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1 Introduction

Perhaps the most useful item in the complexity theorist’s toolkit is the reduc-
tion. Confronted with decision problems A,B,C, . . ., she will typically compare
them with well-known problems, e.g., REACH, CVP, SAT, QSAT, which are
complete for the complexity classes NL, P, NP, PSPACE, respectively. If she
finds, for example, that A is reducible to CVP (A ≤ CVP), and that SAT ≤ B,
C ≤ REACH, and REACH ≤ C, then she can conclude that A is in P, B is
NP hard, and C is NL complete.

When Cook proved that SAT is NP complete, he used polynomial-time Tur-
ing reductions [4]. Shortly later, when Karp showed that many important com-
binatorial problems were also NP complete, he used the simpler polynomial-time
many-one reductions [14].

Since that time, many researchers have observed that natural problems re-
main complete for natural complexity classes under surprisingly weak reductions
including logspace reductions [13], one-way logspace reductions [9], projections
[22], first-order projections, and even the astoundingly weak quantifier-free pro-
jections [11].

It is known that artificial non-complete problems can be constructed [15].
However, it is a matter of common experience that most natural problems are
complete for natural complexity classes. This phenomenon is receiving a great
deal of attention recently via the dichotomy conjecture of Feder and Vardi that
all constraint satisfaction problems are either NP complete, or in P [7, 20, 1].
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Since natural problems tend to be complete for important complexity classes
via very simple reductions, we ask, “Might we be able to automatically find re-
ductions between given problems?”

Of course this problem is undecidable in general. However, we have made
progress building a program called ReductionFinder that automatically does
just that. Given two decision problems A and B, ReductionFinder attempts to
find the simplest possible reduction from A to B. Using off-the-shelf SAT solvers
together with the Cmodels system[8], ReductionFinder finds many simple re-
ductions between a wide class of problems, including several “clever” reductions
that the authors had not realized existed.

The reader might wonder why we would want to find reductions automati-
cally. In fact, we feel that an excellent automatic reduction finder would be an
invaluable tool, addressing the following long-term problems:

1. There are many questions about the relations between complexity classes
that we cannot answer. For example, we don’t know whether P = NP, nor
even whether NL = NP, whether P = PSPACE, etc. These questions are
equivalent to the existence of quantifier-free projections between complete
problems for the relevant classes [11]. For example, P = NP iff SAT ≤qfp

CVP. Similarly, NL = NP iff SAT ≤qfp REACH and P = PSPACE iff
QSAT ≤qfp CVP. Having an automatic tool to find such reductions or
determine that no small reductions exist may improve our understanding
about these fundamental issues.

2. Another ambitious goal, well formulated by Jack Schwartz in the early 1980s,
is to precisely describe a computational task in a high-level language such
as SETL [21] and build a smart compiler that can automatically synthesize
efficient code that correctly performs the task. A major part of this goal
is to automatically recognize the complexity of problems. Given a problem,
A, if we can automatically generate a reduction from A to CVP, then we
can also synthesize code for A. On the other hand if we can automatically
generate a reduction from SAT to A, then we know that A is NP hard, so it
presumably has no perfect, efficient implementation and we should instead
search for appropriate approximation algorithms.

3. Being able to automatically generate reductions will provide a valuable tool
for understanding the relative complexity of problems. If we restrict our
attention to linear reductions, then these give us true lower and upper bounds
on the complexity of the problem in question compared to a known problem,
K: if we find a linear reduction from A to K, then we can automatically
generate code for A that runs in the same time as that for K, up to a
constant multiple. Similarly if we find a linear reduction from K to A, then
we know that there is no algorithm for A that runs significantly faster than
the best algorithm for K.

It is an honor for us to have our paper appear in this Festschrift for Yuri
Gurvich. Yuri has made many outstanding contributions to logic and computer
science. We hope he is amused by what we feel is a surprising use of SAT solvers
for automatically deriving complexity-theoretic relations between problems.



This paper is organized as follows: We start in Section §2 with background
in descriptive complexity sufficient for the reader to understand all she needs
to know about reductions and the logical descriptions of decision problems. In
section §3 we explain our strategy for finding reductions using SAT solvers.
In section §4 we sketch the implementation details. In section §5 we provide
the main results of our experiments: the reductions found and the timing. We
conclude in section §6 with directions for moving this research forward.

2 Reductions in Descriptive Complexity

In this section we present background and notation from descriptive complexity
theory concerning the representation of decision problems and reductions be-
tween them. The reader interested in more detail is encouraged to consult the
following texts: [10, 5, 16], where complete references and proofs of all the facts
mentioned in this section may be found.

2.1 Vocabularies and Structures

In descriptive complexity, part of finite model theory, the main objects of interest
are finite logical structures. A vocabulary

τ = 〈Ra1
1 , . . . , Rar

r ; c1, . . . , cs; fr1
1 , . . . , frt

t 〉

is a tuple of relation symbols, constant symbols, and function symbols. Ri is a
relation symbol of arity ai and fj is a function symbol of arity rj > 0. A constant
symbol is just a function symbol of arity 0. For any vocabulary τ we let L(τ)
be the set of all grammatical first-order formulas built up from the symbols of
τ using boolean connectives, ¬,∨,∧,→ and quantifiers, ∀,∃.

