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ABSTRACT
Pattern queries are widely used in complex event process-

ing (CEP) systems. Existing pattern matching techniques,
however, can provide only limited performance for expen-
sive queries in real-world applications, which may involve
Kleene closure patterns, flexible event selection strategies,
and events with imprecise timestamps. To support these ex-
pensive queries with high performance, we begin our study
by analyzing the complexity of pattern queries, with a focus
on the fundamental understanding of which features make
pattern queries more expressive and at the same time more
computationally expensive. This analysis allows us to iden-
tify performance bottlenecks in processing those expensive
queries, and provides key insights for us to develop a series
of optimizations to mitigate those bottlenecks. Microbench-
mark results show superior performance of our system for
expensive pattern queries while most state-of-the-art sys-
tems suffer from poor performance. A thorough case study
on Hadoop cluster monitoring further demonstrates the ef-
ficiency and effectiveness of our proposed techniques.

1. INTRODUCTION
In Complex Event Processing (CEP), event streams are

processed in real-time through filtering, correlation, aggre-
gation, and transformation, to derive high-level, actionable
information. CEP is now a crucial component in many IT
systems in business. For instance, it is intensively used in
financial services for stock trading based on market data
feeds; fraud detection where credit cards with a series of
increasing charges in a foreign state are flagged; transporta-
tion where airline companies use CEP products for real-time
tracking of flights, baggage handling, and transfer of pas-
sengers [17]. Besides these well-known applications, CEP is
gaining importance in a number of emerging applications,
which particularly motivated our work in this paper:
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Cluster monitoring : Cluster computing has gained wide-
spread adoption in big data analytics. Monitoring a compute
cluster, such as a Hadoop cluster, has become crucial for
understanding performance issues and managing resources
properly [8]. Popular cluster monitoring tools such as Gan-
glia [18] provide system measurements regarding CPU, mem-
ory, and I/O from outside user programs. However, there
is an increasing demand to correlate such system measure-
ments with workload-specific logs (e.g., the start, progress,
and end of Hadoop tasks) in order to identify unbalanced
workloads, task stragglers, queueing of data, etc. Manually
writing programs to do so is very tedious and hard to reuse.
Hence, the ability to express monitoring needs in declarative
pattern queries becomes key to freeing the user from manual
programing. In addition, many monitoring queries require
the correlation of a series of events (using Kleene closure
as defined below), which can be widely dispersed in a trace
or multiple traces from different machines. Handling such
queries as large amounts of system traces are generated is
crucial for real-time cluster monitoring. (For more see §6.5.)

Logistics: Logistics management, enabled by sensor and
RFID technology advances, is gaining adoption in hospi-
tals [26], supply chains [17], and aerospace applications.
While pattern queries have been used for complex event
processing in this area, query evaluation is often compli-
cated by the uncertainty of the occurrence time and value
of events because they are derived through probabilistic in-
ference from incomplete, noisy raw data streams [9, 27].

Challenges. Among many challenges in CEP, this paper
focuses on efficient evaluation of pattern queries. Pattern
query processing extends relational stream processing with
a sequence-based model (in contrast to the traditional set-
based model). Hence it supports a wide range of features
concerning the temporal correlation of events, including se-
quencing of events; windowing for restricting a pattern to a
specific time period; negation for non-occurrence of events;
and Kleene closure for collecting a finite yet unbounded
number of events. While various subsets of these features
have been supported in prior work on pattern matching in
CEP [1, 11, 20, 21, 23, 28] and regular expression matching,
this work is motivated by our observation that two unique
features of CEP can dramatically increase the complexity of
pattern queries, rendering existing solutions insufficient:

Event selection strategies[1]: A fundamental difference be-
tween pattern queries in CEP and regular expression match-
ing is that the set of events that match a particular pattern
can be widely dispersed in one or multiple input streams—
they are often not contiguous in any input stream or in any



simple partition of the stream. The strategy on how to se-
lect those events relevant to a pattern is called event selec-
tion strategy in the literature. Event selection strategies can
vary widely depending on the application, from the most
strict form of selecting events only continuously in the input
(strict or partition contiguity), to the more flexible form of
skipping irrelevant events until finding the relevant events to
match the pattern (skip till next match), to the most flexible
form of finding all possible ways to match the pattern in the
input (skip till any match). As shown later in this study, the
increased flexibility in event selection leads to significantly
increased complexity of pattern queries, with most existing
solutions [1, 20, 21, 28] unable to support the most flexible
strategy for Kleene closure or even simple pattern queries.

Imprecise timestamps: The timestamps in input events
can be imprecise for several reasons [30]: (i) The events
are inferred using probabilistic algorithms from incomplete,
noisy sensor streams. (ii) Event occurrence times in differ-
ent inputs are subject to granularity mismatch. (iii) There
is also the clock synchronization problem in distributed en-
vironments. For these reasons, CEP systems cannot arrange
the events from all inputs into a single stream with the right
order property (total order or strict partial order) required
for pattern matching. As we shall show, techniques for han-
dling imprecise timestamps [30] work only for simple pattern
queries and quickly deteriorate for more complex queries.

Contributions. In this paper, we perform a thorough
analysis of pattern queries in CEP, with a focus on the fun-
damental understanding of which query features make them
“expensive”, formally, which set of query features correspond
to which complexity class. As such, our analysis yields a hi-
erarchy of query features and the corresponding complexity
classes. Our analysis also includes mapping existing CEP
systems into the same hierarchy, hence providing a unified
theoretical framework for comparing existing CEP systems.
The results of our theoretical study also offer key insights
for optimizing those expensive pattern queries. More specif-
ically, our contributions include:

1. Descriptive Complexity (§3): We begin our study by
addressing the question of which features of patten queries
make them more expressive and at the same time compu-
tationally more expensive. To do so, we consider a “core
language” (L) of pattern queries and the classic problem of
deciding whether there exists a query answer in the input.
By leveraging the theory of descriptive complexity [12], we
provide a series of theorems to show that there is a fasci-
nating interplay between Kleene closure, aggregation, and
the event selection strategy in use: As these features are in-
cluded in successively increasing subsets of L, these subsets
can be mapped cleanly into a hierarchy of low-level com-
plexity classes, ranging from AC0 to NSPACE[logn]. Our
study also includes mapping existing CEP languages onto
the same hierarchy of complexity classes, thereby offering a
unified framework for comparing these systems.

2. Runtime Complexity (§4): We then extend the problem
formulation from checking the existence of a query answer to
finding all query answers in an input. This analysis, which
we call “runtime analysis”, reveals two types of expensive
queries: (i) Pattern queries that use Kleene closure under
the most flexible event selection strategy, skip till any match,
are subject to an exponential number of pattern matches
from a given input, hence an exponential cost in comput-
ing these matches; (ii) The solution to evaluating Kleene+

pattern queries on events with imprecise timestamps can
be constructed based on a known algorithm for evaluating
simple pattern queries, but always has to use the skip till
any match strategy to avoid missed results, hence incurring
a worst-case exponential cost. It has an additional cost of
confidence computation for each pattern match, which is
also exponential in the worst case. In summary, two bottle-
necks in pattern query processing are Kleene closure evalu-
ated under the skip till any match strategy (1) and confidence
computation in the case of imprecise timestamps (2).

