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Time, Hardware, and Uniformity

David Mix Barrington
Neil Immerman

ABSTRACT We describe three orthogonal complexity measures: parallel
time, amount of hardware, and degree of non-uniformity, which together
parametrize most complexity classes. We show that the descriptive com-
plexity framework neatly captures these measures using three parameters:
quantifier depth, number of variables, and type of numeric predicates, re-
spectively. A fairly simple picture arises in which the basic questions in
complexity theory — solved and unsolved — can be understood as ques-
tions about tradeoffs among these three dimensions.

1 Introduction

An initial presentation of complexity theory usually makes the implicit as-
sumption that problems, and hence complexity classes, are linearly ordered
by “difficulty”. In the Chomsky Hierarchy each new type of automaton
can decide more languages, and the Time Hierarchy Theorem tells us that
adding more time allows a Turing machine to decide more languages. In-
deed the word “complexity” is often used (e.g., in the study of algorithms)
to mean “worst-case Turing machine running time”, under which problems
are linearly ordered.

Those of us who study structural complexity know that the situation is
actually more complicated. For one thing, if we want to model parallel com-
putation we need to distinguish between algorithms which take the same
amount of “work” (i.e., sequential time) — we care how many processes are
operating in parallel and how much parallel time is taken. These two dimen-
sions of complexity are identifiable in all the usual models: boolean circuits
(width and depth), PRAMs or other explicit parallel machines (number
of processors and parallel time), alternating Turing machines (space and
alternations) or even deterministic Turing machines (space and reversals).
Hong’s book [H] gives an interesting general treatment of “similarity” be-
tween models and “duality” between these two complexity measures.

Figure 1 gives a two-dimensional layout of some well-known (and less
well-known) complexity classes. To be precise about our axes, we have
chosen (unbounded fan-in) circuit depth as our measure of “parallel time”
and circuit width as our measure of “number of processes”. This assumes
that the circuits have been arranged into levels, and that each edge into
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Figure 1: Two Dimensions of Complexity Classes

a gate comes from either an input or a gate on the immediately previous
level. Thus the depth is the number of levels and the width is defined as
the size of the largest level.

The columns of our chart represent bounds on depth, and the rows
bounds on width. Blanks indicate classes where both are bounded below
polynomially, and thus the resulting circuits cannot access the entire input.
The named classes are fairly standard, except for the use of a prefix “¢” to
indicate a change from a polynomial to a quasipolynomial size bound [B92].
Thus ¢NC is the class of languages decidable by circuit families of poly-log
depth and quasipolynomial size — it is a robust class which occurs several
times on the chart. Finally, question marks denote classes which have no
distinctive names known to the authors, and about which we know nothing
other than the obvious containment relations with their neighbors.

Of course merely specifying combinatorial bounds on the circuits in a
family does not fully specify a complexity class. For example, any unary
language, even an uncomputable one, has a circuit family of O(1) size
and depth which decides it. In the circuit context, we usually speak of
restricting circuit families by a uniformity condition — we say that the
circuit must be computable (or that questions about it must be answerable)
by resource-bounded computation. It is equally sensible to speak of non-
untformity as a resource, more of which allows a circuit family to decide
more languages. This resource forms the third axis of our parametrization
of complexity classes. It exists in other models as well — “advice” given to
Turing machines [KL], or precomputation in parallel machines [A].

At each point on our two-dimensional chart, we have a range of com-
plexity classes obtained by varying the uniformity condition. For example,
if both size and depth are polynomially bounded the chart indicates the
class P of languages decided by polynomial-time Turing machines. This
claim is true if the circuits are P-uniform (computable by a poly-time
Turing machine), or if they are DLOGTIME uniform (direct connection
language decidable by a random-access Turing machine in time O(logn),
see [BIS]), or any uniformity condition in between. However, if we allow
ourselves more than polynomial time to compute the circuit, we may be
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able to decide more languages. (If we allow ourselves enough extra time,
we can definitely do so. For example, if we allow more than exponential
time, we can decide the unary version of the universal language for Turing
machines with some superpolynomial time bound). On the other hand, one
can imagine uniformity conditions so restrictive that a general simulation
of a Turing machine is impossible.

In general as we pass upward (adding more non-uniformity) along the
third axis we pass through three regions: one with too little non-uniformity,
where the basic constructions relating the circuit model to other mod-
els cannot be carried out, a second robust region where a wide range of
definitions give the same class, and a third region where additional non-
uniformity gives steadily larger classes. The distinction can be quite impor-
tant, as we see in the case of the class NC'. As shown in [BIS], we can define
a very restrictive uniformity notion under which NC' becomes the class of
regular languages. If our non-uniformity resource is between DLOGTIME
and NC! itself, we get a robust class, equal to ALOGTIME. And if we allow
polynomial time to build our circuits, we can then do integer division and
related problems [BCH] which (as far as we know) we couldn’t do before.

This may be an example of where non-uniformity can replace one of the
other two resources. In some cases, we know of limits on the potential power
of non-uniformity to do so, at least subject to complexity-theoretic assump-
tions. For example, Karp and Lipton [KL] have shown that no amount of
non-uniformity can allow P to simulate all of (uniform) NP, unless the
polynomial hierarchy collapses to the second level. It would be interesting
to have a parallel result for P and NC, and recent work of Ogihara, Cai,
and Sivakumar [O, CS] has made progress toward this. One would like to
derive unlikely complexity-theoretic consequences from, for example, the
hypothesis that non-uniform NC! contains uniform P, or equivalently that
there is a sparse set complete for P under NC' Turing reductions. Cai and
Sivakumar show that if there is a sparse set complete for P under (logspace
uniform) NC! many-one reductions, then P is equal to (logspace uniform)
NC'. D. van Melkebeek [vM] has subsequently shown a similar result for
sparse sets complete under truth-table reductions.

