
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 22, 384-406 (1981) 

Number of Quantifiers Is Better 
Than Number of Tape Cells* 

NEIL IMMERMAN 

Department of Mathematics, 
Tufts University, Medford, Massachuset ts 02155,  and  

Laboratory for Computer  Science, 
Massachuset ts Institute of Technology,  

Cambridge, Massachuset ts 02139  

Received January 5, 1981;  revised January 15, 1981  

W e  introduce a  new complexity measure,  QN[f(n)], w IC measures the size of sentences h’ h  
from predicate calculus needed  to express a  given property. W e  show that: 

NSPACE[f(n)] E QN[(f(n))‘/log n] c DSPACE](f(n))2]. 

Fraisse-Ehrenfeucht games are used  to prove sharp lower bounds  in the measure.  

INTRODUCTION AND SUMMARY 

For the purpose of analyzing the time  and  space requirements of computations, we 
introduce a  new complexity measure. Most measures count how much of some 
computational resource (e.g., time  or memory space) is needed  to check whether an  
input has a  certain property, C. Instead, we examine the number  of quantifiers needed  
to express C in first order predicate logic. 

The  result is Quantifier Number  (QN) a  bona  fide complexity measure which is 
not based on  a  machine mode l. QN agrees closely with space complexity, and  yet it 
does not distinguish between deterministic and  nondeterministic space. Thus we have 
a  mode l whose lower bounds translate directly into lower bounds for space, and  is 
nonetheless sufficiently different to allow new methods and  ideas to be  brought to 
bear. In particular, there are well established methods in logic to decide what can and  
cannot be  said in various languages. These lower bound  techniques have nothing to 
do  with the more usual methods of complexity theory involving complete sets or 
diagonalization. 

We  hope  to convince the reader that it makes more intuitive sense to prove a  lower 
bound  (by induction, say) on  the number  of quantifiers needed  to express a  certain 
property, than on  the number  of Turing machine tape cells needed  to check if the 
property holds for a  given input. (Hence our title.) 

This paper  grew out of work of Fagin (see [5]). He proved the following: 
* Research partly supported by  NSF Grant MCS 78-00418.  

384 
0022-0000/S l /030384-23$02.00/O 
Copyright 0 198 I by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



NUMBEROFQUANTIFIERS 385 

THEOREM (Fagin). A set, S, of structures is in NP if and only if there exists a 
sentence, F, with the following properties: 

1. F= 3P, ... 3P, @ (PI . . . Pk), where P, ..a P, are predicate symbols and Qi is 
a jirst order sentence. 

2. Any structure, G is in S lfl G satisfies F. 

Thus a property is in NP just if it is expressible by a second order existential 
sentence. It is difficult to show lower bounds for the expressibility of second order 
sentences. Instead we examine first order sentences which, we found, m imic 
computations much more closely. Considering, for example, graph problems, the 
length of the shortest sentence which says, “G is connected,” grows as the logarithm 
of the size of G. It is not a coincidence that this is also the space needed by a Turing 
machine to test if G  is connected. 

To study this growth of sentences we introduce the complexity measure QN which 
will be defined in Section 1. Informally, a set, S, of structures is in QN[f(n)] if 
membership in S for those structures of size less than or equal to n can be expressed 
by a sentence with f(n) quantifiers. These sentences are written in the language of the 
given structures. For example, if we are dealing with graph problems then the quan- 
tifiers range over the vertices and there is a single relation symbol, E(-, -), 
representing the edge relation. This language seems sufficient to describe “natural” 
problems on graphs, but to simulate an arbitrary Turing machine computation we 
must give the language access to an ordering of the universe. We let QN’[f(n)] be 
the family of properties expressible with f(n) quantifiers in a language that includes 
Suc(-, -), a successor relation. We can now show that NSPACE[f(n)l is contained in 
QNSl (f(n>>‘llog n I. 

We will say that C is in QN[f(n)] only if there is a uniform sequence of sentences 
expressing C. The uniformity (in the sense of Borodin, see [ 11) allows us to prove 
QN( g(n)] c DSPACE( g(n) log n], and thus: 

NSPACE[f(n)] c QIVs[(f(n))*/log n] c DSPACE((f(n))*]. 

Note that our lower bounds will not consider the uniformity ; they may be interpreted 
in the strongest possible sense. When we show that C is not in QN[f(n)] we mean 
that no sentence with f(n) quantifiers expresses C for structures of size n. 

The quantifier rank of a sentence T is the depth of nesting of quantifiers in T. Thus 
a sentence with n quantifiers has at most quantifier rank n. In Section 2 we consider a 
two person game with which we prove lower bounds for quantifier rank. An 
Ehrenfeucht-Fraisse game is played on a pair of structures G, H of the same type. 
Player I chooses points to show that G  and H are different, while Player II matches 
these points, trying to keep the structures looking the same. A theorem due to Fraisse 
and Ehrenfeucht says that Player II has a winning strategy for the n move game if 
and only if G  and H agree on all sentences of quantifier rank n. The original 
treatment of these games appears in [3] and [8]. 



386 NEIL IMMERMAN 

Ehrenfeucht-Fraisse games provide a lower bound technique for QN as follows: 
Given some property, C, we find structures G and H of size n such that G satisfies C 
but H does not. We then show that Player II has a winning strategy for the f(n) 
move game on G and H. It follows that G and H agree on all sentences of quantifier 
rank f(n) and thus in particular no sentence with f(n) quantifiers can express the 
property C. Thus we have shown that C is not in QN[f(n)] . 