3. Optimizations (§5): To address bottleneck (1), we de-
rive an insight from the observed difference between the low-
level complexity classes in descriptive complexity analysis
(which considers only one match) and exponential complex-
ity in runtime analysis (which considers all pattern matches).
Our optimization breaks query evaluation into two parts:
pattern matching, which can be shared by many matches,
and result construction, which constructs individual results.
We propose a series of optimizations to reduce shared pat-
tern matching cost from exponential to polynomial time
(sometimes close-to-linear). To address bottleneck (2), we
provide a dynamic programming algorithm to expedite con-
fidence computation and to improve performance when the
user increases the confidence threshold for desired matches.

4. Evaluation with a case study (§6): We compare our new
system with a number of state-of-the-art pattern query sys-
tems including SASE [1, 28], ZStream [20], and XSeq [21].
Our microbenchmark results show that our system can miti-
gate performance bottlenecks in most workloads, while other
systems suffer from poor performance for the expensive pat-
tern queries mentioned above. In addition, we perform a
case study in cluster monitoring using real Hadoop work-
loads, system traces, and a range of monitoring queries. We
show that our system can automate cluster monitoring us-
ing declarative pattern queries, return very insightful results,
and support real-time processing even for expensive queries.

2. BACKGROUND
In this section, we define a “core language” for pattern

queries, introduce its formal semantics, and present an ex-
tension to imprecise timestamps. This discussion offers a
technical context for our study in the subsequent sections.

2.1 A Core Language for Pattern Queries
A number of languages for CEP have been proposed, in-

cluding SQL-TS [23], Cayuga [11], SASE [1, 28], and CEDR [6].
Although designed with different grammar and syntax, the
core features for pattern matching are similar. Below, we de-
fine a core language, L, for pattern queries, which includes
necessary constructs to be useful in real-world applications,
but leaves out derived features that do not change the com-
plexity classes shown below.

The core language L employs a simple event model: Each
event represents an occurrence of interest; it includes a time-
stamp plus other attributes. All input events to the CEP
system can be merged into a single stream, ordered by the
occurrence time. Then over the ordered stream, a pattern
query seeks a series of events that occur in the required
temporal order and satisfy other constraints. The constructs
in L include:

I Sequencing (seq) lists the required event types in tem-
poral order, e.g., seq(A, B, C), and may assign a vari-
able to refer to each event selected into the match.



I Kleene closure (+) collects a finite yet unbounded num-
ber of events of a particular type. It is used as a com-
ponent of the seq construct, e.g., seq(A, B+, C).

I Negation (∼ or !) verifies the absence of certain events
in a sequence. It is also used as a component of the
seq construct, e.g., seq(A, ∼B, C).

I Value predicates further specifies value-based constraints
on the events addressed in seq. For Kleene+, they can
be applied to each event ‘e’ considered in Kleene+ by
placing a constraint on (a) only e, (b) between e and
a fixed number of previous events, or (c) over all the
events previously selected in Kleene+ by the use of an
aggregate function (see below for examples.). Aggre-
gate functions include standard functions (max,min,
count, sum, avg) and user-defined functions.

I Closure under union, negation and Kleene closure. Union
(∪) can be applied to two patterns, e.g., seq(A, B, C)
∪ seq(A, D, E). Negation (∼ or !) can be applied to
a seq pattern, e.g., ∼seq(A,B, C). Kleene closure (+)
can also be applied to a pattern, e.g., seq(A,B,C)+.

I Windowing (within) restricts a pattern to a specific
time period.

I Return (return) constructs new events for output.

There are other useful constructs such as unordered, at
least, and at most [6], however, they can either be derived
from the core constructs or do not affect the complexity
classes, so we do not include them in L.

Table 1 shows two example queries used in our case study
on Hadoop cluster monitoring. The queries are written us-
ing the syntax used in [1, 20, 26, 28]. Query 1 computes the
statistics of running times of mappers in Hadoop: The ‘Pat-
tern’ clause specifies a seq pattern with three components:
a single event indicating the start of a Hadoop job, followed
by a Kleene+ for collating a series of events representing the
mappers in the job, followed by an event marking the end
of the job. Each component declares a variable to refer to
the corresponding event(s), e.g, a, b[ ] and c, with the array
variable b[ ] declared for Kleene+. The ‘Where’ clause uses
these variables to specify value-based predicates. Here the
predicates require all events to refer to the same job id; such
equality comparison across all events can be writing with a
shorthand, ‘[job id]’. The ‘Within’ clause specifies a 1-day
window over the pattern. Finally, the ‘Return’ clause con-
structs each output event to include the average and maxi-
mum durations of mappers in each job.

Query 6 finds reducers that cause increasingly imbalanced
load across the nodes in a cluster. It has a similar structure
as Query 1. A notable difference is the use of an iterator
predicate on the Kleene+: b[i] refers to each event of type
‘LoadStd’ considered by Kleene+, and it is required to have
a value no less than the value of the previously selected event
in option 1, or the maximum value of all previously selected
events in option 2 (using aggregate max). These options are
equivalent here but show different types of predicates used.

Event Selection Strategy. The event selection strat-
egy expresses how to select the events relevant to a pattern
from an input mixing relevant and irrelevant ones. Three
strategies can be chosen based on the application needs:
S1: Strict or partition contiguity ‘|’. The most stringent

event selection strategy requires the selected events to be
contiguous in the input. A close variant is partition conti-
guity, which partitions the input stream based on a logical

Q Pattern Query
Q1 Pattern seq(JobStart a, Mapper+ b[ ], JobEnd c)

Where a.job id = b[i].job id ∧ a.job id=c.job id
Within 1 day
Return avg(b[ ].period), max(b[ ].period)

Q6 Pattern seq(ReducerStart a, LoadStd+ b[ ], ReducerEnd c)
Where [task id] ∧ (b[i].val ≥ b[i-1].val //option 1)

(b[i].val ≥ max(b[1..i-1].val //option 2)
Within 10 minutes
Return a.task id

Table 1: Two pattern queries from Hadoop monitoring.
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a> b[1] b[i] c F
begin begin proceed begin

ignore ignore ignore

take

F

a1

NFA

Buffer b2, b3, b4

Figure 1: An NFAb automaton for Query 6.

condition, e.g., the same task id, and requires selected events
to be continuous in each partition.
S2: Skip till next match ‘→’. The strategy removes the

contiguity requirements and instead, has the ability to skip
irrelevant events until it sees the next relevant event to
match more of the pattern. Using this strategy, Query 1
can conveniently ignore all irrelevant events, e.g., the re-
ducer events, which are only “noise” to pattern matching
but commonly exist in input streams.
S3: Skip till any match ‘⇒’. The last strategy offers more

flexibility by allowing non-deterministic actions on relevant
events: Once seeing a relevant event, this strategy clones
the current partial match to a new instance, then it selects
the event in the old instance and ignores the event in the
new instance. This way, the new instance skips the current
event to reserve opportunities for additional future matches.
Consider Query 6 using option 1 and a sequence of load std
values (0.1, 0.2, 0.15, 0.19, 0.25). The strategy of skip to
next match can find only one sequence of non-decreasing val-
ues (0.1, 0.2, 0.25). In contrast, skip to any match produces
not only the same sequence, (0.1, 0.2, 0.25), by selecting the
value 0.2 in one instance, but also a new sequence, (0.1, 0.15,
0.19, 0.25), by skipping 0.2 in a new instance.