In general our techniques for proving lower bounds on circuit complexity
are combinatorial and algebraic and apply to the totally non-uniform ver-
sions of the circuit classes. A notable exception is the result by Allender and
Gore [AG] that the integer permanent function is not in DPOLYLOGTIME-
uniform gACC?, though for all we know it might be in LOGSPACE-uniform
Acc.

There is a certain amount of oversimplification in thinking of each of
our three parameters as a single axis. For one thing, our “non-uniformity”
resource is defined in terms of the “complexity” of languages which talk
about the circuits, so this dimension may be as non-linear as the whole
picture. However, the uniformity conditions we normally consider happen
to be linearly ordered. More importantly, the “parallel time” axis is defined
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in terms of particular primitive operations on the data. In the circuit model
a single gate computes an AND or OR, in a parallel machine the most
powerful operations are the concurrent read and concurrent write, and the
alternations of a Turing machine are also defined in terms of AND and OR.
But there is nothing sacred about AND and OR — in each model we can
consider other operations, such as MAJORITY (more powerful than AND
and OR) or modular counting (orthogonal to them). In the circuit model
these operations are embodied as new kinds of gates, in Turing machines
as new acceptance conditions (as in the classes @P or PP) and in parallel
machines as new global operations (such as the “scan” operation on the
Connection Machine).

Here we consider these three dimensions and the variety of operations in
the framework of descriptive complezity, where we measure the complexity
of a language by the syntactic resources (in a particular logical formalism)
needed to express the property of membership in it [I87, I89, I89Db]. (We
review this framework in Section 2 below.) It has been known for some
time that two parametersin descriptive complexity, number of variables and
quantifier depth, correspond exactly to space and parallel time in either the
circuit or PRAM models [I89b]. More recently (along with Straubing) [BIS,
B90], we have extended the framework to deal with the third dimension
and with more general operations, in the context of first-order formulas
(or constant-depth, poly-size circuits). There varying uniformity conditions
correspond to new atomic predicates and any associative operation with an
identity can be modeled by a new type of quantifier.

With this approach, one can deal with a uniform family of circuits in
terms of a single logical formula which defines the entire family. It is then
possible to speak of “logically uniform circuits”, and the traditional unifor-
mity conditions which happen to coincide with logical uniformity (such as
DLOGTIME uniformity for constant-depth circuits) are thus better moti-
vated. Furthermore, proofs using logical uniformity are arguably simpler —
two examples of this are the uniformity [AG, B92] of the upper bounds on
the power of ACC° [Y, BT, GKR] and the relationship between threshold
circuits and algebraic circuits over GF(2") [Re, BFS, FVBJ.

In this paper we show that the descriptive complexity framework can
deal with all three dimensions and with general operations, in virtually
any possible combination. Specifically:

e In Section 2 we review the descriptive complexity framework and
define quantifiers for arbitrary operations.

e In Section 3 we prove that the relationship of [I89b] between descrip-
tive complexity, circuits, and PRAMs holds in the presence of these
arbitrary operations — adding the new quantifiers to the logical for-
malism corresponds exactly to adding a new type of gate to the cir-
cuits or a new global operation to the PRAMs. If both circuit depth
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and width are polynomially bounded, the circuits are DLOGTIME
uniform.

e In Section 4 we show that adding limited second-order variables to the
formalism corresponds to increasing the size bound on the boolean
circuits (or the processor bound on the PRAMs). This extends the
treatment of quasipolynomial-size circuit classes in [B92].

o In Section 5 we show that adding new atomic predicates to the formal-
ism corresponds to allowing the boolean circuits to be less uniform.
This is true both in the polynomial-size and in larger-size domains.

e In Section 6 we attempt to extend the logical framework to describe
circuit widths of less than polynomial (or equivalently, variables to-
taling to o(log n) bits). The main idea is to allow only variables which
range over subpolynomial-size sets, but there are complications be-
cause the basic logical language assumes, for example, that it is pos-
sible to refer to every position in the input, which normally entails a
variable ranging from 1 to n». Though it is not entirely satisfactory,
we do develop enough machinery to bring the constant-width char-
acterizations of NC' [B89] and PSPACE [CF] into the framework.

2 Background: Descriptive Complexity

In this section we will give an overview of the basic definitions of descriptive
complexity theory. For more detailed presentations of this same material,
see [I87] or [I89]. We will closely follow the development in [IL], especially
for the notions of reductions and operators.

Any complexity theory starts with a formally defined set of problems, a
model of computation, and a set of resource bounds. Our central notion will
be to replace deciding a problem by describing it. Our “model of computa-
tion” is to write down a logical formula which is true of an input exactly
when the decision problem has a positive answer. Our resource measures
will then be properties of the logical formula, such as the number and type
of quantifiers, variables, and atomic predicates it contains.

Our general computational problem is to take some input and return a yes
or a no answer. We need to have the input in a form which our formulas can
talk about, so we code all our inputs as finite logical structures. For example,
suppose the input is a binary string w = w; ... wy, of length n. Our atomic
statements about this string will be to name the bit in position %, which
we will do by a predicate M (). Following the traditions of mathematical
logic, we code the string as a structure A, with universe {1,2,...,n} (the
input positions) and one unary relation M on this universe. Thus A, =
({1,2,...,n}, M4»), where,

M4 = {i|wi=1}
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On the other hand, our problem might be a set of directed graphs rather
than a set of strings. In this case our structures would have a universe
consisting of the vertices and a binary relation E on this universe such that
E(i,7) is true if and only if there is an edge from i to j. Or our input might
be an entire relational database, with several different relations defined on
a fixed universe. What we need to know before we can describe a problem
is exactly which relation symbols (and constant symbols, which may be
thought of as 0-ary function symbols) are available in our language.

In general, a vocabulary

T:< ?15""R?t,cla"'acs>

is any tuple of input relation symbols and constant symbols. For example,
the vocabulary of strings is 7, = (M!) consisting of a single monadic re-
lation symbol and the vocabulary of graphs 7, = (E?,s,t) consists of the
binary edge predicate and two constant symbols.

