aNMM: Ranking Short Answer Texts with Attention-Based Neural Matching Model

Liu Yang1, Qingyao Ai1, Jiafeng Guo2, W. Bruce Croft1

1Center for Intelligent Information Retrieval, University of Massachusetts Amherst

2Institute of Computing Technology, Chinese Academy of Sciences
Outline

• Motivation

• Related Works
 – Learning to rank for QA
 – Deep learning for QA

• Attention-based Neural Matching Model

• Experiments
 – Data Set and Experiment Settings
 – Model Learning Results
 – Experimental Results for Ranking Answers

• Conclusions and Future Work
Motivation

• **Question answering** plays a central role in many popular mobile search systems and intelligent assistant systems
 – Google Assistant, Microsoft Cortana, Microsoft Xiaoice, IBM Watson, etc.

• Users are more likely to expect direct answers instead of a rank list of documents from search results
 – Retrieve finer grained text units such as *passages or sentences* as *answers* for *Web queries* or *questions*
Types of Questions

- **Factoid queries**: WH questions like when, who, where.
- **Yes/No queries**: Is Berlin capital of Germany?
- **Definition queries**: what is leukemia?
- **Cause/consequence queries**: How, Why, What. what are the consequences of the Iraq war?
- **Procedural queries**: which are the steps for getting a Master degree?
- **Comparative queries**: what are the differences between the model A and B?
- **Queries with examples**: list of hard disks similar to hard disk X.
- **Queries about opinion**: What is the opinion of the majority of Americans about the Iraq war?
QA Approaches

• IR based approaches
 – TREC QA, IBM Watson, Google

• Knowledge base based approaches
 – Apple Siri, IBM Watson

• Many QA systems used hybrid approaches
Many previous QA systems used a learning to rank approach:

- Encode question/answers with complex linguistic features including lexical, syntactic and semantic features.
- E.g. Surdeanu et al. [1,2] investigated a wide range of feature types for learning to rank answers.

Problems with learning to rank approaches:

- Reply on feature engineering, which is time consuming and requires domain dependent expertise.
- Need additional NLP parsers or external knowledge sources:
 - may not be available for some languages.

Recently researchers have been studying deep learning approaches to learn semantic match between questions and answers

- Convolutional Neural Networks (CNN) [3, 4, 5]
- Long Short-Term Memory (LSTM) networks [6]
- Benefit of not requiring hand-crafted linguistic features and external resources except pre-trained word embedding
- Some of them [5] achieve state-of-the-art performance for answer sentence selection task benchmarked by the TREC QA Data

Deep Learning for QA

• Problems with current deep learning architectures for answer sentence selection
 – The proposed models, either based on CNN or LSTM, need to be combined with additional features such as word overlap features [3,5] and BM25 [6] to perform well
 – Without combining additional features, the performance of their model is significantly worse
 • Comparing with the results from the state-of-the-art methods using linguistic feature engineering [7]

• Research question:
 – Could we build deep learning models that can achieve comparable or even better performance without combining additional features than methods using feature engineering?
 – End-to-end question answering?

Observations From the Current Deep Learning Architectures for Ranking Answers

- Architectures not specifically designed for question/answer matching
 - CNN
 - Uses position-shared weights with local perceptive filters to learn spatial regularities as in many CV tasks
 - Such spatial regularities may not exist in the semantic matching between questions and answers
 - Complex linguistic property of natural languages
 - LSTM
 - View the question/answer matching problem in a sequential way
 - No direct interactions between question and answer terms
 - Can not capture sufficiently detailed matching signals

- Our solution
 - Introduce a novel value-shared weighting scheme in deep neural networks
 - Learn value regularities rather than spatial regularities
• Lack of modeling question focus
 – Understanding the focus of questions which are important terms is helpful for ranking answers correctly
 • E.g. Where was the first burger king restaurant opened?
 – Most existing text matching deep learning models do not explicitly model question focus