These combinatorial games provide very sharp lower bounds. We show for 
example that while quantifier rank log n suffices to express the graph property, 
“There is a path from point a to point b,” quantifier rank log(n)-2 is insufficient! 

In Section 3 we present a more sophisticated game argument. We show that 
without successor quantifier rank logk(n) is insufficient to describe a set recognizable 
in polynomial time. If our proof went through for the language with successor we 
would have shown that PTIME is not contained in lJk=,,2,..,, SPACE[logk(n)]. 

Making the above result go through with successor is a major open problem. We 
show that quantifier rank is no longer the right thing to check. In a language with 
successor, any property whatsoever of graphs of size n can be expressed by a 
sentence with 2”* quantifiers but quantifier rank only log n. To make matters worse, 
two ordered graphs G and H satisfy all of the same 3 log(n) quantifier sentences in 
the language with successor only if they are identical. This is as expected because G 
and H are indistinguishable to all log space Turing machines only if they are iden- 
tical. The proof is the same in both cases: the machine or the short sentence can 
check if vertex 3 is connected to vertex 17, G and H agree on all such tests only if 
they are identical. 

We conclude this paper by proposing a few possible techniques for adding 
successor to the above result and thus proving that lJ QNS[logk(n)] i5 P. The most 
hopeful one at present is a modification of Ehrenfeucht-Fraisse games such that 
Player I wins the k move game if and only if a given property is expressible with k 
quantifiers and Suc(-, -). This new game is combinatorially much more complex than 
the Ehrenfeucht-Fraisse game and so we are by no means proficient at playing it. 
And yet we wanted to present, as a pont of departure for furture research, what may 
become a viable technique for proving lower bounds. 

0. REVIEW OF SOME NOTIONS FROM LOGIC 

A structure, S = (0, c; . . . cf , Pf . . . P”,), consists of a universe, U, certain 
constants, ci ... cf , from U, and certain relations, P: . . . P”,, on U. 

A similarity type, r = (c, -a - ck, P, . . . P,), is a sequence of constant symbols and 
relation symbols. 

As an example, let G be a directed graph with two specified points s and d. Thus 
G= (V,EG,sG,dG) is a structure of type rg = (E, s, d), where V is the set of vertices 
of G, and EG is G’s edge relation. 

If r is any type then L[z], the language of r, is the set of all sentences built up 
from the symbols of r using &, or T, +, variables X, y,..., and the quantifiers 3 and V. 



NUMBER OF QUANTIFIERS 387 

A sentence, F, in L[r] is given meaning by a structure, S, of type r as follows: The 
symbols from t are interpreted by the constants and relations in S. The quantifiers in 
F range over the elements of the universe of S. 

For example, let A = Vx(x = d or 3yE(x, v)]. A is in L[r,]. Furthermore, G  
satisfies A (in symbols G  I= A) iff each vertex of G  except dG has an edge coming out 
of it. Henceforth, we will omit the superscript G  for the sake of readability. 

The quant$er rank of sentence F, (qr[F]), is the depth of nesting of quantifiers in 
F. Inductively: 

qr[(Vx)B] = qr[(3x) B] = qr[i?] + 1, 

qr[B & C] = qr[B or C] = max(qr[B], qr[C]). 

For example, for A = Vx[(3yP(x, y)) & VzVw(Q(x, z) or L(z, w))], qr[A] = 3. 
The number of elements in the universe of S is abbreviated ) S 1. For graphs j G / is 

the number of vertices of G . 

1. THE QUANTIFIER MEASURE 

We are now ready to make our principal definition. We say that a set, C, of 
structures of type r is in QN[h(n)] if there exists a sequence of sentences 
(Fi Ii = 1, 2,...,} f rom L [r], and a constant, k, such that: 

a. For all structures, G , of type r, if 1 G ] < n, then: 

G  is in C+-+GbFF,. 

b. F, has <k . h(n) quantifiers. 
c. The map f: n -+ F, is generable by a DSPACE[h(n)] Turing machine. 

Thus C is in QN[h(n)] if there is a uniform sequence of sentences whose n th 
member has O [h(n)] quantifiers and expresses the membership property of C for 
structures of size n. Our condition (c) is analogous to Borodin’s notion of a problem’s 
circuit depth in which he considers uniform sequences of boolean circuits (see [ 1 I). 

As an example, let GAP be the set of directed graphs, G , with two distinguished 
points, s and d, such that there is a path in G  from s to d. GAP is a set of structures 
of type t, = (E(-, -), s, d). 
NSPACE[log n]. (See [ 161.) 

Membership in GAP is known to be complete for 

THEOREM 1. GAP is in QN[log n] . 

Proof. We must assert that there is a path of length at most n from s to d. We 
define by induction the sentences P,(x, y). P,(x, y) says that there is a path of length 
at most k from x to y. 

P,(x, y) = (x = Y) or E(x, Y), 

P&9 v) = WPk(X, z> & P&v Y>). 