To define a structure A over vocabulary 7, we need to provide a finite
universe, a table for each relation R{* and a value for each constant c*. We
will use the notation |.A| to denote the universe of A, and |.4| its cardinality.
In this paper, all our universes will be ordered and we will thus assume they
they consist of the first n positive integers,

A = {1,2,...,n}, wheren = |A|
Formally, a structure A of vocabulary 7 is a tuple

A={1,2,....n}, R, ..., R et e
Here R{! is a subset of |A
each j <'s.

For any 7, define STRUC[7] to be the set of all finite structures of vo-
cabulary 7. Define a complexity theoretic problem to be any subset of
STRUC][7] for some 7. For example, a problem over binary strings is a
subset of STRUC(7;] and a graph problem is a subset of STRUC|7,].

Next we need to build up a system £(7) of logical formulas to talk about
a problem with vocabulary 7. Along with the symbols of 7 we will al-
ways have a fixed set of numeric relation symbols and constant symbols:
=, <,SUC, BIT, min, maz." We then allow the boolean connectives A, V, -,
we introduce variables: z,y,z,... ranging over |A|, and allow first-order
quantification of these variables by the usual quantifiers V and 3.

% for each i < t and ¢;' is an element of |A| for

'Here < refers to the usual ordering on the universe, {1,2,...,n}. SUC is the
successor relation and min and max refer to the first and last elements in the
total ordering. BIT(7, ) holds iff the j** bit in the binary expansion of i is a one.
These relations are called numeric because, for example, “BIT(¢,5)” and “i < j”
describe the numeric values of i and j and do not refer to any input predicates.
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This definition gives us a descriptive complexity class FO(7), consisting
of all problems (subsets of STRUC|7]) which can be defined using the
first-order language £(7). When the vocabulary is understood, we’ll call
this class just FO. It turns out that this class is a familiar one from circuit
complexity and parallel complexity — it equals the log-time uniform version
of the circuit class AC® and also the problems solvable in constant time by
a natural parallel machine (a version of a PRAM) with polynomially many
processors [BIS].

All of our later descriptive complexity classes may be viewed as augmen-
tations of this class FO. As a first example, consider adding a new quantifier
to 3 and V. We define the majority quantifier M so that (Mz)p(z) holds if
more than half the elements of the universe satisfy ¢(z). With this new tool
in our first-order language, we can define a larger set of problems called
FOM. This class is also familiar, as it is equal to the log-time uniform
version of ThC®, the problems solvable by constant-depth, polynomial-size
threshold circuits [BIS]. After building up some more machinery, we will
describe a general method to produce new operators of this kind.

First-Order Reductions

In this section we define first-order reductions, which provide the most
natural way to reduce one problem to another in the descriptive setting.
They are exactly many-one reductions which are definable by first-order
formulas. At the end of the section we will also define some important
subclasses of first-order reductions.

Suppose that S € STRUC[¢]| and T C STRUC|7] are any two problems.
Let 7 = (R7*,...,R%,c1,...,¢s). In order to reduce S to T, we must
provide a way for any structure A to be mapped to a new structure I(A) €
STRUC]7]. Before giving the definition, we provide an example.

Example 2.1 Let graph reachability (REACH) denote the following prob-
lem: given a graph, G, and vertices s,¢, determine if there is a path from
s to tin G. Let REACH, be the restriction of the REACH problem to
undirected graphs. Let REACH, be the restriction of the REACH prob-
lem in which we only allow deterministic paths, i.e., if the edge (u,v) is
on the path, then this must be the unique edge leaving u. Notice that the
REACH, problem is reducible to the REACH,, problem as follows: Given
a directed graph, G, let G’ be the undirected graph that results from G by
the following steps:

1. Remove all edges out of ¢.
2. Remove all multiple edges leaving any vertex.

3. Make each remaining edge undirected.
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Observe that there is a deterministic path in G from s to ¢ iff there is a
path from s to ¢ in G'.

The following first-order formula ¢4, accomplishes these three steps and
is thus a first-order reduction from REACH to REACH,,. More precisely,
the first-order reduction is the expression Ig, = Azy(true, @4y, s,t) whose
meaning is, “Make the new edge relation {(z,y) | wau}, and map s to s
and £ to t.”

alz,y) = E(z,y) ANz#t A (V2)(E(z,2) = z2=1y)
S")du('x’y) = Oé(:E,y) \% O‘(va)

The reason for the formula “true” is that we want to put all elements of
the input structure into the output structure,

(A = {gelAl | AEtrue} = |4

]

In this example the universes of the domain and range of the reduction
were equal, and hence had the same size. The general situation is a bit
more complicated because we want to allow the possibility of reducing one
problem to another which has a polynomially larger universe. Here we fix an
integer k and let |I(.A)| be a first-order definable set of k-tuples of elements
of |A|. Each relation R} of 7 has a formula ¢; whose free variables are

ai,...,zf, ... 2l ,...,z% (which may be viewed as a; free variables each
of which is a k-tuple). Similarly, each constant symbol ¢; of 7 has associated
with it a k-tuple t}, . ,t;? of constants from o. We recapitulate by giving

the formal definition:

Definition 2.2 (First-Order Reductions) Let ¢ and 7 be be two vocab-
ularies, with 7 = (R{*,...,R%,c1,...,¢s). Let S C STRUC[o] and T C
STRUC][7] be two problems. Let &k be a positive integer. Let

I= Am%,...,m’;((po’(pla s a‘:OTaHa e 3E>

be a tuple consisting of an r 4 1-tuple of formulas and an s-tuple of k-tuples
of constants, all from £(c). Here d = max;(a;).