2.2 Formal Semantics by NFAb Automata
The formal semantics of pattern queries is usually based

on some form of automaton [1, 11, 20]. In this work, we
adopt the NFAb model in [1] to explain the formal seman-
tics. In this model, each query could be represented by a
composition of automata where each is a nondeterministic
finite automaton (NFA) with a buffer (b) for computing and
storing matches. Figure 1 is the NFAb for Query 6.

States. In the NFAb automaton, a non-Kleene+ compo-
nent of a pattern is represented by one state, and a Kleene+
component by two consecutive states. In Figure 1, the match-
ing process begins at the first state, a. The second state b[1]
is used to start the Kleene closure, and it will select an event
into the b[1] unit of the match buffer. The next state b[i] se-
lects each additional relevant event into the b[i] (i > 1) unit
of the buffer. The next state c processes the last pattern
component after the Kleene closure has been fulfilled. The
final state, F , represents a complete match.

Edges. Edges associated with a state represent the ac-
tions that can be taken at the state. The conditions for these
actions are compiled from the event types, value predicates,



the time window, and the selection strategy specified in the
pattern query. In the interest of space, we will not present
detailed compilation rules, but point out that (1) the loop-
ing ‘take’ edge on the b[i] state is where Kleene+ selects an
unbounded number of relevant events; (2) all the looping
‘ignore’ edges are set based on the event selection strategy,
often to skip irrelevant events.

NFAb runs. A run of an NFAb automaton represents a
partial match of the pattern. A run that reaches the final
state represents a complete match. We will see this in more
detail when we analyze runtime complexity in Section 4.

Finally, the language L is closed under union, negation,
Kleene+, and composition. Any formula in the language
can thus be evaluated by a set of NFAb automata combined
using these four operations.

2.3 Extension to an Imprecise Temporal Model
As discussed earlier, due to granularity mismatch, clock

synchronization problems, etc., in many applications we do
not have precise timestamps to produce a combined stream
that is guaranteed to be sorted by occurrence times. For ex-
ample, Query 6 has a granularity mismatch: the ‘Std Load’
events are generated by Ganglia every 15 seconds while the
Hadoop generated ‘ReducerStart’ and ‘ReducerEnd’ events
are precise to a few microseconds.

To deal with imprecise timestamps in pattern evaluation,
recent work [30] proposed a temporal uncertainty model:
Assume that the time domain is a sequence of positive inte-
gers. The owner of each event stream assigns a time interval
to each event to cover all of its possible occurrence times,
e.g., [10,15], and a probability distribution over this inter-
val, e.g., a uniform distribution over [10,15]. Then the query
evaluation system defines a set of possible worlds, where
each possible world is a unique combination of the possible
occurrence time of each event, and has a probability com-
puted from all the included events. Then in each possible
world, each event has a fixed timestamp, one can run the
NFAb automaton as before, and each match produced in
this possible world has the probability of the possible world.
Finally, the confidence value of a match is the sum of the
probabilities of all the possible worlds that produced it.

3. DESCRIPTIVE COMPLEXITY
Given the core language, L, an important question is what

features make the language1 more expressive and at the
same time computationally more expensive? To answer this
question, we leverage the theory of Descriptive Complex-
ity [12] which analyzes the expressive power of a language
and its computational complexity. In this section, we first
introduce descriptive complexity, then discuss the expres-
sive power of sublanguages of L and their clean mappings
to a hierarchy of complexity classes. We also map other
languages in the literature to the same complexity hierar-
chy, hence offering a unified framework for comparing them
with L. Here we restrict our analysis to the classic decision
problem of whether there is an answer in the input. In prac-
tice, pattern query evaluation requires all answers, which we
address in the next section.

3.1 Introduction to Descriptive Complexity
1In this study, the terms, language, logic, or algebra (CEP oper-
ators), are used interchangeably.

Figure 2: Results on expressibility and complexity of L.

Descriptive complexity [12] is a branch of computational
complexity theory and of finite model theory that character-
izes each complexity class, C, via the power of the logic
needed to express the decision problems in C. The clas-
sic problem of computational complexity theory is checking
whether an input satisfies a property S, wheras in descrip-
tive complexity we ask how rich a a language is needed to
express S. These two issues – checking and expressing –
turn out to be closely related.

Figure 2 shows part of the descriptive complexity hierar-
chy[12] that is relevant to our analysis. Moving upwards,
the levels use increasing parallel time. For example, at the
bottom FO= AC0 is the set of first-order expressible queries
which is equal to the set of problems checkable in constant
parallel time using polynomially many processors2. Con-
tinuing up, FO(TC) is the set of queries expressible in first-
order logic plus a transitive closure operator. This is equal to
the set of problems checkable in nondeterministic logspace.

3.2 Expressibility of the Core Language L
We now study the expressive power of the core language
L. As we will see, when successively larger subsets of L are
considered, they can be mapped cleanly into a hierarchy of
complexity classes, from AC0 to NSPACE[logn]. Our main
results are summarized in the right column of Fig. 2.

The subtlety of characterizing the expressive power of L
has to do with the interaction of Kleene+ and aggregation.
To get started, in our first theorem we simply remove aggre-
gation from consideration.

Let L (w.o. aggregation) and NFAb(w.o. aggregation) be
the restriction of these two models to have no occurrences of
aggregation. In this case we can think of the input alphabet,
Σ = D1 × · · ·Dk, as the product of the domains of possible
attribute values in the event stream. It is not surprising that
without Kleene+ and aggregation we are in AC0, and after
adding Kleene+ we are limited to the regular sets:

Theorem 3.1. Let A ⊆ Σ∗. The following conditions are
equivalent:

1. A is regular

2. A is recognizable by an L (w.o. aggregation,∼) query

3. A is recognizable by an L (w.o. aggregation) query

4. A is in cl(NFAb (w.o. aggregation), ◦, +)

5. A is in cl(NFAb (w.o. aggregation), ◦, +, ∼)

2On a CRCW-PRAM, see [12] for details on descriptive com-
plexity and [25] for more information about complexity.



Proof Sketch: Since L (w.o. aggregation,∼) contains sin-
gle letter alphabets and is closed under concatenation, union,
and Kleene+, it contains the regular languages. Obviously,
2 → 3 → 5 and 2 → 4 → 5. Since an NFAb(w.o. aggre-
gation) automaton can obviously accept single letter alpha-
bets, 5→ 1.

In the presence of aggregation, we can express non-regular
properties, e.g., a simple, strictly contiguous L query can
accept exactly the strings over (a ∪ b)∗ that have more a’s
than b’s. The aggregation operations that we consider are
the standard count, min, max, sum, avg, together with
any user-defined finite state aggregator. Recall that Sn is
the group of permutations of n objects where multiplication
is composition. It is known that the word problem for the
finite group S5 – given a sequence of elements of S5 is their
product the identity – is complete for NC1 [7].