A structure of vocabulary τ is a tuple,

A = 〈|A|;RA1 , . . . , RAr ; cA1 , . . . , c
A
s ; fA1 , . . . , f

A
t 〉

whose universe is the nonempty set |A|. For each relation symbol Ri of arity ai

in τ , A has a relation RAi of arity ai defined on |A|, i.e. RAi ⊆ |A|ai . For each
function symbol fi ∈ τ , fAi is a total function from |A|ri to |A|.

Let STRUC[τ ] be the set of finite structures of vocabulary τ . For example,
τg = 〈E2; ; 〉 is the vocabulary of (directed) graphs and thus STRUC[τg] is the
set of finite graphs.

2.2 Ordering

It is often convenient to assume that structures are ordered. An ordered struc-
ture A has universe |A| = {0, 1, . . . , n − 1} and numeric relation and constant
symbols: ≤,Suc,min,max referring to the standard ordering, successor relation,
minimum, and maximum elements, respectively (we take Suc(max) = min). Re-
ductionFinder may be asked to find a reduction on ordered or unordered struc-
tures. In the former case it may use the above numeric symbols. Unless otherwise
noted, we from now on assume that all structures are ordered.



2.3 Complexity Classes and their Descriptive Characterizations

We hope that the reader is familiar with the definitions of most of the following
complexity classes:

AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ P ⊆ NP (1)

where L = DSPACE[log n], NL = NSPACE[log n], P is polynomial time, and
NP is nondeterministic polynomial time. AC0 is the set of problems accepted by
uniform families of polynomial-size, constant-depth circuits whose gates include
unary “not” gates, together with unbounded-fan-in “and” and “or” gates. NC1

is the set of problems accepted by uniform families of polynomial-size, O(log n)-
depth circuits whose gates include unary “not” gates, together with binary “and”
and “or” gates.

Each complexity class from Equation 1 has a natural descriptive characteri-
zation. Complexity classes are sets of decision problems. Each formula in a logic
expresses a certain decision problem. As is standard, we write C = L to mean
that the complexity class C is equal to the set of decision problems expressed by
the logical language L. The following descriptive characterizations of complexity
classes are well known:

Fact 1 FO = AC0; NC1 = FO(Regular); L = FO(DTC); NL = FO(TC);
P = FO(IND); and NP = SO∃.

We now explain some of the details of Fact 1. For more information about
this fact the reader should consult one of the texts [10, 5, 16].

2.4 Transitive Closure Operators

Given a binary relation on k-tuples, ϕ(x1, . . . , xk, y1, . . . , yk), we let TCx,y(ϕ)
express its transitive closure. If the free variables are understood then we may
abbreviate this as TC(ϕ). Similarly, we let RTC(ϕ), STC(ϕ), and RSTC(ϕ) de-
note the reflexive transitive closure, symmetric transitive closure, and symmetric
and reflexive transitive closure of ϕ, respectively.

We next define a deterministic version of transitive closure DTC. Given a
first order relation, ϕ(x, y), define its deterministic reduct,

ϕd(x, y) def= ϕ(x, y) ∧ (∀z)(¬ϕ(x, z) ∨ (y = z))

That is, ϕd(x, y) is true just if y is the unique child of x. Now define DTC(ϕ) def=
TC(ϕd) and RDTC(ϕ) def= RTC(ϕd).

Let τgst = 〈E2; s, t; 〉 be the vocabulary of graphs with two specified points.
The problem REACH =

{
G ∈ STRUC[τgst]

∣∣ G |= RTC(E)(s, t)
}

consists of
all finite graphs that have a path from s to t. Similarly, REACHd =

{
G ∈

STRUC[τgst]
∣∣ G |= RDTC(E)(s, t)

}
is the subset of REACH such that there

is a unique path from s to t and all vertices along this path have out-degree



one. REACHu =
{
G ∈ STRUC[τgst]

∣∣ G |= STC(E)(s, t)
}

is the set of graphs
having an undirected path from s to t.

It is well known that REACH is complete for NL, and REACHd and
REACHu are complete for L [10, 19]. A simpler way to express deterministic
transitive closure is to syntactically require that the out-degree of our graph is
at most one by using a function symbol: denote the child of v as f(v), with
f(v) = v if v has no outgoing edges. In this notation, a problem equivalent to
REACHd, and thus complete for L, is REACHf =

{
G ∈ STRUC[τfst]

∣∣ G |=
RTC(f)(s, t)

}
.

If O is an operator such as TC, let FO(O) be the closure of first-order logic
using O. Then L = FO(DTC) = FO(RDTC) = FO(STC) = FO(RSTC) and
NL = FO(TC) = FO(RTC).

2.5 Inductive Definitions

It is useful to define new relations by induction. For example, we can express the
transitive closure of the relation E inductively, and thus the property REACH,
via the following Datalog program:

E∗(x, x)←
E∗(x, y)← E(x, y)
E∗(x, y)← E∗(x, z), E∗(z, y)
REACH← E∗(s, t)

(2)

Define FO(IND) to be the closure of first-order logic using such positive
inductive definitions. The Immerman-Vardi Theorem states that P = FO(IND).
In this paper we will use stratified Datalog programs such as Equation 2 to
express problems and then use ReductionFinder to automatically find reductions
between them. Thus ReductionFinder can handle any problem in P or below.
In the future we hope to handle problems in NP, but this will require us to go
beyond SAT solvers to QBF solvers.

