
This is page �
Printer� Opaque this

Time� Hardware� and Uniformity

David Mix Barrington
Neil Immerman

ABSTRACT We describe three orthogonal complexity measures� parallel
time� amount of hardware� and degree of non�uniformity� which together
parametrize most complexity classes� We show that the descriptive com�
plexity framework neatly captures these measures using three parameters�
quanti�er depth� number of variables� and type of numeric predicates� re�
spectively� A fairly simple picture arises in which the basic questions in
complexity theory � solved and unsolved � can be understood as ques�
tions about tradeo�s among these three dimensions�

� Introduction

An initial presentation of complexity theory usually makes the implicit as�
sumption that problems� and hence complexity classes� are linearly ordered
by �di�culty�� In the Chomsky Hierarchy each new type of automaton
can decide more languages� and the Time Hierarchy Theorem tells us that
adding more time allows a Turing machine to decide more languages� In�
deed the word �complexity� is often used �e�g�� in the study of algorithms	
to mean �worst�case Turing machine running time�� under which problems
are linearly ordered�

Those of us who study structural complexity know that the situation is
actually more complicated� For one thing� if we want to model parallel com�
putation we need to distinguish between algorithms which take the same
amount of �work� �i�e�� sequential time	 
 we care how many processes are
operating in parallel and how much parallel time is taken� These two dimen�
sions of complexity are identi�able in all the usual models� boolean circuits
�width and depth	� PRAMs or other explicit parallel machines �number
of processors and parallel time	� alternating Turing machines �space and
alternations	 or even deterministic Turing machines �space and reversals	�
Hong�s book 
H� gives an interesting general treatment of �similarity� be�
tween models and �duality� between these two complexity measures�

Figure � gives a two�dimensional layout of some well�known �and less
well�known	 complexity classes� To be precise about our axes� we have
chosen �unbounded fan�in	 circuit depth as our measure of �parallel time�
and circuit width as our measure of �number of processes�� This assumes
that the circuits have been arranged into levels� and that each edge into
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Figure �� Two Dimensions of Complexity Classes

a gate comes from either an input or a gate on the immediately previous
level� Thus the depth is the number of levels and the width is de�ned as
the size of the largest level�

The columns of our chart represent bounds on depth� and the rows
bounds on width� Blanks indicate classes where both are bounded below
polynomially� and thus the resulting circuits cannot access the entire input�
The named classes are fairly standard� except for the use of a pre�x �q� to
indicate a change from a polynomial to a quasipolynomial size bound 
B����
Thus qNC is the class of languages decidable by circuit families of poly�log
depth and quasipolynomial size 
 it is a robust class which occurs several
times on the chart� Finally� question marks denote classes which have no
distinctive names known to the authors� and about which we know nothing
other than the obvious containment relations with their neighbors�

Of course merely specifying combinatorial bounds on the circuits in a
family does not fully specify a complexity class� For example� any unary
language� even an uncomputable one� has a circuit family of O��	 size
and depth which decides it� In the circuit context� we usually speak of
restricting circuit families by a uniformity condition 
 we say that the
circuit must be computable �or that questions about it must be answerable	
by resource�bounded computation� It is equally sensible to speak of non�
uniformity as a resource� more of which allows a circuit family to decide
more languages� This resource forms the third axis of our parametrization
of complexity classes� It exists in other models as well 
 �advice� given to
Turing machines 
KL�� or precomputation in parallel machines 
A��

At each point on our two�dimensional chart� we have a range of com�
plexity classes obtained by varying the uniformity condition� For example�
if both size and depth are polynomially bounded the chart indicates the
class P of languages decided by polynomial�time Turing machines� This
claim is true if the circuits are P�uniform �computable by a poly�time
Turing machine	� or if they are DLOGTIME uniform �direct connection
language decidable by a random�access Turing machine in time O�logn	�
see 
BIS�	� or any uniformity condition in between� However� if we allow
ourselves more than polynomial time to compute the circuit� we may be
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able to decide more languages� �If we allow ourselves enough extra time�
we can de�nitely do so� For example� if we allow more than exponential
time� we can decide the unary version of the universal language for Turing
machines with some superpolynomial time bound	� On the other hand� one
can imagine uniformity conditions so restrictive that a general simulation
of a Turing machine is impossible�

In general as we pass upward �adding more non�uniformity	 along the
third axis we pass through three regions� one with too little non�uniformity�
where the basic constructions relating the circuit model to other mod�
els cannot be carried out� a second robust region where a wide range of
de�nitions give the same class� and a third region where additional non�
uniformity gives steadily larger classes� The distinction can be quite impor�
tant� as we see in the case of the class NC�� As shown in 
BIS�� we can de�ne
a very restrictive uniformity notion under which NC� becomes the class of
regular languages� If our non�uniformity resource is between DLOGTIME
and NC� itself� we get a robust class� equal to ALOGTIME� And if we allow
polynomial time to build our circuits� we can then do integer division and
related problems 
BCH� which �as far as we know	 we couldn�t do before�

This may be an example of where non�uniformity can replace one of the
other two resources� In some cases� we know of limits on the potential power
of non�uniformity to do so� at least subject to complexity�theoretic assump�
tions� For example� Karp and Lipton 
KL� have shown that no amount of
non�uniformity can allow P to simulate all of �uniform	 NP� unless the
polynomial hierarchy collapses to the second level� It would be interesting
to have a parallel result for P and NC� and recent work of Ogihara� Cai�
and Sivakumar 
O� CS� has made progress toward this� One would like to
derive unlikely complexity�theoretic consequences from� for example� the
hypothesis that non�uniform NC� contains uniform P� or equivalently that
there is a sparse set complete for P under NC� Turing reductions� Cai and
Sivakumar show that if there is a sparse set complete for P under �logspace
uniform	 NC� many�one reductions� then P is equal to �logspace uniform	
NC�� D� van Melkebeek 
vM� has subsequently shown a similar result for
sparse sets complete under truth�table reductions�

In general our techniques for proving lower bounds on circuit complexity
are combinatorial and algebraic and apply to the totally non�uniform ver�
sions of the circuit classes� A notable exception is the result by Allender and
Gore 
AG� that the integer permanent function is not in DPOLYLOGTIME�
uniform qACC�� though for all we know it might be in LOGSPACE�uniform
ACC��

There is a certain amount of oversimpli�cation in thinking of each of
our three parameters as a single axis� For one thing� our �non�uniformity�
resource is de�ned in terms of the �complexity� of languages which talk
about the circuits� so this dimension may be as non�linear as the whole
picture� However� the uniformity conditions we normally consider happen
to be linearly ordered� More importantly� the �parallel time� axis is de�ned
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in terms of particular primitive operations on the data� In the circuit model
a single gate computes an AND or OR� in a parallel machine the most
powerful operations are the concurrent read and concurrent write� and the
alternations of a Turing machine are also de�ned in terms of AND and OR�
But there is nothing sacred about AND and OR 
 in each model we can
consider other operations� such as MAJORITY �more powerful than AND
and OR	 or modular counting �orthogonal to them	� In the circuit model
these operations are embodied as new kinds of gates� in Turing machines
as new acceptance conditions �as in the classes �P or PP	 and in parallel
machines as new global operations �such as the �scan� operation on the
Connection Machine	�

Here we consider these three dimensions and the variety of operations in
the framework of descriptive complexity� where we measure the complexity
of a language by the syntactic resources �in a particular logical formalism	
needed to express the property of membership in it 
I��� I��� I��b�� �We
review this framework in Section � below�	 It has been known for some
time that two parameters in descriptive complexity� number of variables and
quanti�er depth� correspond exactly to space and parallel time in either the
circuit or PRAM models 
I��b�� More recently �along with Straubing	 
BIS�
B���� we have extended the framework to deal with the third dimension
and with more general operations� in the context of �rst�order formulas
�or constant�depth� poly�size circuits	� There varying uniformity conditions
correspond to new atomic predicates and any associative operation with an
identity can be modeled by a new type of quanti�er�

With this approach� one can deal with a uniform family of circuits in
terms of a single logical formula which de�nes the entire family� It is then
possible to speak of �logically uniform circuits�� and the traditional unifor�
mity conditions which happen to coincide with logical uniformity �such as
DLOGTIME uniformity for constant�depth circuits	 are thus better moti�
vated� Furthermore� proofs using logical uniformity are arguably simpler 

two examples of this are the uniformity 
AG� B��� of the upper bounds on
the power of ACC� 
Y� BT� GKR� and the relationship between threshold
circuits and algebraic circuits over GF ��n	 
Re� BFS� FVB��

In this paper we show that the descriptive complexity framework can
deal with all three dimensions and with general operations� in virtually
any possible combination� Speci�cally�

� In Section � we review the descriptive complexity framework and
de�ne quanti�ers for arbitrary operations�

� In Section � we prove that the relationship of 
I��b� between descrip�
tive complexity� circuits� and PRAMs holds in the presence of these
arbitrary operations 
 adding the new quanti�ers to the logical for�
malism corresponds exactly to adding a new type of gate to the cir�
cuits or a new global operation to the PRAMs� If both circuit depth
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and width are polynomially bounded� the circuits are DLOGTIME
uniform�

� In Section � we show that adding limited second�order variables to the
formalism corresponds to increasing the size bound on the boolean
circuits �or the processor bound on the PRAMs	� This extends the
treatment of quasipolynomial�size circuit classes in 
B����

� In Section � we show that adding new atomic predicates to the formal�
ism corresponds to allowing the boolean circuits to be less uniform�
This is true both in the polynomial�size and in larger�size domains�

� In Section � we attempt to extend the logical framework to describe
circuit widths of less than polynomial �or equivalently� variables to�
taling to o�logn	 bits	� The main idea is to allow only variables which
range over subpolynomial�size sets� but there are complications be�
cause the basic logical language assumes� for example� that it is pos�
sible to refer to every position in the input� which normally entails a
variable ranging from � to n� Though it is not entirely satisfactory�
we do develop enough machinery to bring the constant�width char�
acterizations of NC� 
B��� and PSPACE 
CF� into the framework�

� Background� Descriptive Complexity

In this section we will give an overview of the basic de�nitions of descriptive
complexity theory� For more detailed presentations of this same material�
see 
I��� or 
I���� We will closely follow the development in 
IL�� especially
for the notions of reductions and operators�

Any complexity theory starts with a formally de�ned set of problems� a
model of computation� and a set of resource bounds� Our central notion will
be to replace deciding a problem by describing it� Our �model of computa�
tion� is to write down a logical formula which is true of an input exactly
when the decision problem has a positive answer� Our resource measures
will then be properties of the logical formula� such as the number and type
of quanti�ers� variables� and atomic predicates it contains�

Our general computational problem is to take some input and return a yes
or a no answer� We need to have the input in a form which our formulas can
talk about� so we code all our inputs as �nite logical structures� For example�
suppose the input is a binary string w � w� � � � wn of length n� Our atomic
statements about this string will be to name the bit in position i� which
we will do by a predicate M�i	� Following the traditions of mathematical
logic� we code the string as a structure Aw with universe f�� �� � � � � ng �the
input positions	 and one unary relation M on this universe� Thus Aw �
hf�� �� � � � � ng�MAw i� where�

MAw �
�
i
�� wi � �

�
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On the other hand� our problem might be a set of directed graphs rather
than a set of strings� In this case our structures would have a universe
consisting of the vertices and a binary relation E on this universe such that
E�i� j	 is true if and only if there is an edge from i to j� Or our input might
be an entire relational database� with several di�erent relations de�ned on
a �xed universe� What we need to know before we can describe a problem
is exactly which relation symbols �and constant symbols� which may be
thought of as ��ary function symbols	 are available in our language�

In general� a vocabulary

� � hRa�
� � � � � � Rat

t � c�� � � � � csi

is any tuple of input relation symbols and constant symbols� For example�
the vocabulary of strings is �s � hM�i consisting of a single monadic re�
lation symbol and the vocabulary of graphs �g � hE�� s� ti consists of the
binary edge predicate and two constant symbols�

To de�ne a structure A over vocabulary � � we need to provide a �nite
universe� a table for each relation RAi and a value for each constant cAi � We
will use the notation jAj to denote the universe of A� and jjAjj its cardinality�
In this paper� all our universes will be ordered and we will thus assume they
they consist of the �rst n positive integers�

jAj � f�� �� � � � � ng� where n � jjAjj

Formally� a structure A of vocabulary � is a tuple

A � hf�� �� � � � � ng� RA� � � � � � RAt � cA� � � � � � cAs i

Here RAi is a subset of jAjai for each i � t and cAj is an element of jAj for
each j � s�

For any � � de�ne STRUC
� � to be the set of all �nite structures of vo�
cabulary � � De�ne a complexity theoretic problem to be any subset of
STRUC
� � for some � � For example� a problem over binary strings is a
subset of STRUC
�s� and a graph problem is a subset of STRUC
�g��

Next we need to build up a system L��	 of logical formulas to talk about
a problem with vocabulary � � Along with the symbols of � we will al�
ways have a �xed set of numeric relation symbols and constant symbols�
����SUC�BIT�min�max�� We then allow the boolean connectives ������
we introduce variables� x� y� z� ��� ranging over jAj� and allow �rst�order
quanti�cation of these variables by the usual quanti�ers � and 	�

�Here � refers to the usual ordering on the universe� f�� �� � � � � ng� SUC is the
successor relation and min and max refer to the �rst and last elements in the
total ordering� BIT
i� j� holds i� the jth bit in the binary expansion of i is a one�
These relations are called numeric because� for example� �BIT
i� j�� and �i � j�
describe the numeric values of i and j and do not refer to any input predicates�
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This de�nition gives us a descriptive complexity class FO��	� consisting
of all problems �subsets of STRUC
� �	 which can be de�ned using the
�rst�order language L��	� When the vocabulary is understood� we�ll call
this class just FO� It turns out that this class is a familiar one from circuit
complexity and parallel complexity 
 it equals the log�time uniform version
of the circuit class AC� and also the problems solvable in constant time by
a natural parallel machine �a version of a PRAM	 with polynomially many
processors 
BIS��

All of our later descriptive complexity classes may be viewed as augmen�
tations of this class FO� As a �rst example� consider adding a new quanti�er
to 	 and �� We de�ne the majority quanti�er M so that �Mx	��x	 holds if
more than half the elements of the universe satisfy ��x	� With this new tool
in our �rst�order language� we can de�ne a larger set of problems called
FOM� This class is also familiar� as it is equal to the log�time uniform
version of ThC�� the problems solvable by constant�depth� polynomial�size
threshold circuits 
BIS�� After building up some more machinery� we will
describe a general method to produce new operators of this kind�

First�Order Reductions

In this section we de�ne �rst�order reductions� which provide the most
natural way to reduce one problem to another in the descriptive setting�
They are exactly many�one reductions which are de�nable by �rst�order
formulas� At the end of the section we will also de�ne some important
subclasses of �rst�order reductions�

Suppose that S 
 STRUC
�� and T 
 STRUC
� � are any two problems�
Let � � hRa�

� � � � � � Rar
r � c�� � � � � csi� In order to reduce S to T � we must

provide a way for any structureA to be mapped to a new structure I�A	 �
STRUC
� �� Before giving the de�nition� we provide an example�

Example ��� Let graph reachability �REACH	 denote the following prob�
lem� given a graph� G� and vertices s� t� determine if there is a path from
s to t in G� Let REACHu be the restriction of the REACH problem to
undirected graphs� Let REACHd be the restriction of the REACH prob�
lem in which we only allow deterministic paths� i�e�� if the edge �u� v	 is
on the path� then this must be the unique edge leaving u� Notice that the
REACHd problem is reducible to the REACHu problem as follows� Given
a directed graph� G� let G� be the undirected graph that results from G by
the following steps�

�� Remove all edges out of t�

�� Remove all multiple edges leaving any vertex�

�� Make each remaining edge undirected�
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Observe that there is a deterministic path in G from s to t i� there is a
path from s to t in G��

The following �rst�order formula �du accomplishes these three steps and
is thus a �rst�order reduction fromREACHd toREACHu� More precisely�
the �rst�order reduction is the expression Idu � �xy�true� �du� s� t	 whose
meaning is� �Make the new edge relation f�x� y	 j �dug� and map s to s
and t to t��

��x� y	 � E�x� y	 � x 
� t � ��z	�E�x� z	� z � y	

�du�x� y	 � ��x� y	 � ��y� x	

The reason for the formula �true� is that we want to put all elements of
the input structure into the output structure�

jI�A	j �
�
g � jAj �� A j� true

�
� jAj

�

In this example the universes of the domain and range of the reduction
were equal� and hence had the same size� The general situation is a bit
more complicated because we want to allow the possibility of reducing one
problem to another which has a polynomially larger universe� Here we �x an
integer k and let jI�A	j be a �rst�order de�nable set of k�tuples of elements
of jAj� Each relation Rai

i of � has a formula �i whose free variables are
x��� � � � � x

k
� � � � � � x

�
ai
� � � � � xkai �which may be viewed as ai free variables each

of which is a k�tuple	� Similarly� each constant symbol cj of � has associated
with it a k�tuple t�j � � � � � t

k
j of constants from �� We recapitulate by giving

the formal de�nition�

De�nition ��� �First�Order Reductions	 Let � and � be be two vocab�
ularies� with � � hRa�

� � � � � � Rar
r � c�� � � � � csi� Let S 
 STRUC
�� and T 


STRUC
� � be two problems� Let k be a positive integer� Let

I � �x�������xkd h��� ��� � � � � �r� t�� � � � � tsi

be a tuple consisting of an r���tuple of formulas and an s�tuple of k�tuples
of constants� all from L��	� Here d � maxi�ai	�

Then I induces a mapping I from STRUC
�� to STRUC
� � as follows�
Let A � STRUC
�� be any structure of vocabulary �� and let n � jjAjj�
Then the structure I�A	 is de�ned as follows�

I�A	 � hjI�A	j� RI�A�
� � � � � � RI�A�

r � c
I�A�
� � � � � � cI�A�s i

The universe is given by�

jI�A	j �
�

�g�� � � � � gk	 � jAjk �� A j� ���g�� � � � � gk	
�
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That is� the universe is the set of k�tuples of A satisfying ��� The ordering

of jI�A	j is the lexicographic ordering inherited from A� Each c
I�A�
j is given

by the k�tuple of constants �t�j � � � � � t
k
j 	� The relation R

I�A�
i is determined

by the formula �i� for i � �� � � � � r�

R
I�A�
i �

�
��u��� � � � � u

k
�	� � � � � �u�ai � � � � � u

k
ai

		
�� A j� �i�u

�
�� � � � u

k
ai

	
�

If the structure A interprets some variables �u then these may appear
freely in the the �i�s and tj �s of I� and the de�nition of I�A	 still makes
sense� This will be important in De�nition ��� where we de�ne operators
in terms of �rst�order reductions�

Suppose that I is a many�one reduction from S to T � i�e� for all A in
STRUC
���

A � S � I�A	 � T

Then we say that I is a k�ary �rst�order reduction of S to T � Furthermore� if
the �i�s are quanti�er�free and do not include BIT then I is a quanti�er�free
reduction� �

Valiant 
V� de�ned a very low�level� non�uniform reduction called a pro�
jection� A projection is a many�one reduction f � f�� �g� � f�� �g� such
that each bit of f�w	 depends on at most one bit of w� �It can be thought
of as a reduction computed by a circuit of depth zero� depending on the
details of the de�nitions�	 We next de�ne �rst�order projections� a syntactic
restriction of �rst�order interpretations�

De�nition ��� �First�Order Projections	 Let I be a k�ary �rst�order re�
duction from S to T as in De�nition ���� Let I � h��� � � � � �r� t�� � � � � tsi�
Suppose further that the �i�s all satisfy the following projection condition�

�i � �� � ��� � ��	 � � � � � ��s � �s	 ����	

where the �j �s are mutually exclusive formulas in which no input relations
occur� and each �j is a literal� i�e� an atomic formula P �xj�� � � � xja	 or its
negation�

In this case the predicateRi�hu��� � � � � uk�i� � � � � hu�ai � � � � ukaii	 holds in I�A	
if ����u	 is true� or if �j��u	 is true for some � � j � t and the corresponding
literal �j��u	 holds in A� Thus each bit in the binary representation of I�A	
is determined by at most one bit in the binary representation of A� We say
that I is a �rst�order projection�

Finally de�ne a quanti�er�free projection to be a �rst�order projection
that is also a quanti�er�free reduction� Write S �fop T � S �qfp T to mean
that S is reducible to T via a �rst�order projection� respectively a quanti�er�
free projection� �

Looking back at Example ���� we see that Idu is a quanti�er�free reduc�
tion� but it is not a projection� This is because the formula �du�x� y	 looks
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at more than one bit of its input� it depends on E�x� y	 and E�y� x	 and in
fact it may depend on all E�x� z	 and E�y� z	 as z varies over all vertices�
In fact� there is a qfp that reduces REACHd to REACHu� but we will not
construct it here�

General Operators

First�order reductions give us a mechanism for forming an operator out
of any problem �� The operator� which we will also call �� acts rather
like a quanti�er �and in fact this construction extends the �generalized
quanti�ers� of 
BIS�	� A very similar construction is used in 
MP� and in

KV�� where the operator we call � would be denoted Q��

De�nition ��� �
IL�	 �Operator Form of a Problem	 Let � and � be vo�
cabularies� and let � 
 STRUC
� � be any problem� Let I be any �rst�order
reduction with I � STRUC
�� � STRUC
� �� Then �
I� is a well�formed
formula in the language FO��	 over vocabulary �� with the semantics�

A j� �
I� � I�A	 � � �

For example� consider the case where � � �s and so � is set of binary
strings� A k�ary reduction I then consists of a pair of formulas h��� ��i
from L��	� with free variables x�� � � � xk� �
I� is a sentence that holds of
a structure A � STRUC
�� exactly if the structure I�A	 is in �� This
structure I�A	 is the string of length at most jAjk consisting of the truth
values of � as the variables x�� � � � xk range over

�
�a � jAjk �� A j� ����a	

�
�

The operator � is a generalized quanti�er binding the variables x�� � � � xk�
We have already seen three special cases of this phenomenon 
 choosing

� to be the AND� OR� or MAJORITY languages gives the �� 	� and M
quanti�ers respectively� The generalized quanti�ers in 
BIS�� corresponding
to languages over larger alphabets� �t into this framework with � having a
unary predicate for each letter of the language�

We can repeat this process� applying the � operator to a formula in which
� already appears� We de�ne the complexity class FO��	 to be the set of
problems expressible by �rst�order formulas in this extended language� We
say that a problem S is �rst�order Turing reducible to � �S �t

fo �	 i�
S � FO��	�

If the problem � is complete for C � FO��	 via a lower�level reduction
such as fop or qfp this means that we do not need the full power of arbitrary
applications of � in FO��	� In other words� a normal form theorem for
FO��	 applies�

De�nition ��� �
IL�	 We say that the language FO��	 has the fop Normal
Form Property i� every formula � � FO��	 is equivalent to a formula ��
where�

� � �
I�
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where I is a �rst�order projection� If I is a quanti�er�free projection then
we say that FO��	 has the qfp Normal Form Property� �

As an example� recall the problem REACH from Example ���� Consider
the following quanti�er�free projection Ic�

Ic � �x��x��y��y� �true� �� hmin�mini� hmax�maxi	

� � �x� � y� �E�x�� y�		 � �x� � x� � SUC�x�� y�	 � y� � min	

The formula � describes a graph on pairs of vertices� There is an ��path
from hmin�mini to hmax�maxi i� every vertex in the graph is reachable
from min� For undirected graphs� this is equivalent to connectivity�

CONNECTIVITY � REACH�Ic	 ����	

It is shown in 
I��� and 
I��� that the language FO�TC	 is equal to NL
and has the qfp normal form property� It thus follows that every problem
in NL is expressible in the form of Equation ���� with Ic replaced by other
qfp�s�

The role of arbitrary problems as generalized quanti�ers is now summa�
rized by�

Fact ��� 	
IL�� Let � be a problem and C a complexity class that is closed
under �rst�order Turing reductions� Then

�� � is �t
fo�complete for C if and only if C � FO��	�

�� � is �fop�complete for C if and only if C � FO��	 and FO��	 has
the fop normal form property�

�� � is �qfp�complete for C if and only if C � FO��	 and FO��	 has
the qfp normal form property�

� First Uniformity Theorem

An apparent limitation of �rst�order logic as a means of describing problems
is that a single formula has only a �xed number of quanti�ers and can
thus a priori only represent a language which is decided by circuits of
constant depth� Adding operators for new functions expands the expressible
problems considerably� but in order to deal with circuits with arbitrary
depth bounds we need the notion of iterated quanti�er blocks� Rather than
a single formula� we now have a family of formulas varying with the input
size n� but in a very predictable way� For any function t�n	� we let our
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formula consist of t�n	 syntactic copies of a block of quanti�ers� followed by
some base formula� It is important to note that when we repeat a quanti�er
block the variables are not changed� Thus an FO
t�n	� formula uses only a
bounded number of distinct variables� For more detail see 
I����

De�nition ��� �
I���	 A set C of structures of vocabulary � is a member
of FO
t�n	� i� there exist quanti�er�free formulas Mi� � � i � k� from
L��	� and a quanti�er block�

QB �
�
�Q�v��M�	 � � � �Qkvk�Mk	

�

such that if we let �n � 
QB�t�n�M�� for n � �� �� � � �� then for all structures
A of vocabulary � with jjAjj � n� A � C � A j� �n � �

This covers only ordinary quanti�ers 
 we now generalize De�nition ���
to get the class FO��	
t�n	�� by allowing some of the quanti�ers Qi to be
applications of ��

Recall that the operator � should be used in the form �
I�� where I is
a �rst�order reduction �De�nition ���	�

I � �x����xd h��� ��� � � � � �r� t�� � � � � tsi
We will write such an occurrence of � in the quanti�er block as

��br� x� � � � xd� t�� � � � � ts	�

where we use a tuple of boolean variables br to code a value between � and
r� This expression thus binds the boolean variables br� and the individual
variables x� � � � xd� The meaning is given by�

�� br� x� � � � xd� t� � � � ts	�		 � ��h	�br
�	� 	�br
�	� � � � � 	�br
r	� t�� � � � � tsi	
where 	�br
i	 denotes the substitution of the number i for the boolean
variables br in 	�

De�nition ��� �FO��	
t�n	�	 A set C of structures of vocabulary � is a
member of FO��	
t�n	� i� there exist generalized quanti�ers G�� G�� � � � � Gk

and quanti�er free formula M� from L��	� and a quanti�er block�

QB �
�
�G�	 � � � �Gk	

�

such that if we let �n � 
QB�t�n�M�� for n � �� �� � � �� then for all structures
A of vocabulary � with jAj � n�

A � C � A j� �n �

Here� each generalized quanti�er Gi is either a limited quanti�er�

Gi � �Qivi�Mi	

as in De�nition ���� or an application of ��
Gi � �� br� x� � � � xd� t� � � � ts	 �
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Similarly� we de�ne IND��	
t�n	� to be the set of problems de�nable
by �rst�order inductive de�nitions with � operators� with inductive depth
at most t�n	� Extending the argument in 
I���� this complexity class is
equivalent to the restriction of FO�LFP��	 in which all applications of
LFP have depth of nesting at most t�n	� A typical example� as we will see�
is that the language FO�M	
logn� consisting of quanti�er�blocks including
the majority quanti�er� iterated log n times� is equal to the class ThC� of
problems accepted by threshold circuits of depth O�logn	�

Our main result in this section� generalizing basic results in 
BIS� and 
IL��
is that the known relationships between �rst�order descriptive complexity
classes and other standard parallel complexity classes are not a�ected by
the introduction of the � operators� This result will be the basis of all our
discussions of uniformity in the remainder of the paper� First� however� we
must specify the exact de�nitions of our various parallel models�

Following 
I��b�� we choose as our parallel machine model the CRCW�
PRAM with polynomially much hardware� The complexity class CRAM
t�n	�
is the set of problems solvable by such a CRCW�PRAM in parallel time
t�n	� To generalize� we may allow the CRAM to have special hardware that
can execute the operator � in constant time� We call the problems solvable
in t�n	 parallel time by this augmented machine the class CRAM��	
t�n	��

The circuit complexity class AC��	
t�n	� is the set of problems solvable
by depth�t�n	 circuits with AND� OR� and � gates of unbounded fan�in�
Note that since � need not be a symmetric function� the string or structure
de�ning the circuit must somehow specify the order of input to the � gates�
The uniformity condition� then� will constrain the di�culty of computing
the predicate IN��g� h� i	� meaning that gate h is input number i of gate
g� �This predicate is the natural generalization of the �direct connection
language� of 
Ru� BIS��	

A circuit is a directed� acyclic graph� The leaves of the circuit are the
input nodes� Every other vertex is a gate� The edges of the circuit indicate
connections between nodes� The edge �a� b	 would indicate that the output
of gate a is an input to gate b�

De�ne the vocabulary of circuits� �c � hE�� IN��� L�� G�
�� G

�
�� G

�
�� G

�
t � ri�

where E�x� y	 is a directed edge relation� meaning that the output of node
x is an input to node y� L�x	 means that the leaf x takes input value ����
G��x	� G��y	� G��z	� and Gt�w	 mean that the nodes x� y� z� and w are
�and�� �or�� �not�� and ��� gates� respectively� The constant r refers to
the root node� or output of the circuit�

In ��	 below ��rst�order uniform� means there is a �rst�order reduction�
I � STRUC
�s� � STRUC
�c�� The nth circuit is given by Cn � I��n	� where
�n � STRUC
�s� is the string consisting of n zeros� In ��	� the predicates
of Cn must all be computable in time DTIME�logn	� where n � jjAjj is
the size of the input�

In 
SV�� the non�uniform versions of CRAM
t�n	� and AC
t�n	� were
shown to be equal� Since then� many other connections have been estab�
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lished and they remain true in the uniform setting�

Theorem ��� For constructible and polynomially bounded t�n	� and any
problem operator �� the following classes are equal�

�� FO��	
t�n	�

�� IND��	
t�n	�

�� First�order uniform AC��	
t�n	�

�� DLOGTIME uniform AC��	
t�n	�

	� CRAM��	
t�n	�

Proof
�� � � � �	� This is very similar to the proof of the same fact without �


I��b�� The proof that IND��	
t�n	� contains CRAM��	
t�n	� is least dif�
ferent� we can inductively describe the entire con�guration of the CRAM
at some time t � � in terms of its con�guration at time t� In addition to
all the other cases� when the CRAM uses the operation �� this is simu�
lated by the inductive de�nition using the same operation� Similarly� that
CRAM��	
t�n	� contains FO��	
t�n	� requires the same change� as the
CRAM simulates the formula� the new operator � can be performed by
the CRAM when it is invoked in the formula� Finally we show� by induc�
tion on the structure of the inductive de�nition� that FO��	
t�n	� contains
IND��	
t�n	�� The idea is that we can rewrite any positive �rst�order in�
ductive de�nition into a quanti�er block as in De�nition ���� Again� the
proof from 
I��b� goes through with the change that occurrences of � in
the inductive de�nition are copied into the quanti�er block�

�� 
 �	� This is immediate since DLOGTIME is contained in FO 
BIS��
�� 
 �	� Here we are given the �rst�order uniform AC��	
t�n	� circuits�

We produce an FO��	 inductive de�nition of the value of each gate in the
circuit� The depth of the induction will be equal to the depth of the circuit�

We will de�ne by induction in FO��	 the predicate VALUE�g� b	 whose
intuitive meaning is that the value of the gate g is the boolean b� The
inductive de�nition for VALUE will be a disjunction over the possible kinds
of gates� leaf� ������ Thus� the de�nition of VALUE is given as follows�

VALUE�g� b	 � DEFINED�g	 � �
GL�g	 � �L�g	 � b	 �

G��g	 � �C�g	 � b	 � G��g	 � �D�g	 � b	 �
G��g	 � �N�g	 � b	 � Gt�g	 � �T �g	 � b	

�

Here� GL�g	� meaning that g is a leaf� is an abbreviation for ��x	�E�x� g	�
DEFINED�g	� meaning that g is ready to be de�ned� is an abbreviation for
��x	�	c	�E�x� g	� VALUE�x� c		�
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The predicate C�g	 says that all of g�s inputs are true� D�g	 says that
some of g�s inputs are true� and N�g	 says that its input is false�

C�g	 � ��h	�E�h� g	 � VALUE�h� �		

D�g	 � �	h	�E�h� g	� VALUE�h� �		

N�g	 � �	 h	�E�h� g		 � �	h	�E�h� g	�VALUE�h� �		

The most interesting case is T �g� b	� In this case� the inputs to g code
a set of relations that are a valid input to the problem �� Consider the
simplest case� in which this problem is coded as a single relation� R� In this
case� we have

T �g	 � �
I�� where� I � �xh��� ��i
���x	 � �	h	�IN��g� h� x		

���x	 � �	h	�IN��g� h� x	 � VALUE�h� �		

Note that the existence of the predicate IN� giving the numbering of
the inputs to each gate is crucial here� In 
BIS� the weaker condition was
used that the ordering of the inputs was given� Then the assumption that
all operators were �monoidal� was used� the appropriate formula was con�
structed by entering benign identity elements between the valid inputs�
Since we are dealing with arbitrary operators � we have no choice but to
insist on the existence of the numbering� Note also that if FO��	 contains
the class ThC� then we can express the numbering of the inputs if we are
given the ordering of the inputs�

�� 
 �	� Here we are given the quanti�er�block which when iterated
t�n	 times expresses the problem in question for structures of size n� We
show how� in DLOGTIME� to recognize the direct connection language of
the equivalent AC��	 circuits� The idea is that each gate in the circuit
corresponds to a quanti�er or boolean connective� or occurrence of � in
the quanti�er block� indexed by the values of all the �bounded number of	
variables� and the time� All that we need from DLOGTIME is the power
to compute the successor of a log n�bit number� and to �nd a particular
number in a bounded size tuple of log n�bit numbers� �

There were two reasons for the requirement that t�n	 be polynomially
bounded in Theorem ���� The �rst is that the de�nition of IND requires
monotone inductive de�nitions� which automatically close in at most poly�
nomially many steps� This can be alleviated by changing to an iteration
operator �ITER	 which does not require monotonicity� �This is equivalent
to replacing the least �xed point operator �LFP	 by a partial �xed point
operator �PFP		� The second reason concerns the class DLOGTIME uni�
form AC��	
t�n	�� For times t�n	 greater than polynomial� we need more
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than DTIME
log n� exactly to read and copy variables of length more than
logn� Thus� to talk about uniformity for superpolynomial�size circuits� we
interpret DLOGTIME uniform to mean DTIME
log�n � t�n		�� Similarly�
�rst�order uniform means that the circuits are �rst�order recognizable� This
automatically implies that the �rst�order variables needed to describe such
a circuit would be of size �log�n � t�n			 bits� With these points modi�
�ed as above� Theorem ��� remains true when the restriction that t�n	 be
polynomially bounded is removed�

� Variables That Are Longer Than logn Bits

We know from 
I��b� I��� that the number v of logn�bit variables in a
formula corresponds approximately to the amount of hardware nv in a
circuit or CRAM� Thus� a constant number of log n bit variables gives us the
usual bound of polynomial hardware� A constant number of second�order
variables �i�e� variables with polynomially many bits	 gives exponential
hardware� In the following result� the correspondence is not perfect simply
because the CRAM model� with priority write� is a di�erent concurrent
write model of parallelism from the FO
t�n	� model� Interestingly� in Fact
���� using the more robust measure of DSPACE� the bound is tight�

Fact 
�� 	
I��b�� Let CRAM
t�n	� �PROC
p�n	� be the complexity class
CRAM
t�n	� restricted to machines using at most O
p�n	� processors� Let
IND
t�n	��VAR
v�n	� be the complexity class IND
t�n	� restricted to induc�
tive de�nitions using at most v�n	 distinct variables� Assume for simplicity
that both t�n	 and the maximum size of a register word are o


p
n�� and that

� � � is a natural number� Then�

CRAM
t�n	��PROC
n��

 IND
t�n	��VAR
�� � ��


 CRAM
t�n	��PROC
n�����

Fact 
�� 	
I��b�� The polynomial hierarchy PH is equal to the set of prop�
erties checkable by a CRAM using exponentially many processors and con�
stant time�

PH �
��

k��

CRAM
���PROC
�n
k

� �

Fact 
�� 	
I���� For k � �� �� � � � �

DSPACE
nk� � VAR
k � ��

In this section� we show how to de�ne the number of variables in the
FO
t�n	� model in such a way that even when the number of variables is
more than a constant� the simple� uniform quanti�er block structure is
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preserved� Then we use this new de�nition to generalize Theorem ��� to
two of our three complexity �dimensions��

De�nition 
�
 For v�n	 � �� a FO
t�n	� �VAR
v�n	� formula will have two
sorts of variables� the domain variables� x� y� z� � � � � ranging over the uni�
verse f�� �� � � � � ng� plus extended variables� X�Y�Z� � � �� each of v�n	 logn
bits�

The extended variables may be quanti�ed just like domain variables�
However� the extended variables do not occur as arguments to any input
relations� Their only role is as arguments in the BIT predicate� That is� we
may assert BIT�x� Y 	 meaning that the xth bit of Y is a one� Note that
this only makes sense for extended variables with at most n bits� �In this
paper we only consider polynomially bounded v�n	 for which we can use a
tuple �x of domain variables� One could consider even larger v�n	� by using
intermediate size variables between x and Y �	 De�ne FO
t�n	� �VAR
v�n	��
with v�n	 � � to be the extension to FO
t�n	� that we get by including a
bounded number of v�n	 logn�bit extended variables�

Furthermore� extended variables can be used in the natural way to de�ne
reductions that increase the size of a structure by more than a polynomial�
Thus� we have a de�nition of FO��	
t�n	��VAR
v�n	� for any v�n	 � �� �

As an example illustrating the above de�nition� the next proposition
says that second�order logic is �rst�order logic with polynomially many
variables�

Proposition 
�� For any problem � and any function t�n	�

SO��	
t�n	� � FO��	
t�n	��VAR
nO����

We can now state our Two�Dimensional Resources Theorem�

Theorem 
�� For constructible v�n	 � �� constructible t�n	� and any
problem operator �� the following classes are equal�

�� FO��	
t�n	��VAR
O�v�n		�

�� ITER��	
t�n	��VAR
O�v�n		�

�� FO uniform AC��	
t�n	��WIDTH
�O�v�n� logn��

�� DTIME
v�n	O��� � log�t�n	�� unif�AC��	
t�n	��WIDTH
�O�v�n� logn��

	� �CRAM��	
t�n	��HARD
�O�v�n� logn��

The proof of Theorem ��� is quite similar to the proof of Theorem ����
We simulate the computations as before� and just check that the width�
hardware�variable resources needed are appropriate��
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� Uniformity� The Third Dimension

It has been understood for a while that non�uniformity corresponds in the
descriptive setting to the addition of numeric predicates� Recall that a
numeric predicate is a predicate such as � or BIT that depends only on
the numeric values of its arguments� not on any of the input predicates�

Fact ��� 	
I���� A problem S is in Non�uniform AC� i
 for some numeric
predicate N � S is expressible in the language FO�N	�

It seems� after a fair amount of investigation and soul searching 
I��b�
BIS� L� that the �right� lowest level of uniformity corresponds to the nu�
meric predicates ��BIT� �This is equivalent to the set ������	 Once we
have a little bit of computation� such as a majority quanti�er or the de�
terministic transitive closure operator� all that is needed is � and BIT is
super!uous 
BIS� I����

The following theorem gives two examples of a very general phenomenon�
The idea of capturing polynomial�time uniformity via the unary form of an
EXPTIME complete problem is from 
A��

Theorem ��� Theorem ��� remains true in both the non�uniform and the
polynomial�time uniform settings� More precisely� the classes mentioned in
that theorem remain equal in the following cases�

�� When an arbitrary numeric predicate is added to �rst�order logic� and
an arbitrary polynomial length �advice string� is given to the CRAM
and to the circuits�

�� Let E be a numeric predicate that codes the unary version of an EXP�
TIME complete problem� Add E to the �rst�order languages FO and
IND� add a table for E to the CRAM� and change� �DLOGTIME
uniform� to �polynomial�time uniform��

One feature of uniformity that we �nd amazing is that very low�level
uniformity seems to su�ce� Similarly� natural complete problems tend to
remain complete via very low�level reductions such as fops� Why this is true
is not completely clear� In part� the answer is the existence of universal
Turing machines and thus universal complete problems� However� we feel
that there is more to it than that� Here is a typical example�

Observation ��� The following classes are all equal�

�� FO
nO����

�� DLOGTIME uniform polynomial�size circuits

�� LOGSPACE uniform polynomial�size circuits

�� polynomial�time uniform polynomial�size circuits

	� P
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� Variables that are Shorter than logn Bits

One would expect circuits of constant width� rather than depth� to be very
weak� but the following two interesting characterizations tell us that this
is not so�

Theorem ��� 	
B��� BIS�� NC� 
DLOGTIME or NC� uniform� is ex�
actly the set of languages recognized by DLOGTIME uniform boolean circuit
families of O��	 width and nO��� depth�

Theorem ��� 	
CF�� PSPACE is exactly the set of languages recognized

by NC� uniform boolean circuit families of O��	 width and �n
O���

depth�

Proof �sketch	 It is clear that such circuits can be simulated in PSPACE�
It remains to use these circuits to simulate a PSPACE Turing machine� for
which it su�ces to solve the reachability problem on the exponential�size
con�guration graph� By the standard Savitch construction we get a circuit
of polynomial depth and exponential size� and by standard tricks we can
turn this into a boolean formula with fan�in two which is very uniform�
�In particular� we can take the polynomial�length gate number and �in
FO	 recover the two Turing machine con�gurations which gave rise to the
gate	�

We then apply the construction of 
B��� to get an exponential�length
branching program of constant width �easily convertible into the desired
circuit of constant width	� Essentially �as explained in 
BIS�	 a gate number
in the constant�width circuit encodes both a leaf node of the poly�depth
circuit �and hence a pair of con�gurations of the original Turing machine	
and an indication of which element of the group S	 is to be computed
by this level� Determining the latter means passing over the entire gate
number �or from the root to the leaf of the poly�depth circuit	� performing
an operation in S	 at every step� which is an NC��complete problem� �

Our goal in this section is to expand the descriptive complexity frame�
work to encompass results such as Theorems ��� and ���� That is� we want
to extend the previous notions in this paper to the situation where we have
fewer than one logn�bit variable� or equivalently circuit width less than
polynomial�

By analogy with Section �� we would like to de�ne a class FO
t�n	� �
VAR
v�n	� for v�n	 � o��	� which would be equivalent to uniform circuits
of width �O�v�n� logn� and depth t�n	� The di�culty in doing so is that
the basic �rst�order variables of our formalism have log n bits� so that
quantifying over one of them would appear to exceed the width bound�
We have to prohibit explicit use of such variables� while retaining them in
order to talk about the others�

It is absolutely necessary that our formulas� like the �bottleneck ma�
chines� of 
CF�� have access to a read�only clock� Thus we will allow the
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formulas within the quanti�er block to have access to a variable t� which
will indicate which iteration of the quanti�er block we are currently in� As

long as t�n	 � �n
O���

� t will always be only polynomially many bits� so we
may access its individual bits by using the BIT predicate and a vector of
ordinary variables� But we need to restrict ordinary quanti�ers to maintain
the width bound� Consider the following�

De�nition ��� �Fewer than one variable	 For v�n	 � o��	� and t�n	 �

�n
O���

� an FO
t�n	� � VAR
v�n	� formula will have three sorts of variables�
ordinary ones x� y� z� � � � � ranging over the universe f�� � � � � ng� limited ones
a� b� c� � � � � of v�n	 logn bits each� and a variable t whose value is an integer�
equal to � in the base formula M� and equal to j in the jth quanti�er block
to the left of M�� Both ordinary and extended variables may be quanti�ed�
while t is syntactically like a constant� Only ordinary variables may be used
to access the input� but all may be used in the BIT predicate� Finally� the
quanti�er block B may not have an ordinary variable x that occurs freely
in B� �

The purpose of the �nal restriction is to force the circuits obtained from
these formulas� as in the proof of Theorem ���� to periodically have levels
with only �O�v�n� logn� gates� We would prefer to have a de�nition where
all the levels were so bounded� but this de�nition produces a circuit class
which is equivalent� allowing us to prove�

Theorem ��
 FO
nO���� �VAR
�
 log n� � 
DLOGTIME uniform� NC��

Proof
�
	 � For every t � t�n	� because of the special condition� we know that


B�tM� has free variables totaling r � O��	 bits� De�ne f�t	 to be the �r�bit
string de�ned by the truth value of this formula for all possible values of the
r bits� The string f�t	 is a �rst�order function of f�t� �	� t� and the input
predicates� Since FO 
 NC�� this means that each bit of f�t	 is computable
from these values via a bounded width� polynomial�size circuit� We can just
string all of these t�n	 bounded�width circuits together one after the other
to get the bounded�width� polynomial�size circuit for the original problem�

��	 � By Theorem ��� we know that there are DLOGTIME�uniform�
constant�width� polynomial�depth circuit families for any language in NC��
Let �r be the width and t�n	 be the depth of the circuits for the problem in
question� The values of the �r gates at level t of the circuit are determined
in a DLOGTIME�de�nable way from t and the values at level t � �� and
from the input� Recall that DLOGTIME is contained in FO 
BIS�� Thus
we can write this relationship in a �rst�order formula ��b�� � � � � br� Gt��	�
Here Gt���b

�
�� � � � � b

�
r	 is a relation that codes the state of the �r gates at

time t � �� Using a standard� syntactic trick� �Corollary ��� in 
I���	� we
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can form a quanti�er block B so that

Gt�b�� � � � � br	 � 
B�Gt���b�� � � � � br	

Here� B may quantify some ordinary variables in order to look at the bits
of the input that t tells it to� but no such ordinary variables will be left
free� Thus� B is the quanti�er block that we are looking for and we have
that

Gt�b�� � � � � br	 � 
B�tG�

as desired� �

Similarly� we show�

Theorem ��� FO
�n
O���

� � VAR
�
 log n� � PSPACE�

Proof
�
	 � This is immediate from previous results because FO
�n

O���

��VAR
�
 log n�


 FO
�n
O���

� � PSPACE�

��	 � We proceed much as in the similar case above� using the result of
Theorem ���� except that our �nite function simulating the e�ect of the tth

level of gates is now NC� computable rather than DLOGTIME computable
from t and the input� However� we can now use Theorem ��� above to sim�
ulate the necessary NC� predicate via a FO
nO���� �VAR
�
 log n� formula�
We now just iterate this formula exponentially many times� getting the
desired result� �

� Conclusions

We have presented a very general� three�dimensional view of complexity�
The dimensions are parallel time� amount of hardware� and amount of
precomputation and correspond closely to quanti�er�depth� number of vari�
ables� and complexity of numeric predicates� respectively� The tradeo�s be�
tween quanti�er�depth� number of variables� and the complexity of numeric
predicates are 
 to say the least 
 worthy of much future investigation�
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