388 NEILIMMERMAN 

The sentence P,, has quantifier rank log n and n - 1 existential quantifiers. Using a 
familiar trick, (see [7] or [ 16]), we can add universal quantifiers and reduce the total 
number of quantifiers to 3 log (n): 

A,(% u) = Pd.% YX 
A,,(x, y) = 3zVuVu((u =x & u = z or 24 = z & u = y) --t A,(u, 21)). 

Thus, leting F,, =A,&, d), we have shown that GAP is in QN(log n] I 

Although the complete problem GAP is in QN[log n], it is not true that 
NSPACE[log n] is contained in QN[log n]. As we show in Section 2, this fails in a 
rather spectacular way: the regular set. 

EVEN = {G](G] is even}, 

is not in QN[log n]. 
To allow the sentences to simulate Turing machines it suffices to give them access 

to the numbering of the vertices which the machines already have. Thus we define 
below the measure QNS which studies properties expressible with an arbitrary 
successor relation, Suc(-, -). Suc(x, JJ) means that y comes just after x in the 
numbering of the elements’ of the universe. 

A similar Sue relation is discussed in [ 161. Savitch shows that his pebble automata 
cannot accept GAP without Sue. However, Theorem 1 suggests that our sentences do 
not need Sue to express “natural” graph problems. 

DEFINITION. We say that a set C, of structures of type t is in QN”[h(n)] if there 
exists a sequence of sentences F,, Fz ,..., from L[z U {Sue}], and a constant k such 
that: 

a. For all structures, G, of type r, with (G] ,< n, and for all binary relations 
Suc(-, -), if Suc(-, -) is a valid sucessor relation on the universe of G then: 

(G E G) tf (G, Suc(-, -)) k F,,. 

b. Fn has at most k . h(n) quantifiers. 
c. The map f : n + F,, is generable by a DSPACE[h(n)] Turing machine. 

Thus a property, C, is in QNS[h(n)] if there is a uniform sequence of h(n) quan- 
tifier sentences from L[z U (Sue}] which give the same answer for any successor 
relation and express C. 

The following theorem shows that, with the addition of Suc(-, -), Quantifier 
Number is closely related to SPACE. 

THEOREM 2. Let s(n) > log(n). Then: 

NSPACE[s(n)] s QN”[s(n)*/log n] c DSPACE[~@Z)~]. 



NUMBER OF QUANTIFIERS 3x9 

Proof We start with the second inclusion. We show that QN[ g(n)] is contained 
in DSPACE[ g(n) log(n)]. G iven input structure G of size n, we can certainly generate 
F, in the given space by the uniformity condition. Check the truth of a g(n) quantifier 
sentence in DSPACE[ g(n) log(n)] as follows: Cycle through the sentence with all 
possible values of the quantified variables. If F, is of the form 3xP(x) then we test the 
truth of P(l),..., P(n). Each variable requires log n bits and at most g(n) of them must 
be remembered at once. When all the variables in F, have been replaced by constants 
its truth may be checked as we generate it with no additional space required. 

The first inclusion: We will code a Turing machine instantaneous description (ID) 
of size s(n) with O[s(n)/log(n)] variables. The idea is that each variable takes on a 
value from 1 to n and so may be thought of as log(n) bits. Details of this coding are 
given in Lemma 2a. An ID consists of a state, the location of the input head, and the 
s(n)/log(n) variable work tape. The read head requires a constant number of 
variables-for a graph two variables u, u give that element of the adjacency matrix 
being scanned. It is 1 or 0 according as E(u, u) is true or false. One use of Sue is to 
efficiently code log(n) bits of worktape into one variable, but the essential use is to 
say that the read head has moved one space to the right. 

We must now write P,(ID,, ID,) meaning that ID, follows from ID, in one step of 
M. The s(n) bit work tape is coded with s(n)/log(n) pairs of vertices (xi, yj). All of 
the y,;s but one will be 0. The nonzero yj will be vertex number 2’ when the work 
head is looking at bit i of xj. Let On(x, y) mean that y = 2’ and bit i of x is on. We 
will see in Lemma 2a that On(x, y) may be written with O[log n] quantifiers. 

It follows that P,(ID,, ID,) may also be written with O[log n] quantifiers. We 
must say that some yj is nonzero, the nonneighboring (x, y) pairs are unchanged. 
and (Xj, yj) and its neighbors (in case the workhead happens ‘to move to an adjacent 
block) are changed as per the rules of M. Note that to say, “Some yj has property 
P”, we write: 

3y(y= y, or ... or Y = ~~~~~~~~~~~~~ & P(Y) 

Thus the “On” predicate need by written only once and P, may be written with 
O]log n] quantifiers as claimed. As in the proof that GAP is in QN[log n] we can 
now assert that there is a computation path of length cStn) using O[s(n)] ID’s. Thus 
the total size of P, is s(n)‘/log(n) as required. We give the proof of Lemma 2a below, 
thus completing the proof of Theorem 2. 1 

LEMMA 2a. On(x, y) may be written in QN’[log n]. 

Proof. We build up to “On” with a sequence of inductive definitions, repeatedly 
using the abbreviation trick as in [7]. Thus each of the following may be written in 
QNS(log n] by using the previous one. 