2.6 Reductions

Given a pair of problems S ⊆ STRUC[σ] and T ⊆ STRUC[τ ], a many-one re-
duction from S to T is an easy-to-compute function f : STRUC[σ]→ STRUC[τ ]
such that for all A ∈ STRUC[σ],

A ∈ S ⇔ f(A) ∈ T .

In descriptive complexity we use first-order reductions which are many-one
reductions in which the function f is defined by a sequence of first-order formulas
from L(σ), one for each symbol of τ . For example, the following is a reduction
from REACHf to REACHu that ReductionFinder automatically found. Here
σ = 〈; s, t; f1〉 and τ = 〈E2; s, t; 〉. The reduction, Rfu, is as follows:



E′(x, y) ≡ y 6= t ∧ f(y) = x
s′ ≡ s
t′ ≡ t

(3)

Note that the three formulas in Rfu’s definition (Equation 3) have no quan-
tifiers, so Rfu is not only a first-order reduction, it is a quantifier-free reduction
and we write REACHf ≤qf REACHu.

More explicitly, for each structure A ∈ STRUC[σ], B = Rfu(A) =
〈|A|, EB, sB, tB〉 is a structure in STRUC[τ ] with universe the same as A, and
symbols given as follows:

EB =
{
〈a, b〉

∣∣ (A, a/x, b/y) |= y 6= t ∧ f(y) = x
}

sB = sA

tB = tA

In this paper we restrict ourselves to quantifier-free reductions. In general, a
first-order reduction R has an arity which measures the blow-up of the size of the
reduction. In [10] a first-order reduction of arity k maps a structure with universe
|A| to a structure of universe

{
〈a1, . . . ak〉

∣∣ (A, a1/x1, . . . , ak/xk) |= ϕ0

}
, i.e., a

first-order definable subset of |A|k. However, increasing the arity of a reduction
beyond two is rather excessive – arity two already squares the size of the instance.
In this paper, in order to keep our reductions as small and simple as possible, we
use a triple of natural numbers, 〈k, k1, k2〉, to describe the universe of the image
structure, namely

|R(A)| = |A|k × {1, . . . , k1} ∪ {1, . . . k2} . (4)

That is in addition to raising the universe to the power k, we also multiply it by
the constant k1 and then we may add k2 explicit constants to the universe. In this
notation the above reduction Rfu has arity 〈1, 1, 0〉. It will become apparent in
our many examples in the sequel how these extra parameters keep the reductions
simple and small.

3 Strategy

We are given a pair of problems S ⊆ STRUC[σ] and T ⊆ STRUC[τ ], both
expressed in Datalog. We want to know if there is a quantifier-free reduction
from S to T .

It is not hard to see that this problem is undecidable, and in fact complete
for the second level of the arithmetic hierarchy. It asks whether there exists some
reduction that is correct for all inputs from STRUC[σ], with no bounds on the
size of the reduction nor the input.

We first make the problem more tractable by bounding the complexity of the
reduction: We choose a triple a = 〈k, k1, k2〉 describing the arity of the reduction
and a tuple of parameters p bounding the size and complexity of the quantifier-
free formulas expressing the reduction (e.g. how many clauses, the maximum



size of each clause, etc.). This reduces the complexity of the problem to co-r.e.
complete: it is still undecidable.

To make the problem decidable, we choose a bound, n, and ask whether there
exists a reduction of arity a and parameters p that is correct for all structures
A ∈ STRUC≤n[τ ], i.e, whose universes have cardinality at most n. Given such a
reduction we can hope to prove by machine or hand that it works on structures
of all sizes. On the other hand, being told that no such small reduction exists,
we learn that in a precise sense there is no “simple” reduction from S to T .

Now our problem is complete for Σp
2 – the second level of the polynomial-

time hierarchy. Let Ra,p be the set of quantifier-free reductions of arity at most
a and with parameter values at most p. The following formula asks whether
there exists a quantifier-free reduction of arity a and parameters p that correctly
reduces S to T on all structures of size at most n:

(∃R ∈ Ra,p)(∀A ∈ STRUC≤n[σ])(A ∈ S ↔ R(A) ∈ T ) (5)

3.1 Solving a Σp
2 Problem via Repeated Calls to a SAT Solver

We solve the problem expressed in Equation 5 by starting with a random struc-
ture G0 ∈ STRUC≤n[σ] and asking a SAT solver to find a reduction R ∈ Ra,p

that works correctly on G0, i.e., G0 ∈ S ↔ R(G0) ∈ T . If there is no solution,
then our original problem is unsolvable.

Otherwise, we ask a new question to the SAT solver: is there some other
structure, G1 ∈ STRUC≤n[σ] on which R fails, i.e, G1 ∈ S ↔ R(G1) /∈ T .
If not, then we know that R is a candidate reduction that is correct for all
structures of size at most n.

However, if the SAT solver produces an example G1 where R fails, we go
back to the beginning, but now searching for a reduction that is correct on our
full set of candidate structures, G = {G0, G1}.