We show in Theorem 3.2 that L with only contiguous
queries expresses a rich subset of NC1. First we show,

Lemma 3.1. The word problem for S5 — an NC1-complete
problem — is expressible in a simple L query of the form
strict contiguity.

Proof. The word problem for S5 can be represented as a
simple strict-contiguity a+ query: we define an aggregate
that keeps track of a value, v, from 1 to 5 and combines that
with the input π, an element of the fixed, finite alphabet,
S5 and computes the next value, π(v). The beginning and
ending condition of the L query is that v = 1.

Theorem 3.2. L with only strict contiguity or with only
strict and partition contiguity expresses a subset of NC1 that
includes complete problems for NC1.

Proof. The NC1 completeness comes from Lemma 3.1. For
containment in NC1: the L with partition contiguity query
can be simulated in NC1 as follows: first replace any input
from an event not in the partition by the identity element3

for the aggregation operation in question. Then do a partial-
prefix computation of the aggregation operation.

The ordered graph reachability problem, oREACH, con-
sists of the set of directed graphs on vertices numbered 1 to
n such that there is a path from 1 to n and all edges (i, j)
are increasing, i.e., i < j. It is well known that oREACH
is complete for NSPACE[logn]. Similarly, oREACHd, the
restriction of oREACH in which there is at most one edge
from each vertex is complete for DSPACE[log n].

It is not hard to see that

Lemma 3.2. oREACHd is expressible in a simple L query
of the skip till next match form. Similarly, oREACH is
expressible in a simple L query of the skip till any match
form.

Proof. In both cases the input stream consists of a sequence
of edge events with attributes head and tail. A simple a+
query checking that a[i].tail =a[i-1].head finds the path. In
the deterministic case this is of the skip till next match form
because there is at most one edge with a given tail, but in
the general case this is a skip till any match case because
nondeterminism is involved in finding the right path.

3Note that a null value consists of an ignored element for
any aggregation operator and is thus the identity element.

Theorem 3.3. L (without skip till any match) expresses
a subset of the DSPACE[logn] queries including some that
are complete for DSPACE[logn].

Proof. The DSPACE[log n] completeness comes from Lemma
3.2. The only subtlety about containment in DSPACE[log
n] comes with the possible nondeterminism between (Ignore
or Take) versus Proceed edges of NFAb. Since there are only
a bounded number of places where this nondeterminism can
occur in any L query, we remain in logspace by sequentially
trying each possible choice. This involves adding a log n-
bit counter for each of the states of the NFAb where such a
non-deterministic move could occur.

Finally, for the L language with skip till any match, a
theorem in [1] gives the upper bound of its expressive power.
It is included below for the sake of completeness:

Theorem 3.4. L expresses a subset of NSPACE[logn] in-
cluding some queries that are complete for NSPACE[logn].

3.3 Expressibility of Other Languages
We also map the expressibility of a wide range of exist-

ing pattern query languages to the complexity hierarchy in
Fig. 2, with the main results summarized in the left column.

Temporal logic is equivalent to first-order logic and thus
the star-free regular languages on words [14, 19].

CQL [5] is a well-known stream language. It maps streams
to relations using windows, and applies SQL to compute a
result for each window. If the subset of SQL used is limited
to selection-join-aggregation, it is first-order logic extended
with a counting quantifier, thus equal to ThC0. If the sub-
set of SQL used is relaxed to the bigger set with recursion,
its expressiveness and complexity is way up in P-time—this
level of complexity is not needed for pattern queries in CEP.

SQL-TS [23] provides a stream-processing addition to
SQL. Just looking at that stream processing facility, its ex-
pressive power—assuming the same set of aggregates as L–
is the same as L without negation and restricted to uses of
strict or partition contiguity. It thus follows that this stream
language is restricted to at most the same subset of NC1.

Cayuga [11] is built from an algebraic stream processing
language. A least-fixed-point operator is described to ex-
press Kleene+. The semantics of simple, i.e., not composed,
queries is given via an automaton model similar to NFAb.
Its expressive power is the same as L without negation and
restricted to skip till next match queries. Thus, Cayuga is
contained in the same subset of DSPACE[log n].

XSeq [21] supports pattern queries over hierarchical data
with sequencing elements, e.g., in XML. It claims that ev-
ery “core XSeq” formula can be translated to an equivalent
Visibly Pushdown Automata (VPA) and vice-versa. Thus
core XSeq can express exactly the languages accepted by
VPAs, which was characterized as MSOµ in [4]. Monadic
second-order (MSO) over words expresses exactly the regu-
lar languages. Adding a binary relation µ that has an edge
from each call site (push) to its corresponding return site
(pop) gives us MSOµ which expresses exactly the visibly
pushdown languages. It is strictly between the regular lan-
guages and the context free languages.

Summary. The above results give a good picture of the
expressibility of sub-languages of L and other languages, as
well as their complexity classes. Our main conclusions are:



Symbol Meaning

l Number of components in a seq pattern.
k Number of Kleene closure components in seq.
W Size of the time window.
R Ri is the arrival rate of events satisfying the con-

straints on the ith component of a pattern. A sim-
plifying assumption is: R1 = R2 = . . . = Rl = R.

U Size of the uncertainty interval for events with im-
precise timestamps, assumed to the same for all.

cr Average cost for a run, including the cost for run
creation, event evaluation, etc.

cm Average cost to compute the probability for a
(point-based) match in the imprecise case.

S1,S2,
S3

Event selection strategy of Contiguity, Skip-till-
next-match, Skip-till-any-match, respectively.

Table 2: Notation in runtime complexity analysis.

1. Understanding pattern languages means understanding
the interaction between Kleene+, aggregation, and the event
selection strategy. As they are included in successively larger
subsets of L, they can be mapped into low-level complexity
classes ranging from AC0 to NSPACE[logn].

2. Existing stream pattern languages can be mapped to
different levels of the complexity hierarchy. Some of these
languages are not able to express all pattern operators and
selection strategies. Some others like CQL with recursion
are more powerful than what pattern queries in CEP need,
hence having to pay a cost for a higher complexity class.
After comparing with other languages in the complexity hi-
erarchy, we can see that the core language L achieves a good
balance between expressive power and complexity.

4. RUNTIME COMPLEXITY
We next extend our problem formulation from checking

the existence of a query answer to finding all query answers
in an input. This analysis, which we call “runtime analysis”,
follows the methodology used in the previous section: it
shows how the runtime complexity changes as we add more
key language features that were shown to lead to different
classes in descriptive complexity. The runtime analysis will
help us find intuitions for optimization later.

Preliminaries. The runtime cost is mainly reflected by
the number of simultaneous runs of an NFAb automaton.
A run represents a unique partial match of the pattern.
It is either initiated when a new event is encountered to
match the first component of the pattern, or cloned from an
existing run due to nondeterminism in the strategy of skip to
any match. A run is terminated when it forms a complete
match or expires before reaching a complete match. The
symbols used in the analysis are listed in Table 2.