(a) Plus,(x, y, 2) = (x < n) 8c (x + y = 2). 
(b) Q,(x, ..- x~ogn )=(X1=l)&~O<i<logn(Xi+l=Xi+Xj)’ 



390 NEIL IMMERMAN 

(C) Rn(Y, *** VI,,.) = 3x1 *** x~og~(Q(x, -** hgn) & AO<i<logn+I(Yi=O or 
Yi = xi)>* 

@I Sn(z, ~1 a.- ~,ogn) =UY, a.1 y,o,,,) &z = Y, + -.a + Y,,,,. 
te) on(z9x)=3Yl ‘I* YlogniSn(ZY Yl “’ Yl,,.)&V,<j<,,,,+,(X=Yifo)). 

For example, Plus is defined as follows: 

Plus,(x, y, z) = [x = 0 & y = z] or [x = 1 & Suc(y, z)]; 

Plus,,(x, y, z) = 3U u w(Plus,(u, v, x) 82 Plus,(u, y, w) & Plus,(v, w, z)). 

As before we can use the abbreviation trick to write Plus, only once on the right. 
Note that we use the symbols 0 and 1 for convenience but they are of course 
definable from Sue. 

Note also that to get each next equation one cannot simply use the previously 
defined formula. For example, to get Q, a first try might be: 

Q& .-a x~ogn )=(x,=1)~Plus,(x,,x,,x,)~~~‘~pl~s,(x,,,.-,~x,,,,-,~x,,,,). 

However this requires log2(n) quantifiers. We must conglomerate Plus, and Q, into 

C,(x, **ax ,og ,,, u, u, w> = Q,<x, ..a x,oe,,) & Plq,(u, ~9 w> 

and define them simultaneously, using the abbreviation trick. 4 

2. EHRENFEUCHT-FRAISSE GAMES 

In this section we will employ Ehrenfeucht-Fraisse games to obtain lower bounds 
for the quantifier measure. These games are due to Fraisse and Ehrenfeucht. (See [8] 
or [3] for discussion and proof of Theorem 3.) Two persons play the game on a pair 
of structures. Player I tries to demonstrate a difference between the two structures, 
while Player II tries to keep them looking the same. An example appears below, but 
first we give the definition and state the fundamental fact about these games. 

Given two structures, G and H, of the same finite type, r, we define the n move 
game on G and H as follows: 

Player I chooses an element of G or H and Player II chooses a corresponding 
element from the other one. This is repeated n times. At move i, gi and hi, elements 
of G and H respectively, are chosen. 

We say that Player11 wins if the map f which takes the constants from G to the 
constants from H, and maps g, to h,, is an isomorphism of the induced substructures. 
(That is, f preserves all of the symbols of r. For example, if G and H are of type 
r = rg, then E(s, g,) holds in G just if E(s, hi) holds in H.) 

We say that two structures of type r are n-equivalent if they satisfy all the same 
sentences in L[r] of quantifier rank n. The fundamental fact about Ehren- 
feucht-Fraisse games is: 



NUMBER OF QUANTIFIERS 391 

G H 

I. d 0 
2. f 

G H 

d.-. e 

FIG. 1. An Ehrenfeucht-Fraisse game. 

THEOREM 3 (Fraisse, Ehrenfeucht). Player ZZ has a winning strategy for then 
move game on A and B if and only if A is n-equivalent to B. 

As an example, consider the graphs G and H of Fig. 1. G has the property that 
each of its vertices has an edge leading to it, but this is not true of vertex a in H. 
Thus G and H disagree on the sentence, S = Vx3yE(y, x). By Theorem 3, Player I 
has a winning strategy for the game of length 2. Indeed, on the first move Player I 
chooses a, II must answer with a point from G, say d. Now I can pick f from G. II 
will lose because there is no point in H with an edge to a. 

Recall that in Theorem 1 we showed an upper bound of QN[log n] for GAP. The 
following theorem proves that this is a lower bound as well. Note that we can express 
GAP in quantifier rank exactly log(n), and so the Ehrenfeucht-Fraisse game is a tool 
fine enough to decide expressibility up to an additive constant! 

THEOREM 4. GAP is not expressible in quantQ?er rank log(n) - 2. 

Proof. Fix n > 4 and let m = (n - 4)/2. We construct the graphs A,,,, B, as 
follows: Each graph consists of two lines of m + 2 vertices as in Fig. 2. In both 
graphs s is the top left vertex; but, d is the top right vertex in A,,, and the bottom right 
vertex in B,. Thus A,,, is in GAP, but B, is not. 

A4 B4 

. .+.a.+.-..-. d , .*.*.4.*.*. R 

L .*.*.+..a.*. R L .+.+.a.+.+. d 

FIG. 2. A, and B,. 



392 NEILIMMERMAN 

We will now show that A,,, is (log n - 2)-equivalent to B,. From this it follows 
that no sentence of quantifier rank log n - 2 can express the property, “There is a 
path from s to d.” 

By Theorem 3 it suffices to show that Player II wins the log m move game on 
A,, B,. Indeed, the following is a winning strategy for II: 

If Player I plays the ith vertex in some row of A (or B), II will always answer with 
the ith vertex of one of the rows in B (or A). The initial constraint is that the 
endpoints s, d, L, R are answered by the similarly labelled endpoints. With k moves 
to go, if Player I chooses vertex x within 2k steps of an endpoint (or previously 
chosen vertex, a,), then II must answer with a vertex on the same row as the 
corresponding endpoint (or bi), and at the same distance. If x is not within 2k steps of 
such a point then II may answer with any point not within 2k steps of an endpoint or 
chosen point. 