In summary, our algorithm proceeds as follows, with G initialized to {G0}:

1. Using a SAT solver, search for a reduction correct on G:

find R ∈ Ra,p s.t.
∧

G∈G
G ∈ S ↔ R(G) ∈ T (6)

If no such R exists: return(“no such reduction”)

2. Using a SAT solver, search for some structure G on which R fails:

find G ∈ STRUC≤n[σ] s.t. G ∈ S ↔ R(G) /∈ T (7)

If no such G exists: return(R)
Else: G = G ∪ {G}; go to 1

Figure 1 shows a schematic view of this algorithm.
This procedure is correct because each new structureG eliminates at least one

potential reduction. In our experience, the procedure works within a tractable



Fig. 1. A schematic view of the above algorithm.

number of structures; “smaller” searches have often completed after 5-15 sample
structures, while the largest spaces searched by the program have required 30-50
iterations.

We begin searching for reductions at a very small size (n = 3); for search
spaces without a correct reduction, even this small size is often enough to detect
irreducibility. When a reduction is found at a particular size n, we examine larger
structures for counterexamples; currently we look at structures of size at most
n + 2. If a counterexample is found, we add it to G, increment n and return to
step 1.

Search time increases very rapidly as n increases. Of the 10,422 successful
reductions found, 9,291 of them were found at size 3, 1076 at size 4, 38 at size 5,
and 17 at sizes 6-8. See Section §5 for details of results. See Section §6 for more
about the current limits of size and running time and our ideas concerning how
to improve these.

4 Implementation

Figure 1 shows a schematic view of ReductionFinder’s algorithm. The program
is written in Scala, an object-oriented functional programming language imple-
mented in the Java Virtual Machine1. ReductionFinder maintains a database of
problems via a directed graph, G, whose vertices are problems. An edge (a, b)
indicates that a reduction has been found from problem a to problem b, and is
labelled by the parameters of a minimal such reduction that has been found so
far.

When a new problem, c, is entered, ReductionFinder systematically searches
for reductions to resolve the relationships between c and the problems already
categorized in G.

1 http://www.scala-lang.org



Given a pair of problems, c, d, specified in stratified Datalog, and a search
space Ra,p specifying the arity a and parameters p, ReductionFinder calls the
Cmodels 3.79 answer-set system2 to answer individual queries of the form of
Equations (6), (7). Cmodels in turn makes calls to SAT solvers. The SAT solvers
we currently use are MiniSAT and zChaff [6, 18].

4.1 Problem input

Queries in ReductionFinder are input as small stratified-Datalog programs; a
query on vocabulary τ has the symbols of τ available as extrinsic relations.
The query is responsible for defining a single-bit intrinsic relation satisfied,
representing the truth of the query. Input queries may use lparse rules without
choice rules or disjunctive rules. When the input vocabulary contains function or
constant symbols, these are translated by ReductionFinder into purely relational
statements.

Equation (8) gives the ReductionFinder input for the directed-graph reach-
ability query REACH ⊆ STRUCT[

〈
E2; s, t

〉
], corresponding to the inductive

definition (2). We define an intrinsic relation reaches to compute the transitive
closure of the edge relation E.

reaches(X, X).
reaches(X, Y) :- E(X, Y).
reaches(X, Y) :- reaches(X, Z), reaches(Z, Y).
satisfied :- reaches(s, t).

(8)

4.2 Search spaces

ReductionFinder restricts itself to searching for quantifier-free reductions, i.e.
reductions defined by a set of quantifier-free formulas. The complexity of these
quantifier-free formulas is restricted by several search parameters. The three
arity numbers 〈k, k1, k2〉 of Section 2.6 each limit the search. The set of numeric
predicates available (Section 2.2) is also a configurable parameter. The number
of levels of nested function application available is a parameter.

Finally, the length of each quantifier-free formula is a parameter. Relations
are defined by formulas represented in DNF; the number of disjuncts is a pa-
rameter, as is the number of conjuncts in each clause. Functions are defined as
an if/else-if/else expression; the conditional of each statement is a conjunction
of atomic formulas, and the resultant is a closed term. Again, the number of
clauses is a parameter, as is the number of conjuncts in each clause.

The expressivity of the search space increases monotonically with most of
our search parameters, inducing a natural partial ordering on search spaces.
The search server respects this partial ordering, and avoids performing a search
when any more-expressive space has previously been searched. The server is not
2 http://www.cs.utexas.edu/users/tag/cmodels.html



restricted to increasing parameters one-at-a-time; since there are many search
parameters, performing a single “large” search may be more efficient than per-
forming many small searches. When a successful reduction is found, the server
can automatically search smaller spaces to determine the smallest space contain-
ing a reduction.

4.3 The searching process

Once a search space and a pair of problems are fixed, ReductionFinder performs
the iterative sequence of search stages described in section 3.1. Within each stage,
ReductionFinder outputs a single lparse/cmodels program expressing Equations
(6) or (7), and calls the Cmodels tool. The find statements in these equations
are quantified explicitly using lparse’s choice rules. The majority of the program
is devoted to evaluation rules defining the structure R(G) in terms of the sets of
boolean variables R and G.

Figure 2 gives lparse code for a single counterexample-finding step (equation
(7)). This code attempts to find a counterexample to a previously-generated re-
duction candidate. The specific code listed is examining reductions from REACH
(Section 2.4) to its negation. The reduction candidate was E′(x, y) ≡ (E(y, x)∧
x = s) ∨ E(x, x), s′ ≡ t, t′ ≡ Suc(min) (lines 7-9).