Then I induces a mapping I from STRUC[o] to STRUC]r] as follows.
Let A € STRUCJo| be any structure of vocabulary o, and let n = |A|.
Then the structure I(A) is defined as follows:

I(A) = (AR, BRI, Y, el )
The universe is given by,

A = {lgr,---90) € M | AF @olgr,---98)}
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That is, the universe is the set of k-tuples of A satisfying ¢o. The ordering
of |I(.A)] is the lexicographic ordering inherited from 4. Each cf(A) is given

by the k-tuple of constants (t},...,t5). The relation RI™ is determined
by the formula ¢;, for¢e =1,...,7:

I(A A L
R = {((udy o yul), (ke uk ) | A gi(ud,. . uk )}

If the structure A interprets some variables @ then these may appear
freely in the the ;’s and ¢;’s of I, and the definition of I(.A) still makes
sense. This will be important in Definition 2.5 where we define operators
in terms of first-order reductions.

Suppose that I is a many-one reduction from S to 7', i.e. for all A4 in
STRUC[a],

AesS & IAeT

Then we say that I is a k-ary first-order reduction of S to T. Furthermore, if
the ¢;’s are quantifier-free and do not include BIT then I is a quantifier-free
reduction. a

Valiant [V] defined a very low-level, non-uniform reduction called a pro-
jection. A projection is a many-one reduction f : {0,1}* — {0,1}* such
that each bit of f(w) depends on at most one bit of w. (It can be thought
of as a reduction computed by a circuit of depth zero, depending on the
details of the definitions.) We next define first-order projections, a syntactic
restriction of first-order interpretations.

Definition 2.3 (First-Order Projections) Let I be a k-ary first-order re-
duction from S to 7' as in Definition 2.2. Let I = {(@g,...,@r,t1,...,Ls).
Suppose further that the ¢;’s all satisfy the following projection condition:

(piEal\/(az/\Ag)\/---\/(as/\As) (2.4)
where the o;’s are mutually exclusive formulas in which no input relations
occur, and each ); is a literal, i.e. an atomic formula P(z;,,...z;,) or its
negation.

In this case the predicate R;((ug,...,uf), ..., (w} ..., uk )) holdsin I(A)
if aq (@) is true, or if (@) is true for some 1 < j < ¢ and the corresponding
literal A;(@) holds in \A. Thus each bit in the binary representation of I(.A)
is determined by at most one bit in the binary representation of .A. We say
that I is a first-order projection.

Finally define a quantifier-free projection to be a first-order projection
that is also a quantifier-free reduction. Write § <;,, T, § <., T to mean
that S is reducible to T via a first-order projection, respectively a quantifier-
free projection. a

Looking back at Example 2.1, we see that I, is a quantifier-free reduc-
tion, but it is not a projection. This is because the formula @4, (z,y) looks
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at more than one bit of its input: it depends on E(z,y) and E(y,z) and in
fact it may depend on all E(z,z) and E(y, z) as z varies over all vertices.
In fact, there is a qfp that reduces REACH, to REACH,,, but we will not
construct it here.

General Operators

First-order reductions give us a mechanism for forming an operator out
of any problem ©. The operator, which we will also call ®, acts rather
like a quantifier (and in fact this construction extends the “generalized
quantifiers” of [BIS]). A very similar construction is used in [MP] and in
[KV], where the operator we call © would be denoted Qe.

Definition 2.5 ([IL]) (Operator Form of a Problem) Let ¢ and 7 be vo-
cabularies, and let ® C STRUC|r] be any problem. Let I be any first-order
reduction with I : STRUC[o] — STRUC|r]. Then O[I] is a well-formed
formula in the language FO(®) over vocabulary o, with the semantics:
AEOI & I(A)e€® |

For example, consider the case where 7 = 75 and so O is set of binary
strings. A k-ary reduction I then consists of a pair of formulas (g, 1)
from L£(o), with free variables z?,... z*. ©[I] is a sentence that holds of
a structure A € STRUC]o] exactly if the structure I(.A) is in ©. This
structure I(.A) is the string of length at most |.4|* consisting of the truth
values of ¢ as the variables z',...z" range over {a € |A|* | A= po(a)}.
The operator O is a generalized quantifier binding the variables z!,... z*.

We have already seen three special cases of this phenomenon — choosing
O to be the AND, OR, or MAJORITY languages gives the V, 3, and M
quantifiers respectively. The generalized quantifiers in [BIS], corresponding
to languages over larger alphabets, fit into this framework with 7 having a
unary predicate for each letter of the language.

We can repeat this process, applying the ® operator to a formula in which
© already appears. We define the complexity class FO(©) to be the set of
problems expressible by first-order formulas in this extended language. We
say that a problem S is first-order Turing reducible to © (S <! ©) iff
S € FO(O).

If the problem O is complete for C = FO(®) via a lower-level reduction
such as fop or gfp this means that we do not need the full power of arbitrary
applications of © in FO(®). In other words, a normal form theorem for
FO(O) applies:

Definition 2.6 ([IL]) We say that the language FO(O) has the fop Normal
Form Property iff every formula ¢ € FO(O) is equivalent to a formula %,
where,
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where I is a first-order projection. If I is a quantifier-free projection then
we say that FO(©) has the ¢fp Normal Form Property. O

As an example, recall the problem REACH from Example 2.1. Consider
the following quantifier-free projection I.:

I = Mgt 2 41 2 (true, o, (min, min), (maz, mazx))

a = (28 =y AB(z%y?)) V (2! = 22 ASUC(z',y") A y? = min)

The formula o describes a graph on pairs of vertices. There is an a-path
from (min, min) to (maz, maz) iff every vertex in the graph is reachable
from min. For undirected graphs, this is equivalent to connectivity,

CONNECTIVITY = REACH(I) (2.7)

It is shown in [I87] and [I88] that the language FO(TC) is equal to NL
and has the qfp normal form property. It thus follows that every problem
in NL is expressible in the form of Equation 2.7, with I, replaced by other
qfp’s.

The role of arbitrary problems as generalized quantifiers is now summa-
rized by:

Fact 2.8 ([IL]) Let © be a problem and C a complexity class that is closed
under first-order Turing reductions. Then

1. © is <! -complete for C if and only if C = FO(O).