• Our solution
 – Incorporate attention scheme over question terms
 • Introduce attention mechanisms with a gating function
 • Explicitly discriminate the question term importance
• Motivation
• Related Works
 – Learning to rank for QA
 – Deep learning for QA
• Attention-based Neural Matching Model
• Experiments
 – Data Set and Experiment Settings
 – Model Learning Results
 – Experimental Results for Ranking Answers
• Conclusions and Future Work
• QA Matching Matrix
 – A matrix represents the semantic matching information of term pairs from a question and answer pair
 – Given a question q with length M and an answer a with length N
 • An M by N matrix P
 • $P_{j,i}$ is the semantic similarity between q_j and a_i using word embedding
 • Assign value 1 if q_j and a_i are the same term
 • Inspired by the ARC-II model proposed by Hu et al. [8]

Attention-based Neural Matching Model

\[y = \sum_{j=1}^{M} \tau(v \cdot q_j) \cdot \delta(\sum_{t=0}^{T} r_t \delta(\sum_{k=0}^{K} w_{kt} x_{jk})) \]

\(\tau \): softmax gate function
\(\delta \): sigmoid function

- Neural network architecture with value-shared weights
• In CNN, the weight associated with a node only depends on its position as specified by the filters
• In aNMM, the weight associated with a node depends on its value

\[y = \sum_{j=1}^{M} \tau(v \cdot q_j) \cdot \delta(\sum_{t=0}^{T} r_t \cdot \delta(\sum_{k=0}^{K} w_{kt}x_{jk})) \]

\(\tau \): softmax gate function
\(\delta \): sigmoid function

• Neural network architecture with value-shared weights
Question Attention Network

\[y = \sum_{j=1}^{M} \tau(v \cdot q_j) \cdot \delta\left(\sum_{t=0}^{T} r_t \cdot \delta\left(\sum_{k=0}^{K} w_{kt} x_{jk}\right)\right) \]

\(\tau \): softmax gate function
\(\delta \): sigmoid function

- Neural network architecture with attention schemes
Two Variations: aNMM-1 and aNMM-2

- aNMM-1: basic architecture
 \[aNMM-1: y = \sum_{j=1}^{M} \tau(v \cdot q_j) \cdot \delta(\sum_{k=0}^{K} W_k x_{jk}) \]

- aNMM-2: Extension with multiple sets of value-share weights
 \[aNMM-2: y = \sum_{j=1}^{M} \tau(v \cdot q_j) \cdot \delta(\sum_{t=0}^{T} r_t \cdot \delta(\sum_{k=0}^{K} W_{kt} x_{jk})) \]
Back Propagation for Model Training

- Backward propagation with stochastic gradient descent
- Pairwise Learning
- Given a triple \((q, a^+, a^-)\) where
 - \(q\) question sentence
 - \(a^+\) correct answer sentence
 - \(a^-\) wrong answer sentence
 - Hinge Loss function \(e(q, a^+, a^-; w, r, v) = \max(0, 1 - S(q, a^+) + S(q, a^-))\)
 - Compute \(\Delta S = 1 - S(q, a^+) + S(q, a^-)\)
 - If \(\Delta S \leq 0\) Skip this triple
 - If \(\Delta S > 0\) Compute the gradients w.r.t \(v, r, w\)
 - Update the model parameters to minimize the loss function with BP algorithm
Outline

• Motivation
• Related Works
 – Learning to rank for QA
 – Deep learning for QA
• Attention-based Neural Matching Model
• Experiments
 – Data Set and Experiment Settings
 – Model Learning Results
 – Experimental Results for Ranking Answers
• Conclusions and Future Work
Experimental Data and Settings

- TREC QA data set from TREC QA track 8-13
 - One of the most widely used benchmarks for answer sentence selection/ranking
 - Contains a set of factoid questions with candidate answers which are limited to a single sentence
 - Judgements in TRAIN and TRAIN-ALL
 - Word embedding: pre-trained with English Wikipedia dump with the Word2Vec tool by Mikolov et. al [9, 10]