The counterexample is found using lparse’s choice rules as existential quanti-
fiers, directly guessing the relation in E and the two constant symbols in s and
in t (lines 12-13). Since lparse does not contain function symbols, these con-
stants are implemented as degree-1 relations which are true at exactly one point.
We specify the constraint that we cannot have in satisfied == out satisfied
(line 16); these boolean variables will be defined later in the program, and this
constraint will ensure that our graph is a counterexample to the reduction can-
didate.

Defining in satisfied and out satisfied in terms of the input and out-
put predicates (respectively) is easy. We have already required the user to input
lparse code for the input and output queries. We do some minimal processing
on this code, disambiguating names and turning function symbols into relations.
The user’s input for directed-graph reachability, listed in Equation (8), is trans-
lated into the input query block of lines 19-22. Similarly, the output query is
translated into lines 25-28.

The remainder of the lparse code exists to define the output predicates (in
this case out E, out s, out t) in terms of the input predicates and the reduction.
In building the output reduction out E(X, Y), we first build up a truth table for
each of the atomic formulas used; for example, line 31 states that term e y x is
true at point (X, Y) exactly if E(Y,X) in the input structure. Each position in
the DNF definition is true at (X, Y) exactly if the atomic formula chosen for that
position is true (lines 36-37). The output relation out E(X, Y) is then defined
via the terms in the DNF (lines 38-39). The code in lines 30-39 thus defines the
output relation out E(X, Y) in terms of the input relations in E, in s, in t and
the reduction candidate reduct E.



1node(n1; n2; n3; n4).

2atomic(e_x_x; e_x_y; ...; x_eq_t; y_eq_t).

3closedterm(fn_s; fn_t; fn_min; fn_succ_min; fn_max).

4position(pos_0_0; pos_0_1; pos_1_0).

5
6%%% Import reduction candidate from previous stage.

7reduct_E(pos_0_0, e_y_x). reduct_E(pos_0_1, x_eq_s).

8reduct_E(pos_1_0, e_x_x).

9reduct_s(fn_t). reduct_t(fn_succ_min).

10
11%%% Guess input relations E, s, t.

12{ in_E(X, Y) }.

131 { in_s(X) } 1. 1 { in_t(X) } 1. % Choose exactly one s, t.

14
15%%% A constraint on the entire program:

16:- out_satisfied == in_satisfied.

17
18%%% Translated version of input query.

19in_Reaches(X, X).

20in_Reaches(X, Y) :- in_E(X, Y).

21in_Reaches(X, Y) :- in_Reaches(X, Z), in_Reaches(Z, Y).

22in_satisfied :- in_Reaches(X, Y), in_s(X), in_t(Y).

23
24%%% Translated version of output query.

25out_Reaches(X, X).

26out_Reaches(X, Y) :- out_E(X, Y).

27out_Reaches(X, Y) :- out_Reaches(X, Z), out_Reaches(Z, Y).

28out_satisfied :- not out_Reaches(X, Y), out_s(X), out_t(Y).

29
30%%% Define a truth table for each atomic relation in the reduction.

31true(e_y_x, X, Y) :- in_E(Y, X).

32true(x_eq_s, X, Y) :- in_s(X).

33true(e_x_x, X, X) :- in_E(X, X).

34
35%%% Use these truth tables to evaluate output relations.

36true(P, X, Y) :- reduct_E(P, A), true(A, X, Y),

37position(P), atomic(A).

38out_E(X, Y) :- true(pos_0_0, X, Y), true(pos_0_1, X, Y).

39out_E(X, Y) :- true(pos_1_0, X, Y).

40
41%%% Similarly, define the evaluation of each closed term.

42eval_term(fn_s, X) :- in_s(X).

43eval_term(fn_succ_min, n2).

44
45%%% Define the output relations.

46out_s(X) :- reduct_s(F), eval_term(F, X), closedterm(F).

47out_t(X) :- reduct_t(F), eval_term(F, X), closedterm(F).

Fig. 2. Lparse code for a single search stage. This code implements equation (7), search-
ing for a 4-node counterexample for a candidate reduction from REACH (Section 2.4)
to its negation. Variables X, Y, Z range over nodes.



Lines 41-47 similarly define the output constants out s and out t. Since
lparse does not provide function symbols, we define these constants as unary re-
lations out s(X), making sure that these relations are true at exactly one point.
We are thus able to define the output constants in terms of the input sym-
bols in s, in t and the the reduction candidate’s definitions of s′, t′ (reduct s,
reduct t).

The code for finding a reduction candidate (equation (6)) is very similar to the
counterexample-finding code in Figure 2. We import the list G of counterexample
graphs, and must guess a reduction. The input query, output vocabulary, and
output query are evaluated for each graph. Truth tables must be built for each
relation which might appear in the reduction, and for each graph.

4.4 Timing

ReductionFinder uses the Cmodels logic programming system to solve its search
problems. The Cmodels system solves answer-set programs, such as those in the
lparse language, by reducing them to repeated SAT solver calls. Direct transla-
tions from answer-set programming (ASP) to SAT exist[2, 12], but introduce new
variables; Lifschitz and Razborov have shown that, assuming the widely-believed
conjecture P 6⊆ NC1/poly, any translation from ASP must either introduce new
variables or produce a program of worst-case exponential length [17].