2. O is <,-complete for C if and only if C = FO(O) and FO(O) has
the fop normal form property.

3. © is < p-complete for C if and only if C = FO(O) and FO(O) has
the gfp normal form property.

3 First Uniformity Theorem

An apparent limitation of first-order logic as a means of describing problems
is that a single formula has only a fixed number of quantifiers and can
thus a priori only represent a language which is decided by circuits of
constant depth. Adding operators for new functions expands the expressible
problems considerably, but in order to deal with circuits with arbitrary
depth bounds we need the notion of iterated quantifier blocks. Rather than
a single formula, we now have a family of formulas varying with the input
size m, but in a very predictable way. For any function ¢(n), we let our
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formula consist of ¢(n) syntactic copies of a block of quantifiers, followed by
some base formula. It is important to note that when we repeat a quantifier
block the variables are not changed. Thus an FO[i(n)] formula uses only a
bounded number of distinct variables. For more detail see [I89].

Definition 3.1 ([I89]) A set C of structures of vocabulary 7 is a member
of FO[t(n)] iff there exist quantifier-free formulas M;, 0 < i < k, from
L(7), and a quantifier block,

QB = [(Quv1.My)... (Qrvr.My)]

such that if we let ¢,, = [QB]*("™) My, for n. = 1,2,..., then for all structures
A of vocabulary 7 with |A| =n, AeC & AEop,. o

This covers only ordinary quantifiers — we now generalize Definition 3.1
to get the class FO(O)[t(n)], by allowing some of the quantifiers @; to be
applications of ©.

Recall that the operator © should be used in the form ©[I], where I is
a first-order reduction (Definition 2.2),

I = )\ml___md<g00,g01,. .. 7Q0r,t17- .. ,ts>
We will write such an occurrence of © in the quantifier block as
(@br,l}l oo d; tl, e ,ts),

where we use a tuple of boolean variables b” to code a value between 0 and
r. This expression thus binds the boolean variables ", and the individual
variables x; ... z4. The meaning is given by:

(O, z1...2gt1...t5)(y) = Oy (b7/0),v(b7/1),...,v(b"[r),t1,... ,ts))

where y(b"/i) denotes the substitution of the number ¢ for the boolean
variables b” in 7.

Definition 3.2 (FO(0©)[t(n)]) A set C of structures of vocabulary 7 is a
member of FO(O)[t(n)] iff there exist generalized quantifiers G1, G, ..., Gy
and quantifier free formula My from £(7), and a quantifier block,

QB = [(G1)...(Gw)]

such that if we let ¢,, = [QB]!(™) My, for n = 1,2,..., then for all structures
A of vocabulary 7 with |A] = n,

AeC & A=, .
Here, each generalized quantifier G; is either a limited quantifier:
Gi = (Qivi.M;)

as in Definition 3.1; or an application of ©O:
G, = (@br,x1...xd;t1...t5) ]
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Similarly, we define IND(®)[t(n)] to be the set of problems definable
by first-order inductive definitions with © operators, with inductive depth
at most ¢(n). Extending the argument in [I89], this complexity class is
equivalent to the restriction of FO(LFP,©) in which all applications of
LFP have depth of nesting at most ¢(n). A typical example, as we will see,
is that the language FO(M)[logn| consisting of quantifier-blocks including
the majority quantifier, iterated logn times, is equal to the class ThC! of
problems accepted by threshold circuits of depth O(logn).

Our main result in this section, generalizing basic results in [BIS] and [IL],
is that the known relationships between first-order descriptive complexity
classes and other standard parallel complexity classes are not affected by
the introduction of the ® operators. This result will be the basis of all our
discussions of uniformity in the remainder of the paper. First, however, we
must specify the exact definitions of our various parallel models.

Following [I89b], we choose as our parallel machine model the CRCW-
PRAM with polynomially much hardware. The complexity class CRAMJt(n)]
is the set of problems solvable by such a CRCW-PRAM in parallel time
t(n). To generalize, we may allow the CRAM to have special hardware that
can execute the operator O in constant time. We call the problems solvable
in ¢(n) parallel time by this augmented machine the class CRAM(O)[¢(n)].

The circuit complexity class AC(©)[¢t(n)] is the set of problems solvable
by depth-¢(n) circuits with AND, OR, and © gates of unbounded fan-in.
Note that since © need not be a symmetric function, the string or structure
defining the circuit must somehow specify the order of input to the © gates.
The uniformity condition, then, will constrain the difficulty of computing
the predicate IN#(g, h,4), meaning that gate h is input number ¢ of gate
g. (This predicate is the natural generalization of the “direct connection
language” of [Ru, BIS].)

A circuit is a directed, acyclic graph. The leaves of the circuit are the
input nodes. Every other vertex is a gate. The edges of the circuit indicate
connections between nodes. The edge (a,b) would indicate that the output
of gate a is an input to gate b.

Define the vocabulary of circuits, 7, = (E2,IN#%, L1, GL,GY, G, GL,r),
where FE(z,y) is a directed edge relation, meaning that the output of node
x is an input to node y, L(z) means that the leaf z takes input value “17,
Ga(z), Gy(y), G=(2), and G¢(w) mean that the nodes z,y, 2z, and w are
“and”, “or”, “not”, and “©” gates, respectively. The constant r refers to
the root node, or output of the circuit.

In (3) below “first-order uniform” means there is a first-order reduction,
I : STRUC[rs] — STRUC|7.]. The n't circuit is given by C, = I(0"), where
0™ € STRUC]o ] is the string consisting of n zeros. In (4), the predicates
of C, must all be computable in time DTIM E(logn), where n = |.A| is
the size of the input.

In [SV], the non-uniform versions of CRAM[t(n)] and AC[¢(n)] were
shown to be equal. Since then, many other connections have been estab-
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lished and they remain true in the uniform setting.