- Statistics of the TREC QA data set

<table>
<thead>
<tr>
<th>Data</th>
<th>#Questions</th>
<th>#QA pairs</th>
<th>%Correct</th>
<th>#Answers/Q</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAIN-ALL</td>
<td>1,229</td>
<td>53,417</td>
<td>12.00%</td>
<td>43.46</td>
<td>automatic</td>
</tr>
<tr>
<td>TRAIN</td>
<td>94</td>
<td>4,718</td>
<td>7.40%</td>
<td>50.19</td>
<td>manual</td>
</tr>
<tr>
<td>DEV</td>
<td>82</td>
<td>1,148</td>
<td>19.30%</td>
<td>14.00</td>
<td>manual</td>
</tr>
<tr>
<td>TEST</td>
<td>100</td>
<td>1,517</td>
<td>18.70%</td>
<td>15.17</td>
<td>manual</td>
</tr>
</tbody>
</table>

[9] https://code.google.com/archive/p/word2vec/
Model Learning Results

- Visualization of learned question term importance

<table>
<thead>
<tr>
<th></th>
<th>Term Importance</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>test_14</td>
<td>when</td>
<td>4.91E-03</td>
<td>did</td>
<td>7.18E-04</td>
<td>the</td>
<td>8.97E-04</td>
<td>khmer</td>
<td>5.67E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>test_66</td>
<td>where</td>
<td>2.16E-04</td>
<td>was</td>
<td>5.67E-04</td>
<td>the</td>
<td>1.96E-04</td>
<td>first</td>
<td>2.57E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>train_84</td>
<td>at</td>
<td>5.06E-02</td>
<td>what</td>
<td>2.54E-03</td>
<td>age</td>
<td>6.17E-02</td>
<td>did</td>
<td>2.68E-03</td>
</tr>
</tbody>
</table>
Experimental Results

• Learning without combining additional features

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
<th>MRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al. (2007) [27]</td>
<td>0.6029</td>
<td>0.6852</td>
</tr>
<tr>
<td>Heilman and Smith (2010) [5]</td>
<td>0.6091</td>
<td>0.6917</td>
</tr>
<tr>
<td>Wang and Manning (2010) [26]</td>
<td>0.5951</td>
<td>0.6951</td>
</tr>
<tr>
<td>Yao et al. (2013) [31]</td>
<td>0.6307</td>
<td>0.7477</td>
</tr>
<tr>
<td>Severyn et al. (2013) [17]</td>
<td>0.6781</td>
<td>0.7358</td>
</tr>
<tr>
<td>Yih et al. (2013) [32]</td>
<td>0.7092</td>
<td>0.7700</td>
</tr>
<tr>
<td>aNMM-2</td>
<td>0.7407</td>
<td>0.7969</td>
</tr>
<tr>
<td>aNMM-1</td>
<td>0.7385</td>
<td>0.7995</td>
</tr>
</tbody>
</table>

Compare with methods using feature engineering (on TRAIN-ALL)

Compare with deep learning methods

<table>
<thead>
<tr>
<th>Training Data</th>
<th>TRAIN</th>
<th>TRAIN-ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>MAP</td>
<td>MRR</td>
</tr>
<tr>
<td>Yu et al. (2014) [34]</td>
<td>0.5476</td>
<td>0.6437</td>
</tr>
<tr>
<td>Wang et al. (2015) [25]</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Severyn et al. (2015) [18]</td>
<td>0.6258</td>
<td>0.6591</td>
</tr>
<tr>
<td>aNMM-2</td>
<td>0.7191</td>
<td>0.7974</td>
</tr>
<tr>
<td>aNMM-1</td>
<td>0.7334</td>
<td>0.8020</td>
</tr>
</tbody>
</table>