The Cmodels system first translates the lparse program to its Clark com-
pletion [3], interpreting each rule a : – b as merely logical equivalence (a ⇔ b).
Models of this completion may fail to be answer sets if they contain loops, sets
of variables which are true only because they assume each other. If the model
found contains a loop, Cmodels adds a loop clause preventing this loop and
continues searching, keeping the SAT solver’s learned-clause database intact. A
model which contains no loops is an answer set, and all answer sets can be found
in this way.

The primary difficulty in finding large reductions with ReductionFinder has
been computation time. The time spent finding reductions dominates over the
time spent finding counterexamples; reductions must be true on each of the
example graphs, and the number of lparse clauses and variables thus scales lin-
early with the number of example graphs. The amount of time required by
Cmodels seems highly correlated with the number of loop formulas which must
be generated; Figure 3 shows the time for each reduction-finding stage during a
several-hour arity 2 search, versus the number of loop formulas generated in the
stage. The final reduction-finding step generated an lparse program with 399,900
clauses, using 337,605 atoms.

5 Results

5.1 Size and timing data

We have run ReductionFinder for approximately 5 months on an 8-core 2.3 GHz
Intel Xeon server with 16 GB of RAM. As of this writing, ReductionFinder has
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Fig. 3. Timing data for a run reducing ¬RTC[f ](s, t) ≤ RTC[f ](s, t) at arity 2,
size 4. The solid line shows time to find each reduction candidate in seconds, on a
logarithmic scale. The dotted line shows the number of loop formulas generated by
Cmodels, and thus the number of SAT solver calls for each reduction candidate. This
run was successful in finding a reduction.

performed 331,036 searches on a database of 87 problems. Of the 7482 pairs
of distinct problems, we explicitly found reductions between 2698; an additional
803 reductions could be concluded transitively. 23 pairs were manually marked as
irreducible, comprising provable theorems about first-order logic plus statements
that L � (co-)NL � P. From these 23, an additional 3043 pairs were transitively
concluded to be irreducible. 915 pairs remained unfinished.

For many of the pairs which we reduced successfully, we found multiple suc-
cessful reductions. Sometimes this occurred when we first found the reduction in
a large search space, then tried smaller spaces to determine the minimal spaces
containing a reduction. More interestingly, some pairs contained multiple suc-
cessful reductions in distinct minimal search spaces, demonstrating trade-offs
between different measures of the reduction’s complexity. Some of these trade-
offs were uninteresting: a reduction which simply needs “some distinguished
constant” could use min, max, or c1. Others, however, began to show non-trivial
trade-offs between the formula length required and the numerics or arity avail-
able. See Equations (9), (10) for an example. Of the 12,149 correct reductions
found between the 2698 explicitly-reduced pairs of problems, 5091 were in some
minimal search space.

5.2 A map of complexity theory

Figure 4 shows classes of queries within the ReductionFinder database. Each
class contains one or more query which ReductionFinder has shown equivalent
via quantifier-free reductions. An edge from class I to class J indicates that



∀x∃y.E(x,y)

TC[f](s,t) 7 ∀x.¬TC[E](x,x)∃x.TC[E](x,x)

∃x.R(x)∨∀y.S(y)

∃x∀y.E(x,y)

∃x.R(x)∧∀y.S(y)

∃x.R(x) 9 ∀x.R(x) 10

R(s) 14

TRUE 3 FALSE 2

STC[f](s,t)

STC[E](s,t) ¬STC[E](s,t)

¬TC[E](s,t) 4

¬STC[f](s,t)

TC[E](s,t) 8

∀x∀y.TC[E](x,y) 3 ATC[f,g](s,t) 4 ∃x.¬TC[E](x,x)¬ATC[f,g](s,t) 4

MCVAL

Fig. 4. A map of reductions in the query database. Nodes without numbers represent
a single query. A node with number n represents n queries of the same complexity.
Some queries are elided for clarity.



ReductionFinder has reduced I ≤qfp J . Numbers on the graph indicate the
number of queries the class contains; the contents of these classes are listed in
Figure 5.

FALSE R(s) ∧ ¬R(s)

TRUE R(s) ∨ ¬R(s) ∃x.TC[f ](x, x)

R(s) ¬R(s) R(f(s))
E(s, t) E(s, s) E(s, t) ∨ E(t, s)
s = t s 6= t f(s)= t f(s) 6= t
f(s)= s f(s)= g(s) f(s)= t ∧ f(t)= s f(s)= t ∨ f(t)= s

∃x.R(x) ∃x.R(x)∧ sS(x) ∃x.R(x)∨ S(x)
∃xy.E(x, y) ∃xy.¬E(x, y) ∃xy.E(x, y)∧ E(y, x) ∃x.E(x, s)
∃x.f(x) = x ∃x.f(x) = s

∀x.R(x) ∀x.¬R(x) ∀x.R(x) ∧ S(x) ∀x.R(x) ∨ S(x)
∀xy.E(x, y) ∀xy.¬E(x, y) ∀x.E(x, s)
∀x.f(x) = s ∀x.f(x) = x ∀x 6=y. f(x) 6=f(y)