A proof by induction will show that if II follows the above strategy for log m 
moves, then a conflict (i.e., two points on different rows, both within 2k steps) will 
never arise. Thus Player II wins the log n - 2 move game. 1 

Theorem 4 remains true for ordered graphs. The proof is similar, but the graphs 
require three rows each so that d is not the last vertex in B,. It is interesting to note 
that in the above case our measure does not distinguish between deterministic and 
nondeterministic space. The lower bound of O[log n] is shown for graphs with at 
most one edge leaving any vertex. The gap problem for such graphs, (called GAP 1 
and discussed in [lo] and [ 141, is in DSPACE[logn]. 

As promised we now show that L[r,], the language of graphs without Sue, is insuf- 
ficient for describing all graph problems. Our counterexample consists of a totally 
disconnected graph. The same example could be built with connected graphs of 
unbounded degree. The idea is that the edge relation is of no use and so we must 
name all the points in order to count them. 

PROPOSITION 5. EVEN, the set of graphs with an even number of vertices, is in 
DSPACE[log n], (infact it is in DSPACE[O]), but it is not in QN[h(n)]for any h(n) 
asymptotically less than n. 

ProoJ We already know by Theorem 2 that EVEN is in QN”[log n]. To prove 
Proposition 5 let TD, be the totally disconnected graph with n vertices. We show that 
TDn-, is n - 1 equivalent to TD,. It follows that quantifier rank n is needed to 
express EVEN. 

We only need to show that Player II wins the n - 1 move game on TD,-, and 
TD,. Her obvious winning strategy is to match a chosen vertex with any vertex from 
the other side subject to the condition that a point chosen twice will be answered with 
the same point both times. Since the edge relation is always false in both structures, 
the resulting sequences of points are isomorphic. I 

The proposition above concerns itself with the difference between QN and QNS. In 
the next section we will produce a more natural graph problem in P-Time, which is 



NUMBER OF QUANTIFIERS 393 

not in QN[log’(n)]. The graphs there are connected and of bounded degree. We feel 
that the latter example concerns itself with time versus space. 

3. P-TIME AND THE QN MEASURE 

Let an alternating graph be a directed acyclic graph whose vertices are marked 
“&” or “or.” Suppose that a and b are vertices of alternating graph G , and a has 
edges to x, ... x,. We say that b is reachable from a iff: 

1. a=b; 
Or 

2. a is marked “&,” n > 1, and b is reachable from all the xI)s; 
or 

3. a is marked “or” and b is reachable from some xi. 

Note that if all vertices are marked “or” then this is the usual notion of 
reachability. (See Fig. 3, where b is reachable from a, but not from c.) Note that we 
could generalize this definition to include infinite graphs or graphs with cycles by 
saying that “b reachable from a” is the smallest relation satisfying l-3. Now define 
AGAP to be the set of alternating graphs inwhich d is reachable from s. 

PROPOSITION 6. AGAP is complete for polynomial time with respect to log-space 
reducibility. 

Proof: To see if G  is in AGAP we start at d and proceeding backwards mark all 
the points from which d is reachable. 

A detailed proof of completeness is omitted; the idea is that AGAP is complete in 
a natural way for alternating log space, which is known to be equivalent to P-Time. 
(See [ 21 or [ 151.) Boolean circuit value problems which are very similar have 
previously been shown to be complete for P. See for example [9]. 1 

We must now add the predicate ,4(x) meaning that vertex x is marked “&.” Let 
r = (E, A, S, D), be the type of alternating graphs. Our next theorem shows that in 
[[r,,] the polynomial time property AGAP is not expressible with quanifier rank 
logk(n). If this went through with the additon of successor then we would have shown 
that P is not contained in SPACE[logk(n)]. 

a or or 

FIG. 3. An alternating graph. 



394 NEIL IMMERMAN 

THEOREM 7. Let f(n) be any function that is asymptotically less than 2(‘ogn’“2. 
Then AGAP is not in QN[f(n)]. In particular, AGAP is not in QN[logk(n)] for any 
k. 

ProoJ For all sufficiently large m, we produce graphs G, and H, with the 
following properties: 

1. lGml = IH,I = n, and n < m’+logm. Thus log(n) ( log(m) (log(m) + I), and 
2(l+lognW* <m* 

2. G, is m-equivalent to H,. 
3. G, is in AGAP, but H,,, is not. 

When these conditions are met we will have shown that anything less than quan- 
titier rank 2(‘ogn)Y2 does not s&ice to express the Alternating Graph Accessibility 
Problem without successor. 

The first step is to introduce the building block out of which G, and H, will be 
constructed: 

LEMMA 7a. Let X be the alternating graph pictured in Fig. 4. Then X has 
automorphisms f, g, and h, with the following properties: 

1. f switches 3 & 4 and 1 8~2, leaving 5 & 6 fixed. 
2. g switches 1 & 2 and 5 & 6, leaving 3 & 4 Jixed. 
3. h switches 3 & 4 and 5 & 6, leaving 1 & 2 fixed. 

ProoJ The idea is that when X is placed in our graphs each pair, 1,2 3,4 5, 6 
will consist of one point which can reach d and one which cannot. Think of points 
which can reach d as “true,” and those which cannot as “false.” Then in symbolic 
notation: 

1 = [(c)or(f)]= [(3&5)or(4&6)]; 

2 = [(g) or (h)] = [(3 & 6) or (4 8c 5)]. 