Below we highlight our key results in five cases that cause
significant changes of runtime complexity, while leaving out
the full results including other cases due to space constraints.
The relations of the five cases are summarized in Table 3.

Base case. Consider a simple pattern without Kleene+,
evaluated under S1 or S2. The runtime complexity for S1

and S2 are the same in number of runs. (In practice, the cost
for S2 may be higher because these runs can produce longer
matches.) Here the only trigger to generate a new run is an
event qualified for the first component of the pattern. So
the total number of runs is exactly the same as the number
of events matching the first component, i.e., RW . After
multiplying the cost cr, we get the runtime cost.

Skip till any match. Then consider a pattern with-

out Kleene+, evaluated under S3. S3 is chosen to capture
all event sequences that match the pattern, ignoring irrele-
vant events in between. Given a pattern of l components,
each component can have RW matching events in the time
window, so there can be (RW )l matches. At runtime we
need at least this number of runs: some runs lead to com-
plete matches, while others are intermediate runs that fail
to complete. It is not hard to show that considering all, the

number of runs is ( (RW )l+1−1
RW−1

), hence polynomial in W .
Kleene closure. Next consider a Kleene+ pattern eval-

uated under S3. Under S3, any combination of the RW
events for a Kleene+ component can potentially lead to a
match, hence requiring a run. So the cost is exponential,
2RW . Even worse, k Kleene+ components will make the
factor 2kRW . As a result, the total number of runs would

be ( (RW )l−k+1−1
RW−1

))× 2kRW ), exponential in W .
Imprecise timestamps. Finally consider all patterns in
L in the presence of imprecise timestamps. Recent work [30]
proposed a solution for simple pattern queries like seq(A, B,
C), where input events all carry an uncertainty interval to
represent possible occurrence times. The algorithm employs
(1) an efficient online sorting method that presents events
in the current time window in “query order”; that is, in the
current window ‘a’ events are presented before ‘b’ events
which are before ‘c’ events; (2) after sorting, an efficient
method to check the temporal order of events for a simple
pattern, without enumerating all possible worlds.

Our work aims to further support Kleene+ patterns like
Query 6 on events with imprecise timestamps. Take Query 6
and the sequence of events with values, (0.1, 0.2, 0.15, 0.19,
0.25). The goal is to look for a series of events that have in-
creasing timestamps and non-decreasing values. Since each
event has an uncertainty time interval, finding a series of
events with increasing timestamps cannot be restricted to
the order of events in the input sequence. Instead, we
can (1) apply the sorting method in [30] to re-arrange the
events in a time window by query order, in this case that is,
arranging the events by order of non-decreasing values; (2)
enumerate every subset of this sorted sequence using skip
till any match strategy; and (3) check temporal order of
each subset of events using the method in [30]. In summary,
the solution to evaluating Kleene+ pattern queries on events
with imprecise timestamps can be constructed based on the
known algorithm for evaluating simple pattern queries [30],
but always has to use S3 to avoid missed results.

In addition, there is an extra cost caused by imprecise
timestamps, confidence computation in the match construc-
tion process. Assume that a matching algorithm, as sketched
above, has returned a sequence of events, (ei1 , ei2 , . . . , eim)
where each has an uncertainty interval, as a potential match.
The model for imprecise timestamps, described in §2.3, re-
quires computing the confidence of this sequence being a
true match and comparing it with a threshold. To do so,
the confidence is computed based on timestamp enumera-
tion: pick one possible point timestamp for each event from
its uncertainty interval, validate whether the point times-
tamps of the m events satisfy the desired sequence order,
and if so, compute the probability for this point match. Af-
ter enumerating all instances, sum the probabilities of all
validated instances as confidence. So without Kleene+, the

cost is, ( (RW )l+1−1
RW−1

)(cr + U l × cm), where the first factor is
the number of runs and the second is the time cost per run.



# Language
Features

Selection
Strategy

Timestamp Complexity
Class in W

Formula (using notation in Table 2)

1 L w.o. Kleene+ S1/S2 Precise Linear RW × cr
2 L w.o. Kleene+ S3 Precise Polynomial (

(RW )l+1−1
RW−1

)× cr
3 L w. Kleene+ S3 Precise Exponential (

(RW )l−k+1−1
RW−1

× 2kRW )× cr
4 L w. Kleene+,

uncorrelated
S1/S2/S3 Imprecise Exponential (

(RW )l−k+1−1
RW−1

× 2kRW )× (cr + U l−k × cm)

5 L w. Kleene+,
correlated

S1/S2/S3 Imprecise Exponential (
(RW )l−k+1−1

RW−1
× 2kRW )× (cr + U l−k+kRW × cm)

Table 3: Main results of runtime complexity analysis.

For queries with Kleene+ components, there are two dif-
ferent cases. The simpler case is that events can satisfy a
Kleene+ independently, which is called the uncorrelated
case. In the correlated case, events collected by a
Kleene+ must satisfy an ordering constraint, e.g., increas-
ing in time and non-decreasing in ‘LoadStd’ value for Q6
in Table 1. In this case, let the set of events collected
by each Kleene+ be RW . They have to participate in the
enumeration process in confidence computation. So the to-
tal cost for k Kleene+ components is given by the num-

ber of runs, ( (RW )l−k+1−1
RW−1

× 2kRW ), times the cost per run,

(cr + U l−k+kRW × cm).

Summary. The main results of our runtime analysis in-
clude: (i) Pattern queries that use Kleene+ under S3, is
subject to an exponential cost in the window size; (ii) The
solution to evaluating Kleene+ pattern queries on events
with imprecise timestamps can be constructed based on a
known algorithm for evaluating simple pattern queries, but
always has to use S3 to avoid missed results. It also includes
an additional cost of confidence computation for each pat-
tern match, which is also exponential in the worst case.

As such, two bottlenecks in pattern query processing are
(1) Kleene+ evaluated under S3 and (2) confidence computa-
tion under imprecise timestamps. We focus on the two bot-
tlenecks in optimization. In particular, optimizing Kleene+
under S3 not only expedites such queries, but also enables
the evaluation of all queries with imprecise timestamps.

5. OPTIMIZATIONS
Our key insight for optimization is derived from the ob-

served difference between the low-level complexity classes
in descriptive complexity analysis, which considers only one
match, and exponential complexity in runtime analysis, which
considers all matches. Our idea is to break query evalua-
tion into two parts: pattern matching, which can be shared
across matches, and result construction, which constructs
individual results. We propose several optimizations to re-
duce shared pattern matching cost (§5.1 and §5.2).

To address the overhead in confidence computation, we
provide a dynamic programming algorithm to expedite the
computation and enable improved performance when the
user increases the confidence threshold to filter matches (§5.3).