TC[f ](s, t) RTC[f ](s, t) TC[f ](s, s)
¬TC[f ](s, t) ¬RTC[f ](s, t) ¬TC[f ](s, s)
(∃y.T (y)) RTC[f ](s, y)

TC[E](s, t) RTC[E](s, t) TC[E](s, s)
TC[f, g](s, t) RTC[f, g](s, t) RTC[f, g](s, s)
(∃y.T (y)) RTC[E](s, y) (∃xy. S(x)∧T (y)) RTC[E](x, y)

¬TC[E](s, t) ¬RTC[E](s, t) ¬TC[E](s, s) ¬RTC[f, g](s, t)

∀xy.TC[E](x, y) ∀x.TC[E](x, t) ∀x.TC[E](x, x)

4 variations of ATC

Fig. 5. A list of problems in the complexity classes of Figure 4. ReductionFinder has
found a reduction between each pair of problems in each box. Each problem is expressed
as a logical formula.

ReductionFinder has placed all of the computationally-simple problems into
their correct complexity classes. The trivially-true query and trivially-false query
were reduced to all other queries. The class R(s) contains twelve queries which
lack the power of even one first-order quantifier. The classes ∃x.R(x) and ∀x.R(x)
contain many variations of first-order quantifiers; for example, ∃x.R(x) includes
∃xy.E(x, y), ∃x.f(x) = s, ∃x.E(s, x). Below this, the structure of FO under
quantifier-free reductions is correctly represented up to two quantifier alterna-
tions.

Beyond FO, ReductionFinder has made significant progress in describing the
complexity hierarchy. A class of 7 L-complete problems is visible at TC[f ](s, t)
(deterministic reachability), including its complement (¬TC[f ](s, t)) and deter-
ministic reachability with a relational target (∃y.T (y) ∧ TC[f ](s, y)). Unfortu-
nately, the L-complete problems of cycle-finding (∃x.TC[E](x, x)) and its nega-



tion have not been placed in this class; nor has deterministic reachability with
relations as both source and target (∃xy.S(x) ∧ T (y) ∧TC[E](x, y)).

Below this level, ReductionFinder had limited success. We succeeded in re-
ducing several problems to reachability (see Figure 5), including degree-2 reach-
ability (reduction described in section 5.3. Not surprisingly, we did not discover a
proof of the Immerman-Szelepcsényi theorem (showing co-NL ≤ NL by providing
a reduction ¬TC[E](s, t) ≤ TC[E](s, t)). We similarly did not prove Reingold’s
theorem [19], showing SL ≤ L by reducing STC[E](s, t) ≤ TC[f ](s, t). These
two results were historically elusive, and may require reductions above arity 2,
or longer formulas than we were able to examine. Considering P-complete prob-
lems, we proved the equivalence of several variations of alternating transitive
closure (ATC); however, we did not show the problem equivalent to its nega-
tion, or to the monotone circuit value problem (MCVAL).

5.3 Sample reductions

We now list a few of the reductions that ReductionFinder has produced.

Example 1 ReductionFinder found two arity-1 reductions showing
RTC[E](s, t) ≤ ∀x.TC[E](x, x). The first of these problems is simply REACH;
the second states that every node of a directed graph is on some (nontrivial)
cycle. The two reductions are good examples of the arity-1 reductions we have
found, and also show a clear tradeoff between the formula length required to
define E′ and the arity parameters:

|R(A)| = {a1, a2, . . . , an, c1}

E′(x, y) ≡ x = t
∨ y = s
∨ E(x, y)

(9)

The output structure R(A) has all of the elements of the input structure
A, plus one new point c1. The new edge relation is true wherever the old edge
relation was true; in addition, all possible edges into the source and out of the
target are added.

Since the new point c1 was not part of the original edge relation, it has only
one outgoing edge (to s), and only one incoming edge (to t). Therefore c1 is on
a cycle iff there is a path in the original graph from s to t. Similarly, if such a
path does exist, every node in R(A) is on a similar cycle. Thus the input graph
satisfies RTC[E](s, t) iff the output satisfies ∀x.TC[E](x, x).

In addition to this reduction, ReductionFinder found a second arity-1 reduc-
tion. The second reduction does not use a distinguished constant element, but
requires a longer formula:



|R(A)| = {a1, a2, . . . , an}

E′(x, y) ≡ y 6= s ∧ E(x, y)
∨ x 6= s ∧ x = y
∨ x = t

(10)

This reduction can be viewed as manipulating the graph as follows: we first
remove all edges into s. We then add a self-loop on every edge except s. Finally,
we add all possible edges out of t. Since the edge (t, s) is the only edge into node
s, we then have that the node s is on a cycle iff there is a path from s to t.
(Every other node is on a trivial cycle by construction.)

ReductionFinder has verified that neither reduction can be shortened; there
is a tradeoff between the availability of the extra element c1 and the required
formula length. ReductionFinder can detect such tradeoffs, because in the partial
ordering induced by our various search parameters, each of these reductions is
in a minimal reduction-containing space.