The proof of the lemma is an easy computation. m 

We will say that a pair u, v is ofl if u is true and v is false. If u is false and v is 
true then the pair is on. Thus, X is a switch whose top pair is on just if exactly one of 
its bottom pairs is on. 

FIG. 4. Switch X. 



NUMBER OFOUANTIFIERS 

ROW 

I 

2 

3 

2mlog(2m) 

FIG. 5. P,,,(ifs =A), Q,,,(ifs = B). 

The proof of Theorem 7 proceeds as follows: First we produce exponentially large 
graphs P, and Q , built up from switch X. P, and Q , differ on the AGAP property 
but we will see in Lemma 7b that they are m-equivalent. The final and most technical 
part of the proof is to reduce P, and Q , to G , and H,, graphs of size about mlogm 
which retain the above properties. Figure 5 shows 21+2m’og(2m) - 1 copies of the 
switch X, arranged in a binary tree. Let P, be the graph pictured in Fig. 5, with 
s = A. Let Q , be the same graph, but with s = B. Thus P, is in AGAP while Q , is 
not. However. 

LEMMA 7b. P, is m-equivalent to Q,. 

Proof: We will show that Player II wins the m length game on P, and Q ,. One 
way to express the difference between P, and Q , is to say that they are the same 
except that the top pair in Q , is switched. Another way of thinking of it is that in Q , 
one of the bottom pairs, for example y, z, is switched. That is in P, y is connected to 
d, but in Q , z is connected to d. X has the property that switching one pair on the 
bottom will result in the top pair being switched. 

The idea behind Player II’s winning strategy is that the difference between P, and 
Q , could be removed by switching any of the 22m’og(2m) pairs on the bottom row. 
With only m moves, Player I cannot eliminate all of these possibilities. 

To simplify the proof let us first consider a different game. Let T2m,og~2m~ be the 
binary tree of height 2m log(2m). This is a schematic version of P, and Q , where 
each pont represents the switch. X, and each line represents a pair of lines. 

We play a modified Ehrenfeucht-Fraisse game on T2m,og~2m~, call it the “on-off’ 
game. On each move of his new game. Player I picks a point and Player II must 
answer “on” or “off.” Player II must also obey the rules that the top vertex, if 
chosen, is on, and any chosen vertex on the bottom is off. (Intuitively “off’ 
corresponds to matching the top left vertex of the chosen switch in P, to the same 
vertex in Q ,; “on” means matching it to the top right vertex.) We say that PZayerIZ 
wins if for any triple of chosen points, L, I’M, N, such that M and N are the two 
offspring of L, L is on iff exactly one of M and N is on. This rule captures the 
behavior of the switch X. 



396 NEIL IMMERMAN 

LEMMA lc. Suppose that each vertex in row r of T, is labelled on or ofJ Then 
any 2k - 1 points on or below row r + k may be labelled in any self-consistent fashion 
and there will still be a labelling of the rest of the graph which generates row r. 

ProoJ By “self-consistent” we mean that with the labelling of row r removed, the 
labelling of the 2k - 1 points may be extended to a consistent labelling of the entire 
tree. The proof is by induction on k: 

If k = 1 then no matter which point is chosen we are free to label its sibling as we 
please inorder to give the desired label to its parent. 

Inductively suppose that 2k - 1 points are labelled on or below row r + k. Let L be 
the set of left offspring in row r + 1, R the set of right offspring. Clearly at most one 
of these sets, say L, has more than 2k-’ - 1 of its descendents labelled. Label all of 
the vertices in L in any consistent fashion. Now by induction we may label the points 
in R as we choose. Thus we may label row r as desired. 1 

It follows from Lemma 7c that Player II wins the 2m-move on-off game on 
T Zm log(2m) * We state this as a lemma so we may reuse the proof later on: 

LEMMA Id. Suppose that an appropriate graph G with k. 2k rows satisfies 
Lemma lc. Then Player II wins the 2k move on-oflgame on G. 

Proof: Player II’s strategy is to answer “off’ whenever this is consistent with the 
previously labelled points and with the top point being on. We show that no point in 
row r . k must be labelled on until the rth move. 

Assume that Player II has successfully followed her strategy for the first r - 1 
moves and that on move r Player I chooses point p in row r . k + 1. We must show 
that II may answer “off.” Since there are r. k rows above p, and only r - 1 
previously chosen points, there must be a block, B, of k - 1 consecutive rows with no 
chosen points. Consider the first point chosen by Player I which lies below B. By 
Lemma 7c that point could have been consistently chosen off. Therefore Player II’s 
strategy was to label it off. Similarly Player II must have answered “off’ to each 
additional point below B. In particular, p is below B and may be labelled “off.” 

It follows that in the 2k move game Player II’s strategy allows her to label the 
chosen points consistently and not label any of the points on the bottom row “on.” 
Thus she wins. m 

With k = log(2m), we see that Player II wins the 2m-move on-off game on 
T am,og(zmj. We can now play the original m-move Ehrenfeucht-Fraisse game as 
follows: (See Fig. 5.) When Player I chooses a point, for example c in Pm, II moves 
according to the strategy for the on-off game. If the point corresponding to c’s switch 
is declared “off,” then II answers c, if “on,” then e, the opposite point in the pair. If a 
point inside a switch is chosen then II may simulate the moves of the on-off game for 
the switch’s two descendants. If either of these descendants is “on” then the moves 
induce one of the automorphisms of switch X listed in Lemma 7a. Player II should 
perform this automorphism on the switch in question and answer accordingly. 