5.1 Sharing with Postponed Operations
Let us consider the evaluation of a Kleene+ pattern under

S3. For ease of composition, we use a simplified version of
Query 6, shown in Fig. 3(a), and a small event stream in
Fig. 3(b). Each event is labeled with a letter specifying the
pattern component satisfied, and the number for distinguish-
ing it from other events of the same type. The events are also

listed with contained attributes. The NFAb model for this
pattern is in Fig. 3(c). An initial set of operations according
to the NFAb execution model are shown in Fig. 3(d). In the
diagram, each box shows an operation in NFAb execution
(the upper part) and the run after this operation (the lower
part). We call such a diagram a “pattern execution plan”.
To better explain it, we introduce the primitive operations
based on the NFAb model:

• Edge evaluation evaluates the condition on taking
the transition marked by the edge, where the condi-
tion is compiled from the event type, time window
constraint, and value predicates.

• Run initialization is used to start a new run.

• Run extension adds a new event to an existing run.

• Run cloning duplicates an existing run to enable non-
deterministic actions.

• Run proceeding moves to the next automaton state
without consuming events.

• Run termination terminus a run when it arrives at
the final state or it fails to find any possible transition.

Then a pattern execution plan Γ is a tree of primitive oper-
ations, where each unique path in the tree is a run (ρ) of the
NFAb. Next we state some key properties of this execution
plan, which enable later optimization.

First, we observe that S3 allows edge (predicate) evalu-
ation operations to be postponed until later in the execu-
tion plan, which is a special type of “commutativity” al-
lowed in the NFAb model. For instance, consider the eval-
uation of the ‘take’ edge in the NFAb in Fig. 3(c), where
Kleene+ is trying to select more ‘b’ events. Let e denote
the current event. The predicates in this edge evaluation
are: e.type = B ∧ e.time < W ∧ e.val ≥ b[i − 1].val. If we
postpone the value predicate, e.val ≥ b[i − 1].val, until the
end of the plan, it is not hard to show that the plan still
produces the same matches as before.

Second, we observe that S3 also allows some suffix paths
of the plan to be postponed altogether. To explain it, we
introduce the concept of “consecutive operations”: Some of
the primitive operations in the plan have to be performed
consecutively. In Fig. 3(d), after step 1 is executed, step
2 must be performed immediately; otherwise this run will
not be initialized and the following b1 will not be evaluated
properly. We call such a pair of operations as consecutive
operations (denoted by“↔”), meaning that other operations
are not allowed between the two operations.

In contrast, there are operations that do not need to be
performed consecutively. This happens when a run is cloned
in S3. In Fig. 3(d), after step 3 finishes, due to the nondeter-
minism two actions are triggered: step 4 extends the current
run with a new event, which needs to be performed right af-
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Figure 3: A running example for the postponing algorithm.

ter step 3. In contrast, step 5 clones the current run to a
new independent run for further processing, and thus even if
it is not performed immediately, it will not affect the other
run. We call a pair of primitive operations like steps 3 and
5 “non-consecutive operations” (denoted by →), e.g., 3→ 5,
6→ 9 and 7→ 11 in Fig. 3(d). In the plan Γ, all the pairs of
non-consecutive operations allow us to decompose some suf-
fix paths from the main path (which is highlighted in green in
Fig. 3(d)). We denote the main path as ρ1, and each suffix
path as ρj = ρi+∆ρ, with some 1 ≤ i < j. The observations
above lead to two propositions key to our optimization. The
proofs are omitted due to space constraints.

Proposition 5.1. Given a pattern execution plan Γ eval-
uated under S3, if the run corresponding to the main path
ρ1 is evaluated with value predicates removed, and if it pro-
duces an intermediate match, M = (ei1 , ei2 , . . . , eim), then
M is a superset of every match that can be produced by Γ.

Proposition 5.2. Given a pattern execution plan Γ evalu-
ated under S3 , the complete set of matches produced by Γ
is the same as first obtaining the intermediate matchM by
running the main path ρ1 with value predicates postponed,
and then enumerating all subsets ofM while evaluating the
postponed predicates.

Postponing Algorithm. We now present the postpon-
ing algorithm that breaks the evaluation according to a plan
Γ into two parts: pattern matching, which is shared by all
of the original runs of Γ, and result construction.

1. Pattern matching. It follows directly from Proposi-
tion 5.1: we take the main run ρ1 and run it with all value
predicates removed. This is the only cost incurred.

2. Result construction. This step follows directly from
Proposition 5.2: We take the match M produced by the
main run ρ1 with value predicates postponed. Then we enu-
merate all subsets ofM while applying the postponed pred-
icates, and return all the matches produced in this process.
A simple optimization can be added to the enumeration pro-
cess, e.g., ensuring that there is at least one event matching
each pattern component in order to be a match.

Fig. 3(e) illustrates the postponing algorithm. Using the
original plan, there are 15 runs. Using the postponing al-
gorithm, there is only 1 run in pattern matching, producing
an intermediate match M = (a1, < b1, b2, b3 >, c1), and 7
cases in enumeration, leading to 7 final matches (in bold).

Note that the benefits of the postponing algorithm are
usually more than illustrated in this simple example: First,
it can filter non-viable runs effectively. For example, a run
that collects a large number of events for a Kleene+ com-
ponent without finding an event for the last component is
completely avoided in the postponing algorithm. Second,
many fewer runs also mean the reduced evaluation cost for
each event. Third, when a run reaches the result construc-
tion phase, the enumeration cost is still cheaper than the
cost of cloning runs on the fly and repeated operations like
edge evaluation on the same event can be carefully shared.

5.2 Postponing with Early Filters
A main drawback of the postponing algorithm is that the

pattern matching phase removes value predicates and hence
loses the ability to prune many irrelevant events early. To
improve the filtering power, we would like to improve the
postponing algorithm by performing edge evaluation, includ-
ing the value predicates, on the fly as events arrive. However,
it is incorrect to simply evaluate all predicates on the fly be-
cause it may not produce an intermediate match M that is
a superset of every final match. Consider a Kleene+ on a
sequence of values, (0.1, 0.2, 0.15, 0.19, 0.25), and two cor-
rect results for non-decreasing subsequences, (0.1, 0.2, 0.25)
and (0.1, 0.15, 0.19, 0.25). If we evaluate the value predi-
cate, b[i].val ≥ b[i− 1].val, in the main run ρ1 as events are
scanned, we can produce an intermediate match M = (0.1,
0.2, 0.25), which is not a superset of (0.1, 0.15, 0.19, 0.25).

Therefore, the decision on whether to evaluate a predicate
on the fly should be based on its correctness, which is related
to the consistency of evaluation results on a power set of an
event sequence. Regarding consistency, we observe that all
predicates applied to Kleene+ fall into one of four categories:

True-value consistent predicates. A predicate in this
category satisfies the following property: if the predicate



evaluation result of comparing the current event, e, against
all selected events is true, then it is always true when com-
paring the event e against any subset of the selected events.
Consider b[i].val > max(b[..i− 1].val) for Pattern(a, b+, c).
If e.val is larger than the maximum of all selected events
for the Kleene+, it will be larger than the maximum of any
subset. So the “true” value is consistent. If an event fails
the check, it is still possible to be larger than the maximum
value of some subsets. So events validated by true-value
consistent predicates on the fly do not need to be checked
again in result construction; they can be labeled as “SAFE”
to avoid redundant evaluation. Other events cannot be dis-
carded and should be labeled as “UNSAFE” for additional
evaluation in result construction.