Example 2 ReductionFinder successfully reduced the first-order problem
∀x∃y.E(x, y) to deterministic reachability (TC[f ](s, t)). This is a simple ex-
ample of an arity-2 reduction where the successor relation is used to iteratively
check all elements.

|R(A)| = {〈a1, a1〉, 〈a1, a2〉, . . . , 〈an, an〉}

f ′(〈x, y〉) ≡

 if E(x, y) then 〈Suc(x),Suc(x)〉
else if (Suc(y) 6= x) then 〈x, Suc(y)〉
else 〈x, y〉

s′ ≡ 〈min,min〉
t′ ≡ 〈min,min〉

(11)

Recall that each element in the output structure is a pair of elements in the
input structure.

Deterministic non-reachability to deterministic reachability Like all
deterministic classes, L is closed under complement. The canonical L-complete
problem is deterministic reachability. ReductionFinder was able to find a version
of the canonical reduction from deterministic non-reachability to deterministic
reachability, showing co-L ≤ L.



|R(A)| = {〈a1, a1〉, 〈a1, a2〉, . . . , 〈an, an〉, c1, c2}

f ′(〈x, y〉) ≡

 if (x = t) then c2
else if (y = max) then c1
else 〈f(x),Suc(y)〉

f ′(ci) ≡ ci
s′ ≡ 〈s,min〉
t′ ≡ c1

(12)

An input graph G = 〈f ; s, t〉 contains no path from s to t iff the output graph
I(G) = 〈f ′; s′, t′〉 contains a path from s to t. This arity-2 reduction walks
through the original graph in the sequence 〈s, 0〉, 〈f(s), 1〉, . . . , 〈fn(s), n〉. If t is
ever found, we move to the point c2, representing a reject state; if t is not found
after n steps, we move to the target node c1.

Reachability to Degree-2 Reachability Directed-graph reachability is the
canonical NL-complete problem, and it is well-known that restricting ourselves
to graphs with outdegree ≤ 2 suffices for NL-completeness. We chose to represent
outdegree-2 reachability with two unary function symbols; we define TC[f, g](s, t)
on the vocabulary

〈
; f1, g1; s, t

〉
, with the semantics that nodes can be reached

through any combination of f -edges and g-edges. ReductionFinder succeeded in
reducing TC[E](s, t) ≤ TC[f, g](s, t) via an arity-2 reduction:3

|R(A)| = {〈a1, a1〉, 〈a1, a2〉, . . . , 〈an, an〉}

f ′(〈x, y〉) ≡
{

if E(x, y) then 〈y, y〉
else 〈x, y〉

g′(〈x, y〉) ≡ 〈x,Suc(y)〉
s′ ≡ 〈s, t〉
t′ ≡ 〈t, t〉

(13)

This reduction uses the traditional technique of using successor to iterate through
possible neighbors. Each node 〈x, y〉 of the output structure can be read as “we
are at node x, considering y as a possible next step”. If there is an edge E(x, y),
we nondeterministically either follow this edge (moving along f to 〈y, y〉) or

3 The reduction above has undergone some syntactic simplification. ReductionFinder
originally reported the reduction:

f ′(〈x, y〉) ≡


if E(x, y) then 〈y, y〉
else 〈x, Suc(x)〉

g′(〈x, y〉) ≡


if Suc(y) = x then 〈x, Suc(x)〉
else 〈x, Suc(y)〉

s′ ≡ 〈s, t〉
t′ ≡ 〈t, t〉



move along g to the next possibility 〈x, Suc(y)〉. If there is no edge E(x, y), our
only nontrivial movement is along g, to 〈x, Suc(y)〉.

6 Conclusions and Future Directions

The ReductionFinder program successfully finds quantifier-free reductions be-
tween computational problems. The program maintains a database of known
reductions between problems. Strongly connected components in this database
correspond to complexity classes. When presented with a new problem, we can
perform searches to automatically place the problem within the existing reduc-
tion graph.

This project has demonstrated that it is possible to find reductions between
problems by using a SAT solver to search for them. Right now, ReductionFinder
takes a long time to find small reductions and cannot find medium-sized reduc-
tions. We suggest some directions for future work aimed at taking automatic
reduction finding to the next stage.

1. ReductionFinder searches for a small, simple reduction, R, by repeatedly
calling a SAT solver as outlined in §3.1. The tasks involved are:

– Find an R that is a correct reduction on the current example graphs,
G0, . . . , Gk (Equation 6).

– Find a Gk+1 on which the current R fails (Equation 7).

While, we would expect that such a search is exponential in the size of R, in
our experience the difficulty is that the number of variables in the boolean
formulas grow linearly with the number of counter-example graphs, k, and
unfortunately the running time seems to increase exponentially in k. (The
search for counter-example graphs in the second case does not have this
problem.) Since the problem we are trying to solve is Σp

2 – there exists a
small reduction, for all small graphs – we hope to speed up our search by
using strategies similar to those employed by QBF solvers. Related to this
is the question of what makes a good set of counter-example graphs.

2. To show that there is a reduction from problem A to problem B, it may be
that we can find a problem in the middle, M , so that reductions from A to M
and M to B are simpler. We believe that finding such intermediate problems
will be invaluable in searching for reductions. However, we have only found
limited evidence of this so far in our work with ReductionFinder. It will be
valuable to develop heuristics to find or generate appropriate intermediate
problems.

3. Sufficient progress on the above two points may enable us to automatically
generate linear reductions. This would have great benefits for automatic
programming of optimal algorithms as discussed in Item 3 near the end of
Section 1.
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