Theorem 3.3 For constructible and polynomially bounded t(n), and any
problem operator ©, the following classes are equal:

1. FO(O)[t(n)]
2. IND(O)[t(n)]

3. First-order uniform AC(©)[t(n)]
J. DLOGTIME uniform AC(©)[t(n)]
5. CRAM(O)[t(n)]

Proof

(1 =2 =5): This is very similar to the proof of the same fact without ©
[I89Db]. The proof that IND(@®)[t(n)] contains CRAM(O)[t(n)] is least dif-
ferent: we can inductively describe the entire configuration of the CRAM
at some time £ + 1 in terms of its configuration at time ¢. In addition to
all the other cases, when the CRAM uses the operation ©, this is simu-
lated by the inductive definition using the same operation. Similarly, that
CRAM(O)[t(n)] contains FO(®)[t(n)] requires the same change: as the
CRAM simulates the formula, the new operator © can be performed by
the CRAM when it is invoked in the formula. Finally we show, by induc-
tion on the structure of the inductive definition, that FO(©)[¢(n)] contains
IND(O©)[t(n)]. The idea is that we can rewrite any positive first-order in-
ductive definition into a quantifier block as in Definition 3.2. Again, the
proof from [I89b] goes through with the change that occurrences of © in
the inductive definition are copied into the quantifier block.

(4 C 3): This is immediate since DLOGTIME is contained in FO [BIS].

(3 C 2): Here we are given the first-order uniform AC(©)[t(n)] circuits.
We produce an FO(O) inductive definition of the value of each gate in the
circuit. The depth of the induction will be equal to the depth of the circuit.

We will define by induction in FO(®) the predicate VALUE(g, b) whose
intuitive meaning is that the value of the gate g is the boolean b. The
inductive definition for VALUE will be a disjunction over the possible kinds
of gates: leaf, A,V,®. Thus, the definition of VALUE is given as follows:

VALUE(g,5) = DEFINED(g) A [GL(g) A (L(g) = b) V
GA(g) A (Clg) =b) vV Gu(g) A (D(g) = b) v
G.(9)A(N(g) =b) VvV  Gilg) A (T(g) < )]

Here, G1(g), meaning that g is a leaf, is an abbreviation for (Vz)-E(z, g).

DEFINED(g), meaning that g is ready to be defined, is an abbreviation for
(Vz)(3c)(E(z, 9) — VALUE(z,c)).
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The predicate C(g) says that all of ¢’s inputs are true, D(g) says that
some of ¢’s inputs are true, and N(g) says that its input is false:

C(g9) = (Vh)(E(h,g) — VALUE(h, 1))
D(g) = (3h)(E(h,g) A VALUE(h, 1))
N(g) = (3h)(E(h,g)) A (3h)(E(h,g) A VALUE(R, 0))

The most interesting case is T'(g,b). In this case, the inputs to g code
a set of relations that are a valid input to the problem ©. Consider the
simplest case, in which this problem is coded as a single relation, R. In this
case, we have

T(9) = O[],  where, I =X;(po,¢1)
‘:00($) = (Hh)(IN#(g, h’a $))
p1(z) = (3h)(IN#(g,h,z) A VALUE(hR,1))

Note that the existence of the predicate IN# giving the numbering of
the inputs to each gate is crucial here. In [BIS] the weaker condition was
used that the ordering of the inputs was given. Then the assumption that
all operators were “monoidal” was used: the appropriate formula was con-
structed by entering benign identity elements between the valid inputs.
Since we are dealing with arbitrary operators © we have no choice but to
insist on the existence of the numbering. Note also that if FO(©) contains
the class ThC® then we can express the numbering of the inputs if we are
given the ordering of the inputs.

(1 C 4): Here we are given the quantifier-block which when iterated
t(n) times expresses the problem in question for structures of size n. We
show how, in DLOGTIME, to recognize the direct connection language of
the equivalent AC(O®) circuits. The idea is that each gate in the circuit
corresponds to a quantifier or boolean connective, or occurrence of © in
the quantifier block, indexed by the values of all the (bounded number of)
variables, and the time. All that we need from DLOGTIME is the power
to compute the successor of a logn-bit number, and to find a particular
number in a bounded size tuple of log n-bit numbers. |

There were two reasons for the requirement that ¢(n) be polynomially
bounded in Theorem 3.3. The first is that the definition of IND requires
monotone inductive definitions, which automatically close in at most poly-
nomially many steps. This can be alleviated by changing to an iteration
operator (ITER) which does not require monotonicity. (This is equivalent
to replacing the least fixed point operator (LFP) by a partial fixed point
operator (PFP)). The second reason concerns the class DLOGTIME uni-
form AC(©)[t(n)]. For times ¢(n) greater than polynomial, we need more
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than DTIME[log n] exactly to read and copy variables of length more than
log n. Thus, to talk about uniformity for superpolynomial-size circuits, we
interpret DLOGTIME uniform to mean DTIME[log(n + ¢(n))]. Similarly,
first-order uniform means that the circuits are first-order recognizable. This
automatically implies that the first-order variables needed to describe such
a circuit would be of size (log(n + t(n))) bits. With these points modi-
fied as above, Theorem 3.3 remains true when the restriction that ¢(n) be
polynomially bounded is removed.

4 Variables That Are Longer Than logn Bits

We know from [I89b, I91] that the number v of logn-bit variables in a
formula corresponds approximately to the amount of hardware n” in a
circuit or CRAM. Thus, a constant number of log n bit variables gives us the
usual bound of polynomial hardware. A constant number of second-order
variables (i.e, variables with polynomially many bits) gives exponential
hardware. In the following result, the correspondence is not perfect simply
because the CRAM model, with priority write, is a different concurrent
write model of parallelism from the FO[t(n)] model. Interestingly, in Fact
4.3, using the more robust measure of DSPACE, the bound is tight.

