app on average

4l 39

# Malicious behaviors

Vi <Total (Dm'\d‘ﬂ Koodous (Dw'\dboﬂ pual-Foree

Figure 6: Overall comparison with Droidy and Droidbox.

[0 Branch-coverage-based

[ Cross-language-interoperation-directed
I Hybrid

W
T

# Payloads per app on average

oW related w related

WebVi No -WebVie

Figure 7: Comparison among three exploration strategies.

a optimal choice here in terms of exposing payloads in Android
WebView malware.

In Table 6, we list the top 15 WebView malware samples with the
most malicious behaviors exposed by Dual-Force and we sort them
in descending order. The columns named Detections represent the
number of engines that detect at least one malicious behavior in
the app. The column Droidy shows the number of malicious be-
haviors of an app exposed by VirusTotal via Droidy. The column
Droidbox represents the number of malicious behaviors of an app
exposed by Koodous via Droidbox. Dual-Force exposes at most 16
malicious behaviors in an app, while Droidy and Droidbox expose
at most 7 and 8 respectively. Note that we have four false positives
for these 15 samples together. For all the 150 WebView samples,
the average false positive rate is 5.1%, which is marginal.
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Table 6: Comparison with VirusTotal and Koodous

MD5 Package Name VirusTotal Koodous Dual-Force
Detections | Droidy | Detections | Droidbox | Exposure | F/P
cbd506003ce1a4f8cc65616614baf775 com.vivchar. TheBookofLoveLWP 15 7 1 4 16 0
3alc2626158acc4a55d06246a669d1e5 | candy.crush.saga.unlimitedf32f 33 7 2 6 16 0
4dc7e82047a92403a23c2e6c3c3ebdbd | com.aio.downloader 21 7 5 8 15 2
abda3e50bc31f5eb16e39a72bfcc9886 com.androidsky.app.tusiji 25 0 1 6 14 0
b0c41093dc33dc81674aeb92140ad923 | com.ptcc.app 19 5 6 5 14 0
85506f0b70ea01eb3b7a9a42a183375¢ | com.udhay.indianrecipes 15 7 1 0 13 0
52b9985233b9c1825ef13ad60d89298 lunar.horror.view 15 7 1 2 13 1
22b097f7dfedf75e0a1f5f0e148adbed com.mobile.shuangjielong2 25 0 2 6 12 0
02e231£85558f37da6802142440736f6 krep.itmtd.ywtjexf 40 6 0 4 12 0
a2cf71cf18e860584429a5d84365¢2a9 air.TheModifuckrs.ersite.ru 22 6 0 0 11 0

7.3 Efficiency

We show efficiency related data of Dual-Force in Table 7. It takes
an averge of 198.3 seconds for Dual-Force to force-execute a Web-
View app, while the minimum and maximum numbers are 30.2 sec-
onds and 544.9 seconds respectively. During the execution, Dual-
Force switches 4.2 and 1.2 branch outcomes on average for Java
and JavaScript respectively. It switches more predicates for Java be-
cause Java code is usually more complicated than JavaScript code.
The exceptions suppressed (2.6 and 0.7 on average respectively)
and the values fed to the apps (4.1 and 1.1 on average respectively)
are almost linear to numbers of predicates that are switched, as we
can see in this table.

Table 7: Statistics on Dual-Force’s efficiency

Statistics min avg | max
Predicates switched 1 5.4 15
- Java 1 4.2 11
- JavaScript 0 1.2 5
Exceptions suppressed 1 33 6
- Java 1 2.6 5
- JavaScript 0 0.7 2
Values fed 1 5.2 10
- Java 1 4.1 9
- JavaScript 0 1.1 2
Time (s) 30.2 | 1983 | 544.9

8 DISCUSSION AND RELATED WORK

Forced execution was first proposed in X-Force [19], which was
originally designed for dynamic binary analysis. iRiS [8] adopted
the technique to iteratively compute the call graphs and control
flow graphs of i0S apps to discover private API abuse which is
forbidden by Apple. J-Force [13] and JSForce [11] are two forced
execution engines that work on JavaScript.

There exist dynamic analysis techniques developed to expose
malicious payloads of Android apps. Grodddroid [6] uses an algo-
rithm that automatically identifies potentially malicious code and
stimulates the GUI of an application and forces the execution of
some branching conditions if needed. It is similar to our work in
terms of forced execution, but our work do not need to identify
potentially malicious code first. Malton [28] conducts multi-layer
monitoring and information flow tracking to provide a comprehen-
sive view of malicious behaviors of Andriod apps. CooperDroid
[24] monitors malware behaviors mainly through the trace of sys-
tem calls. FuzzDroid [21] proposes a targeted fuzzing framework
that uses multiple analyses to generate environments that trigger

specific behaviors. Harvester [20] collects runtime values that can
enhance other dynamic analysis. IntelliDroid [26] is conceptually
similar to FuzzDroid except the fact that it does not use multiple
analyses. DroidTrace [30] monitor selected system calls of the tar-
get process which is running the dynamic payloads, and classifies
the payloads behaviors through the system call sequence. Droid-
box [14] is an android application sandbox for dynamic analysis.
AppsPalyground [23] is a framework for automated dynamic secu-

rity analysis of Android applications. DroidScope [29] is a virtualization-

based malware analysis. EvoDroid [18] uses evolutionary testing
for Android apps. GoldenEye [27] switches the analysis environ-
ment at runtime through a specially designed speculative execu-
tion engine. HybriDroid [15] is static analysis that deals with An-
droid hybrid applications.

Dual-Force is different from existing dynamic analyses in two
ways. First, from the technical perspective, Dual-Force develops a
novel crash-free forced execution model in terms of exposing ma-
liciousness in Android apps. Second, it targets a unique and yet in-
creasingly prominent category of malwares, i.e. Android WebView
apps. Such malwares can hardly be handled effectively by existing
approaches considering their unique natures, such as the two-way
communications between Java and JavaScript.

9 CONCLUSION

We propose in this paper a forced execution technique called Dual-
Force to expose malicious payloads for Android WebView malware.
We develop a crash-free forced execution model that can recover
from exceptions properly for WebView apps.The experimental re-
sults demonstrate that Dual-Force can expose potentially harmful
behaviors for 119 out of 150 malicious apps. Compared to the state-
of-the-art, Dual-Force can expose 23% more malicious behaviors
per app on average.
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