• Achieve better performance comparing with other methods using feature engineering
• Show significant improvements comparing with previous deep learning methods
• Results of aNMM-1 and aNMM-2 are very close
• aNMM-1 could be trained with higher efficiency
Experimental Results

- Learning with combining additional features

Compare with deep learning methods
Severyn et al. (SIGIR 2015) is the state-of-the-art result

Overview of previously published results on TREC QA data (the best setting of each model trained on TRAIN-ALL)

<table>
<thead>
<tr>
<th>Training Data</th>
<th>METHOD</th>
<th>TRAIN</th>
<th>TRAIN-ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAP</td>
<td>MRR</td>
<td>MAP</td>
</tr>
<tr>
<td>Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yu et al. (2014) [34]</td>
<td>0.7058</td>
<td>0.7800</td>
<td>0.7113</td>
</tr>
<tr>
<td>Wang et al. (2015) [25]</td>
<td>/</td>
<td>/</td>
<td>0.7134</td>
</tr>
<tr>
<td>Severyn et al. (2015) [18]</td>
<td>0.7329</td>
<td>0.7962</td>
<td>0.7459</td>
</tr>
<tr>
<td>aNMM-2</td>
<td>0.7306</td>
<td>0.7968</td>
<td>0.7484</td>
</tr>
<tr>
<td>aNMM-1</td>
<td>0.7417</td>
<td>0.8102</td>
<td>0.7495</td>
</tr>
</tbody>
</table>

- Combine the score of aNMM-1/aNMM-2 with QL score
- With the combined feature, both aNMM-1 and aNMM-2 have better performances
- aNMM-1 also outperforms CDNN by Severyn et al. ([5] in SIGIR 2015) which is the current state-of-the-art method
• Motivation
• Related Works
 – Learning to rank for QA
 – Deep learning for QA
• Attention-based Neural Matching Model
• Experiments
 • Data Set and Experiment Settings
 • Model Learning Results
 • Experimental Results for Ranking Answers
• Conclusions and Future Work
Conclusions and Future Work

• Propose an attention based neural matching model for ranking short answer text
 – Adopt value-shared weighting scheme instead of position-shared weighting scheme for combining matching signals
 – Incorporate question term importance learning using a question attention network

• Perform a thorough experimental study with TREC QA data and show promising results
 – Without combining additional features
 • Outperform previous deep learning methods and feature engineering methods with large gains
 – With one simple additional feature
 • Outperform the state-of-the-art method
Conclusions and Future Work

• Additional results on Microsoft Research WikiQA data [11]
 – Double confirms the advantages of the attention based neural matching models for ranking answer sentences.

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
<th>MRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordCount</td>
<td>0.4891</td>
<td>0.4924</td>
</tr>
<tr>
<td>WeightedWordCount</td>
<td>0.5099</td>
<td>0.5132</td>
</tr>
<tr>
<td>LCLR</td>
<td>0.5993</td>
<td>0.6086</td>
</tr>
<tr>
<td>PV</td>
<td>0.5110</td>
<td>0.5160</td>
</tr>
<tr>
<td>CNN</td>
<td>0.6190</td>
<td>0.6281</td>
</tr>
<tr>
<td>PV-Count</td>
<td>0.5976</td>
<td>0.6058</td>
</tr>
<tr>
<td>CNN-Count</td>
<td>0.6520</td>
<td>0.6652</td>
</tr>
<tr>
<td>aNMM-2</td>
<td>0.6455</td>
<td>0.6527</td>
</tr>
<tr>
<td>aNMM-1</td>
<td>0.6562</td>
<td>0.6687</td>
</tr>
</tbody>
</table>

• Future work
 – Extend our work to include non-factoid question answering data sets
 • Yahoo CQA /Stack Overflow/ WebAP
 – Interactive QA & Natural language dialogue for FAQ search

Thank You

Q&A

Email: lyang@cs.umass.edu
https://sites.google.com/site/lyangwww/