NUMBER OF QUANTIFIERS 397 

We claim that this is a winning strategy for Player II; i.e., there is an isomorphism 
between the chosen points from the two graphs. The rule that in the on-off game 
Player II must call the top point on and the bottom points off assures that s will be 
answered by s and any point touching d will be answered by a point also touching d. 
The fact that Player II wins the on-off game indicates that any triple of neighboring 
switches is matched up correctly. This proves Lemma 7b. 1 

The final step of the proof is to introduce the graph Dlogm to replace the binary 
tree in the above construction. Dlogm has about m logm vertices above row m but still 
has the property that no point in block k can be forced on before the kth move. We 
define D, below algebraically, but please refer to Figs. 6 and 7 and 8 which show 
portions of D, , D, , and D,, respectively. 

Vertices(D,) = ((x, . ..x.,r)lr=b.k+p,p<k, 

O<xi<b+l for l<i<p&O<xi<b for p < i< k}. 

Edge@,) = {((x1 +e. xkr r), (x1 -aa xk, r + 1))lr >O} 

u l((Xl +*a xkr r}, (x, +.. xp,xp+, f I,..., xk, I + I))lr =p mod(k)}. 

FIG. 6. Four blocks of D,. 

ROW 

0 

I 

2 

3 

0 
I 

2 
3 

4 
5 

6 
r 

FIG. 7. Four blocks of D, 



398 NEIL IMMERMAN 

FIG. 8. Three blocks of D,. 

Thus the vertices are k dimensional vectors and each row stretches the range of 
one of these dimensions by one. These graphs have k degrees of freedom, allowing us 
to prove: 

LEMMA 7e. Suppose that row r of D, is entirely labelled. Then any 2’ - 1 points 
on or below row r + k may be labelled in any self-consistent fashion and there will 
still be a labelling of the rest of the graph consistent with row r. 

Proof: We break the proof into parts. First assume that the 2’ - 1 chosen points 
lie on row r + k. The proof is by induction on k. 

If k = 1 then we must show that any one point may be chosen in row r + 1 without 
affecting row r. This is true because any configuration in row r is generated by a 
configuration in row r + 1 and by its complement. Clearly one of these marks the 
chosen point correctly. 

Let the jth block of D, be the k consecutive rows numbered j. k to j a k + k - 1. 
Note that in passing from the ith row of one block to the ith row of the next block 
the range of each coordinate is stretched by 1. Assume for convenience that row r is 
at the bottom of block j. 

Let the ith column of D, be those points with kth coordinate equal to min(i, M,), 
where m, is the maximum possible kth coordinate at the given row. Note that the ith 
column of D, is a copy of D,-, with every kth row repeated. In particular the ith 
column of the jth block of D, is a copy of the jth block plus the first row of the 
j f 1 st block of Dkml. (Note that the way we have drawn Figs. 7 and 8 columns 
correspond to vertical sections of the graph. Suppose row r were not at the bottom, 
but rather at the sth row of some block. We would then redefine the notion of block 
so that r is the bottom row of a new block. Columns would be the points agreeing on 
the sth coordinate rather than the kth.) 

Inductively consider any labelling of row r of D, together with a choice of 2k - 1 
labelled points on row r + k. Clearly at most one of the columns of row r -t k has 
2’-’ chosen points. Let this i,,th column of row r + 1 be chosen in any consistent 



NUMBER OF QUANTIFIERS 399 

fashion. All the other columns have at most 2k-’ - 1 chosen points in row r + k. 
Thus by induction all the other columns of row r + 1 may be chosen as we please. 
Thus we can counteract the i,th column and ‘choose row r as we please: Choose 
column i, - 1, row r + 1 to be the sum of the desired column i, - 1, row r, and 
column i,, row r + 1. Next choose columns i, + 1, i, - 2, and so on. 

To complete the full lemma we must generalize our inductive assumption: 

CLAIM. Suppose that row r of D, is entirely labelled. Further assume that some of 
the edges are marked “-” meaning that the signal going through that edge is 
reversed. Then any 2k - 1 points on or below row r + k may be labelled in any self- 
consistent fashion and there will still be a iabelling of the entire graph giving the 
desired row r. 

Proof. As above at most one column of D, say i, has at least 2k-1 chosen points. 
Consider the wedge, W  below the i,th column of row r + 1. W  consists of column i, 
block j + 1, columns i,, i, + 1 block j + 2, and so on. See Fig. 9 for a schematic 
view of W. 

Label the points of W  in any fashion consistent with the labelling of the 2k - 1 
chosen points, taking into account the edges marked “7.” Now consider column 
i, - 1. For each edge e from a to b in column i, - 1 it may be the case that there is 
also an edge from c to b where c is a point in W  labelled “on.” If so we mark e “--,” 
because the value of b will be the opposite of the value of a. We next merge the 
repeated pair of rows in each block of column i, - 1, thus making a true copy of 
D k-l. Suppose d lies above b which lies above a, with edges f from b to d, and e 
from a to b. The merging involves deleting b and replacing e and f by f’, a new edge 
from a to d. The label of f’ will be --, just if exactly one of e and f was labelled 7. 
Note that the labelling is still self-consistent because W  was labelled in a consistent 
way. By our inductive assumption row r + 1 of column i, - 1 may be filled in as we 
please. 