False-value consistent predicates. The property for
this category is: if the predicate evaluation result of com-
paring e against all selected events is false, then it is always
false for comparing e against any subset of selected events.
c.val < max(b[..i].val) for Pattern(a, b+, c) is an example.
Events evaluated to false by such predicates can be discarded
immediately because they will never qualify. Other events
must be kept for additional checking in result construction.

True and false-value consistent predicates are pred-
icates that are both true-value and false-value consistent
predicates. An example is b[i].val > 5 for Pattern(a, b+,c).
Since it does not compare b[i] with any of the selected events
by Kleene+, the evaluation result will never vary with the
subset of the events chosen. Events evaluated to true by
true-false consistent predicates can be labeled as “SAFE”,
and those evaluated to false can be discarded immediately.
For this type of predicates, we can choose to directly output
the intermediate matches of the pattern matching step as a
collapsed format of the final results. This format includes
all relevant events and provides a compact way to represent
the final matches before enumerating them explicitly. The
user may opt to pay the enumeration cost only when needed.

Inconsistent predicates are predicates that are neither
true-value consistent or false-value consistent. An example is
b[i].val > avg(b[1..i−1].val) for Pattern(a, b+, c). This type
of predicates should be postponed until result construction.

With the knowledge of the four categories, the postpon-
ing algorithm can make a judicious decision on whether to
perform predicate evaluation on the fly to filter events early.

5.3 Optimization on Confidence Computation
As mentioned in §4, there is an extra cost to compute the

confidence of each pattern match in the presence of impre-
cise timestamps. This operation is prohibitively expensive
for queries with Kleene closure, because the cost is expo-
nential in the number of selected events. So we optimize
it in this section. Our main idea is that existing work [30]
finds all possible matches with confidence greater than zero.
However, matches with low confidence are of little interest
to the user. Setting a confidence threshold to prune such
matches is of more value to the user, and it provides op-
portunities for optimization. The confidence of a partial
match is non-increasing as more events are added to extend
a partial match. In result construction, we can begin the
enumeration with shorter runs (matches), and add events
to validated matches one by one. If a shorter match has
confidence lower than a threshold, then all longer matches
with the same prefix will not need to be considered again.
Based on this intuition, a dynamic programming method is

designed to optimize the performance of confidence compu-
tation, which reduces the cost drastically. Due to the limi-
tation of space, the details are left to our tech report[31].

6. EVALUATION
In this section, we evaluate our new system, called SASE++,

with the proposed optimizations, and compare it with sev-
eral state-of-the-art pattern evaluation systems.

6.1 Microbenchmarks
Queries in the microbenchmarks use the template, seq(A

a, B+ b[ ], C c), unless stated otherwise, and S3 . We vary
two parameters: The selectivity (θ) defined as, #Matches

#Events
,

is controlled by changing the value predicates in the pattern.
It is varied from 10−6, which is close to the real selectivity
in our case study, up to 1.6, which is a very heavy workload
to test our optimizations. The other parameter is the time
window (W ), varied from 25 to 105. Our event generator
creates synthetic streams where each event contains a set of
attributes with pre-defined value ranges, and a timestamp
assigned by an incremental counter or an uncertainty inter-
val if the timestamp is imprecise.

We run SASE++ with the following settings: (1) Post-
poning, which applies postponing(§5.1) only; (2) On-the-
fly, which applies early filters (§5.2) based on postponing;
(3) Collapsed, which returns results in collapsed format
based on on-the-fly; (4) DP x: it applies dynamic program-
ming (§5.3) with x% as the threshold based on on-the-fly.
In addition to running SASE++with different optimization
settings, we also compare it with (5) ZStream [20], which
applies the optimization of placing a buffer of events at each
NFA state and triggers pattern evaluation only when all
the buffers become non-empty; (6) SASE+ [1, 28], which
strictly follows the execution of the NFAb model, and (7)
XSeq [21], which we describe in detail shortly.

All experiment results were obtained on a server with an
Intel Xeon Quad-core 2.83GHz CPU and 8GB memory. Sys-
tem SASE++ runs on Java HotSpot 64-Bit Server VM.

6.2 Evaluation with Precise Timestamps
We first evaluate the two optimizations, postponing (§5.1)

and on-the-fly (§5.2), using streams with precise timestamps.
Throughput. Figure 4(a)-4(b) show the throughput while

varying θ and W for the true-value consistent predicates.
The y-axis is in logarithmic scale. We see that the through-
put of SASE+ drops very fast as θ andW increase. ZStream’s
performance degrades similar to SASE+. Our postponing
algorithm works well; its performance goes down only slightly.
On-the-fly has a similar performance as postponing in this
workload. Figure 4(c) shows the number of runs created
with varied W . The plot confirms our runtime analysis that
the numbers of runs in SASE+ and ZStream can go up ex-
ponentially and thus their throughput drops quickly. In con-
trast, the number of runs in postponing algorithm increases
much more gradually.

We further show the throughput when varying W for the
false-value consistent predicates in Figure 4(d). Here, on-
the-fly performs better than postponing because it can dis-
card more events earlier when evaluating them on the fly.
Results for the other types of predicates are omitted because
they exhibit similar trends as shown in these plots.

Cost breakdown. We further break down the cost of
each system by profiling time spent on each operation. The
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Figure 4: Microbenchmarks results with precise timestamps

breakdown of SASE+ is shown in Figure 4(e). The run ini-
tialization cost stays the same because only events qualified
for the first component trigger this operation and the same
stream is used. The rest of the cost is attributed to pattern
matching, which is exponential in W . The cost breakdown
for the postponing algorithm with predicate evaluation on-
the-fly is shown in Figure 4(f). Using the run initialization
as a reference, the cost for pattern matching stays low all
the time. The cost for result construction increases because
runs tend to collect more events as W increases. However,
it is still lower than the run initialization cost for most time.

Summary. Overall the postponing algorithm can pro-
vide up to 2 orders of magnitude improvement (max. 383x)
over SASE+ and ZStream. The pattern matching phase can
reduce the cost from exponential to polynomial, and some-
times close-to-linear cost. Although the result construction
phase may still generate an exponential number of matches,
which are determined by the query, the cost is much smaller
than SASE+ and ZStream, and returning them in a col-
lapsed format is an option for further reduction of the cost.

6.3 Evaluation with Imprecise Timestamps
In this set of experiments, we generate streams where each

event has an uncertainty interval size of 10. Fig. 5(a) shows
the throughput for varying W with true-false value consis-
tent predicates. The postponing algorithm without dynamic
programming optimization is dominated by the cost of con-
fidence computation, which is highly sensitive to W . It fails
to run when W > 3000, which is too small for practical uses.
The dynamic programming (DP) optimization can support
larger windows and improve performance as the confidence
threshold increases. The collapsed format returns results in
a compact way, without enumerating all the matches, hence
setting the upper bound of performance. The cost on con-
fidence computation for different algorithms is as shown in

Fig. 5(b). Note that the DP method is based on the post-
poning algorithm; without the intermediate matches, such
optimization on confidence computation is not feasible.