Fact 4.1 ([I89b]) Let CRAM[t(n)]-PROC[p(n)] be the complexity class
CRAM][t(n)] restricted to machines using at most Olp(n)] processors. Let
IND[t(n)]-VAR[v(n)] be the complezity class IND[t(n)] restricted to induc-
tive definitions using at most v(n) distinct variables. Assume for simplicity
that both t(n) and the mazimum size of a register word are o[/n], and that
7 > 1 is a natural number. Then,

CRAM][t(n)]-PROC[n"]

C IND[¢(n)]-VAR[27 + 2]
C CRAM[t(n)]-PROC[n?>" 2]

Fact 4.2 ([I89b]) The polynomial hierarchy PH is equal to the set of prop-
erties checkable by a CRAM using exponentially many processors and con-
stant time:

PH = | J CRAM[1]-PROC[2""].
k=1

Fact 4.3 ([I91]) Fork=1,2,...,
DSPACE[n*] = VAR[k + 1]

In this section, we show how to define the number of variables in the
FO[t(n)] model in such a way that even when the number of variables is
more than a constant, the simple, uniform quantifier block structure is
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preserved. Then we use this new definition to generalize Theorem 3.3 to
two of our three complexity “dimensions”.

Definition 4.4 For v(n) > 1, a FO[t(n)]- VAR[v(n)] formula will have two
sorts of variables: the domain variables: z,y, z,..., ranging over the uni-
verse {1,2,...,n}, plus extended variables: X,Y, Z,..., each of v(n)logn
bits.

The extended variables may be quantified just like domain variables.
However, the extended variables do not occur as arguments to any input
relations. Their only role is as arguments in the BIT predicate. That is, we
may assert BIT(z,Y) meaning that the z*® bit of Y is a one. Note that
this only makes sense for extended variables with at most n bits. (In this
paper we only consider polynomially bounded v(n) for which we can use a
tuple Z of domain variables. One could consider even larger v(n), by using
intermediate size variables between z and Y.) Define FO[¢(n)]- VAR[v(n)],
with v(n) > 1 to be the extension to FO[¢(n)] that we get by including a
bounded number of v(n)logn-bit extended variables.

Furthermore, extended variables can be used in the natural way to define
reductions that increase the size of a structure by more than a polynomial.
Thus, we have a definition of FO(®)[¢t(n)]- VAR[v(n)] for any v(n) > 1. O

As an example illustrating the above definition, the next proposition
says that second-order logic is first-order logic with polynomially many
variables:

Proposition 4.5 For any problem © and any function t(n),
SO(O)[t(n)] = FO(O)[t(n)]- VARIOW)]
We can now state our Two-Dimensional Resources Theorem:

Theorem 4.6 For constructible v(n) > 1, constructible t(n), and any
problem operator ©, the following classes are equal:

1. FO(O)[t(n)]- VAR[O(v(n))]

2. ITER(O)[¢(n)]- VAR[O(v(n))]

3. FO uniform AC(0)[t(n)]- WIDTH[20(v(m) log n)]

4. DTIME[v(n)°® + log(t(n)]- unif.AC(0)[t(n)]-WIDTH[20((m leg 7]
5. (CRAM(O)[t(n)]- HARD[20((m) log n)]

The proof of Theorem 4.6 is quite similar to the proof of Theorem 3.3.
We simulate the computations as before, and just check that the width-
hardware-variable resources needed are appropriate..
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5 Uniformity: The Third Dimension

It has been understood for a while that non-uniformity corresponds in the
descriptive setting to the addition of numeric predicates. Recall that a
numeric predicate is a predicate such as < or BIT that depends only on
the numeric values of its arguments, not on any of the input predicates.

Fact 5.1 ([I87]) A problem S is in Non-uniform AC® iff for some numeric
predicate N, S is expressible in the language FO(N).

It seems, after a fair amount of investigation and soul searching [I89b,
BIS, L] that the “right” lowest level of uniformity corresponds to the nu-
meric predicates <,BIT. (This is equivalent to the set <,+, x.) Once we
have a little bit of computation, such as a majority quantifier or the de-
terministic transitive closure operator, all that is needed is < and BIT is
superfluous [BIS, I87].

The following theorem gives two examples of a very general phenomenon.
The idea of capturing polynomial-time uniformity via the unary form of an
EXPTIME complete problem is from [A].

Theorem 5.2 Theorem 3.3 remains true in both the non-uniform and the
polynomial-time uniform settings. More precisely, the classes mentioned in
that theorem remain equal in the following cases:

1. When an arbitrary numeric predicate is added to first-order logic, and
an arbitrary polynomial length “advice string” is given to the CRAM
and to the circuits.

2. Let E be a numeric predicate that codes the unary version of an EXP-
TIME complete problem. Add E to the first-order languages FO and
IND, add a table for E to the CRAM, and change, “DLOGTIME
uniform” to “polynomial-time uniform”.

One feature of uniformity that we find amazing is that very low-level
uniformity seems to suffice. Similarly, natural complete problems tend to
remain complete via very low-level reductions such as fops. Why this is true
is not completely clear. In part, the answer is the existence of universal
Turing machines and thus universal complete problems. However, we feel
that there is more to it than that. Here is a typical example:

Observation 5.3 The following classes are all equal:
. FOOW)

. DLOGTIME uniform polynomial-size circuits

. LOGSPACE wuniform polynomial-size circuits

. polynomial-time uniform polynomial-size circuits

P

R N
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6 Variables that are Shorter than logn Bits

One would expect circuits of constant width, rather than depth, to be very
weak, but the following two interesting characterizations tell us that this
is not so:

Theorem 6.1 ([B89, BIS]) NC' (DLOGTIME or NC* uniform) is ex-
actly the set of languages recognized by DLOGTIME uniform boolean circuit
families of O(1) width and n°Y) depth.

Theorem 6.2 ([CF]) PSPACE is exactly the set of languages recognized
by NC* uniform boolean circuit families of O(1) width and 27" depth.