6.4 Comparison with XSeq
We further compare the performance of our system with

XSeq, an engine for high-performance complex event pro-
cessing over hierarchical data like XML, JSON etc. For
comparison, the same synthetic stream is used, and it is
converted to the SAX format required by XSeq. Since we
use S3, XSeq is set to the All Match Skip One mode, which
finds all possible matches for each starting point. The op-
timization method of XSeq is set to VP OPS OPTIMIZA-
TION, which gives the best performance.

We first vary the query length l for seq(A1, . . . , Al).
The result is in Fig. 5(c). A line marked by “XSeq n” means
that the input includes n events. XSeq is sensitive to the
input size so it does not scale well, while our system is sta-
ble with the input size and its throughput is about 4 to 10
orders of magnitude higher. Then we compare to XSeq by
varying time window W for the usual Kleene+ pattern,
which is shown in Fig. 5(d). The throughput of XSeq is still
much lower and sensitive to the input size. We observe the
performance of XSeq is always low and not affected by W .

A main observation is that XSeq is not optimized for the
time window. For example, if the query is, seq(a, b) within
25, XSeq will compare every a with every b in the input,
instead of terminating when no future events can fall into the
time window. This can be a straightforward optimization
but we were given only a binary executable of XSeq without
the source code. Second, XSeq is optimized for different
selection strategies. Among 13 sample queries with Kleene
closure in the paper [21], 5 queries are applied to children of
nodes, the depth of which can be limited; the other 8 queries
are applied to on immediate following siblings, and this is
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Figure 5: Results for imprecise timestamps, comparison with XSeq, and Hadoop use case study

like S1. XSeq lacks optimizations for more flexible selection
strategies, S2 or S3.

Overall, XSeq is not optimized for the ability to “skip”
events, which is one of the core features of CEP. It is largely
due to the fact that XSeq is designed for processing hierar-
chical data instead of general event streams.

6.5 Case study: Hadoop Cluster Monitoring
As stated in recent work [22], Hadoop cluster monitoring

is still in its adolescence. By working with Hadoop experts,
we perform a detailed case study to demonstrate that our
system can help automate cluster monitoring using declara-
tive pattern queries and provide real-time performance.

Data collection. We collect two types of logs in real-
time: the logs of system metrics, e.g., CPU usage, network
activity, etc, and the logs of Hadoop jobs, e.g., when a job
starts and ends. Ganglia [18], a popular distributed system
monitor tool, is used as the core part of our real-time data
collection system. We use gmond, which is the monitoring
daemon in Ganglia on every node, to grab performance met-
rics from the OS, and we also customize it to parse Hadoop
logs. Gmeta is the polling daemon, which polls logs and
saves to round-ronbin databases (RRD). Then our system
reads the data for pattern evaluation.

Queries. We develop 6 queries together with Hadoop ex-

perts to analyze Hadoop performance. They all use Kleene+
patterns and some use uncertainty intervals. As Q1 and Q6
are already shown in Table 1, we discuss other queries below.

Recall that Q1 computes the statistics of lifetime of map-
pers in Hadoop. Similarly, Q2 does it for reducers. Fig. 5(e)
shows the average lifetime of mappers for three different
workloads : Twitter (raw data 53.5GB, map output 565GB),
which counts statistics for tri-grams from tweets; Worldcup
U (raw data 252.9GB, map output 32GB) analyzes the fre-
quent users from the logs for clicks on 1998 FIFA World-
cup website; Worldcup S (raw data 252.9GB, map output
263.5GB), divides user clicks into sessions. In the figure, the
Twitter job has much longer running time than the other two
workloads because the output size of its mappers is larger.

Q3 is used to find the data pull stragglers. A reducer is
considered as a straggler when its runtime is two times the
average of other reducers [22]. Given the task id returned by
the query, user can then check logs and locate the specific
information to know what was wrong with that task.

Q4 offers real-time monitoring for the queuing data size.
As mappers output intermediate results, reducers may not
consume them immediately, which leads to data queuing.
The data queuing in the lifetime of Twitter workload is
shown in Fig. 5(f). The first peak implies that most map-



pers have completed their tasks; then the queuing size starts
to reduce as data is consumed by reducers. Fig. 5(g) is the
queuing size for the Worldcup U workload which is different.
The job has not really started until 2300 seconds passed.
This is because concurrent jobs are running and it has to
wait. Our Hadoop experts find these results very helpful.

Q5 and Q6 are used to find tasks that cause cluster imbal-
ance. As Q6 is described above, we simply note that they
both use uncertainty intervals for timestamps due to granu-
larity mismatch of Ganglia logs and Hadoop logs, and differ
only in the ways of defining imbalanced load.

Performance. Fig. 5(h) shows throughput of all 6 queries,
ranging from 300,000 to over 7 million events per second.
The data rate in our experiment is 13.62 event/second/node.
This means that a single server running system SASE++

can monitor up to 22,000 nodes in real-time for these queries.
For post analysis, it only takes 0.00454% of the actual run-
ning time of the monitoring process. Authors of [22] pro-
vide some public datasets, where the data rate is 0.758
event/second/node in the busiest month. Fig. 5(i) compares
the optimization algorithms for Q5 and Q6. More results are
available in our tech report [31].

7. RELATED WORK
CEP languages. In §3 we analyzed and compared a

large number of CEP languages with different descriptive
complexity. Other languages such as TESLA [10] do not
introduce new features beyond those surveyed languages.

Temporal models. The discussion for CEP with impre-
cise timestamps is based on recent work on supporting an
uncertain temporal model [30]. However, this work neither
supports Kleene+ queries nor has optimization for confi-
dence computation. The performance of [30], with an exten-
sion for Kleene+, is shown by the blue line in Figure 5(a),
which is too slow for Kleene+. In contrast, our dynamic
programming optimization enables early pruning of matches
with low confidence, which improves performance signifi-
cantly (as shown in the above-mentioned figure) and makes
Kleene+ queries under the uncertain temporal model fast
enough for practical use. Other temporal models [3, 2, 6, 11]
use time intervals to represent precise event durations, in-
stead of uncertain occurrence time, and hence do not address
uncertainty in pattern matching and related complexity.

Optimizing CEP performance. Improving the per-
formance of CEP queries has been a focus of many works.
Recent studies make use of sharing among similar queries
to reduce cost [15, 29]; optimize for performance given out
of order streams [13]; optimize the performance of nested
pattern queries by pushing negation into inner subexpres-
sions [16]; and rewrite queries in a more efficient form be-
fore translating them into automata [24]. In distributed sys-
tems, the work [2] applies plan-based techniques to minimize
event transmission costs and efficiently perform CEP queries
across distributed event sources.

8. CONCLUSIONS
This paper presented theoretical results on expressive power

and computational complexity of pattern query languages
in CEP. These results offer insights for developing three op-
timization techniques. Comparison with existing systems
shows the efficiency and effectiveness of a new system us-
ing these optimizations. A thorough case study on Hadoop
cluster monitoring also demonstrates its practical value. In
future work, we will consider ways to integrate with approxi-

mate pattern matching when events carry uncertain values.
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