Proof (sketch)It is clear that such circuits can be simulated in PSPACE.
It remains to use these circuits to simulate a PSP ACE Turing machine, for
which it suffices to solve the reachability problem on the exponential-size
configuration graph. By the standard Savitch construction we get a circuit
of polynomial depth and exponential size, and by standard tricks we can
turn this into a boolean formula with fan-in two which is very uniform.
(In particular, we can take the polynomial-length gate number and (in
FO) recover the two Turing machine configurations which gave rise to the
gate).

We then apply the construction of [B89] to get an exponential-length
branching program of constant width (easily convertible into the desired
circuit of constant width). Essentially (as explained in [BIS]) a gate number
in the constant-width circuit encodes both a leaf node of the poly-depth
circuit (and hence a pair of configurations of the original Turing machine)
and an indication of which element of the group S5 is to be computed
by this level. Determining the latter means passing over the entire gate
number (or from the root to the leaf of the poly-depth circuit), performing
an operation in S at every step, which is an NC!-complete problem. O

Our goal in this section is to expand the descriptive complexity frame-
work to encompass results such as Theorems 6.1 and 6.2. That is, we want
to extend the previous notions in this paper to the situation where we have
fewer than one logn-bit variable, or equivalently circuit width less than
polynomial.

By analogy with Section 4, we would like to define a class FO[¢(n)] -
VARJv(n)] for v(n) = o(1), which would be equivalent to uniform circuits
of width 20(®(")1°6m) and depth t(n). The difficulty in doing so is that
the basic first-order variables of our formalism have logn bits, so that
quantifying over one of them would appear to exceed the width bound.
We have to prohibit explicit use of such variables, while retaining them in
order to talk about the others.

It is absolutely necessary that our formulas, like the “bottleneck ma-
chines” of [CF], have access to a read-only clock. Thus we will allow the
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formulas within the quantifier block to have access to a variable ¢, which
will indicate which iteration of the quantifier block we are currently in. As
long as t(n) = 2n %M ¢ will always be only polynomially many bits, so we
may access its individual bits by using the BIT predicate and a vector of
ordinary variables. But we need to restrict ordinary quantifiers to maintain
the width bound. Consider the following:

Definition 6.3 (Fewer than one variable) For v(n) = o(1), and t(n) =
2 an FO[t(n)] - VAR[v(n)] formula will have three sorts of variables,
ordinary ones z,y, 2, ..., ranging over the universe {1,...,n}, limited ones
a,b,c,...,of v(n)logn bits each, and a variable ¢t whose value is an integer,
equal to 0 in the base formula My and equal to j in the j** quantifier block
to the left of M. Both ordinary and extended variables may be quantified,
while ¢ is syntactically like a constant. Only ordinary variables may be used
to access the input, but all may be used in the BIT predicate. Finally, the
quantifier block B may not have an ordinary variable z that occurs freely
in B. a

The purpose of the final restriction is to force the circuits obtained from
these formulas, as in the proof of Theorem 3.3, to periodically have levels
with only 20((n)1gn) gates. We would prefer to have a definition where
all the levels were so bounded, but this definition produces a circuit class
which is equivalent, allowing us to prove:

Theorem 6.4 FO[n°Y]-VAR[1/logn] = (DLOGTIME uniform) NC*.

Proof

(C) : For every t < t(n), because of the special condition, we know that
[B] My has free variables totaling r = O(1) bits. Define f(¢) to be the 27-bit
string defined by the truth value of this formula for all possible values of the
r bits. The string f(¢) is a first-order function of f(¢ — 1), ¢, and the input
predicates. Since FO C NC*, this means that each bit of f(t) is computable
from these values via a bounded width, polynomial-size circuit. We can just
string all of these ¢(n) bounded-width circuits together one after the other
to get the bounded-width, polynomial-size circuit for the original problem.

(D) : By Theorem 6.1 we know that there are DLOGTIME-uniform,
constant-width, polynomial-depth circuit families for any language in NC!.
Let 2" be the width and ¢(n) be the depth of the circuits for the problem in
question. The values of the 27 gates at level ¢ of the circuit are determined
in a DLOGTIME-definable way from ¢ and the values at level ¢t — 1, and
from the input. Recall that DLOGTIME is contained in FO [BIS]. Thus
we can write this relationship in a first-order formula ¢(b1,...,b,, Gi—1).
Here Gy_1(b},...,b]) is a relation that codes the state of the 2" gates at
time ¢ — 1. Using a standard, syntactic trick, (Corollary 5.3 in [I86]), we
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can form a quantifier block B so that
Gt(b17"'7b’r‘) = [B]Gt_l(bl,...,br)

Here, B may quantify some ordinary variables in order to look at the bits
of the input that ¢ tells it to, but no such ordinary variables will be left
free. Thus, B is the quantifier block that we are looking for and we have
that

Gt(bl,---,br) = [B]tG()
as desired. 0O

Similarly, we show:

o(1)

Theorem 6.5 FO[2" '] - VAR[1/logn]| = PSPACE.

Proof
(C) : This is immediate from previous results because FO[Q”O(I)]-VAR[l/ log n]
C FO[2~°"] = PSPACE.

(D) : We proceed much as in the similar case above, using the result of
Theorem 6.2, except that our finite function simulating the effect of the ¢
level of gates is now NC' computable rather than DLOGTIME computable
from ¢ and the input. However, we can now use Theorem 6.4 above to sim-
ulate the necessary NC! predicate via a FO[n°()]- VAR[1/ log n] formula.
We now just iterate this formula exponentially many times, getting the
desired result. |

7 Conclusions

We have presented a very general, three-dimensional view of complexity.
The dimensions are parallel time, amount of hardware, and amount of
precomputation and correspond closely to quantifier-depth, number of vari-
ables, and complexity of numeric predicates, respectively. The tradeoffs be-
tween quantifier-depth, number of variables, and the complexity of numeric
predicates are — to say the least — worthy of much future investigation.
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