Labelling column i, - 1 induced 7’ed edges in column i, - 2. How can we insure 
that this introduces no inconsistencies ? The answer is as follows: Consider any 

ROW Block 
COlunl lo-I lo lo+1 

c WedOe W 

FIG. 9. Schematic view of wedge W. 

571/22/3-IO 



400 NEIL IMMERMAN 

consistent labelling, L, of columns 1 to i, - 1. For each of the originally labelled 
points, U, in columns 1 to i, - 2 let U’ be the corresponding point in column i, - 1. 
Note that any change in the labelling of column i, - 1 either fixes or switches both u 
and u’. Add (u’, L(d)) to the list of labelled points. Now by induction find a 
labelling of column i0 - 1 consistent with the constraints and generating the desired 
section of row r + 1. This labelling does not change L’s value for the originally 
labelled points in columns 1 to i, - 2. Thus the T’s induced by column i, - 1 remain 
consistent. 

It follows that columns i, - 2, i, - 3, and so on, may be filled in as we please. 
Similarly we can use the diagonals to the right of W to fill in columns i, + 1, 
i, + 2,..., of row r + 1. Thus we can generate row r as we please. 1 

It follows from Lemmas 7d and 7e that Player II wins the 2’ move on-off game on 
the first 2k blocks of D,. Her strategy is to say “off’ until a point is forced on. No 
point p can be forced on unless more than 2k - 1 points have been chosen or there is 
a point marked on within k rows of p. Thus 2k moves do not suffice to force on a 
point in the bottom row. 

Let G, and H, be the graphs arising from the first 2m blocks of DlogcZmj by 
replacing vertices by the switch X, just as P, and Q, arose from the binary tree of 
height 2m log(2m). As before we let s be the top left point of G, and the top right 
point of H,. Thus G, is in AGAP and H,,, is not in AGAP. 

Our above remarks imply that Player II wins the 2m move on-off game on 
D log(2m) * Thus, as in the proof of Lemma7b, G, is m-equivalent to H,. This proves 
Theorem 7. 1 

Theorem 7 does not go through if we add “Sue.” In the log(n) move game on 
numbered graphs if Player I chooses vertex i in A, then II must respond with vertex i 
in B. If Player II answers differently, then in the remaining moves Player I can keep 
cutting the successor path from the initial point to vertex i in half, thus exposing that 
this path is not the same length on the left as on the right. Clearly if G and H are not 
identical graphs there must be a pair of indices i, j such that there is an edge from ui 
to uj in one of the graphs but not the other. Thus Player I wins the log(n) + 1 move 
game on G and H. His strategy is to play vertices ui and Vj of G on the first two 
moves. As we have seen Player II is forced to answer with vi and Vj from H. Now she 
has lost because the map between the first two elements is already not an 
isomorphism. 

Thus two numbered graphs of size n are log(n) + 1 equivalent only if they are 
identical. This is as expected because a pair of graphs G, H is indistinguishable to all 
log space Turing machines only if G = H. 

Sometime after proving Theorem 7 we discovered to our surprise that with Sue we 
probably can write a sentence of length O[log n] which distinguishes G, from H,. 
This is done as follows: In a numbered graph a pair of vertices is endowed with an 
orientation. Thus a numbered copy of switch X is either right (orientation preserved) 
or wrong (orientation of the top pair is switched). Thus given a numbered graph 



NUMBEROFQUANTIFIERS 401 

which is either P, or Q, we can tell which by adding up the number of wrong 
switches and seeing if it is odd or even. 

This does not quite work for distinguishing G, from H, because some of the 
switches in D, have no effect-that is their signals lead to the top an even number of 
times. (See, for example, vertex 10 in row 3 of Fig. 6.) We believe (although we have 
not written out the details) that the pattern of which vertices count is simple enough 
to admit expression via a log(n) quantifier formula C(x). If so then G, can be 
distinguished from H, with log(n) quantifiers by adding up the number of wrong 
switches y such that C(y). 

To alleviate this problem we can replace the switch X in the above construction 
with a switch with m  points. Thus to remember its orientation requires m  bits rather 
than one. As above we can build graphs CL and Hk which are 2(‘ogn)“* equivalent 
without successor. We conjecture that even with Sue they are indistinguishable. 

4. EXTENDING RESULTS TO QNS 

Proving lower bounds for QN”[f(n)] with f(n) > log(n) is much more subtle than 
for QN[f(n)l. W  e s h ow below that quantifier rank lower bounds can no longer help 
us. By an ordered graph we mean a graph which comes with a valid successor 
relation. The following proposition shows that any property whatsoever of ordered 
graphs can be expressed in quantifier rank log(n) + 3. 

PROPOSITION 8. Let C be any set of ordered graphs. Then for all n there exist 
sentences S, of quantifier rank log(n) + 3 such that for all ordered graphs G of size 
0, 

Proof. First we show that for any i, < n, we can write the formula Ni,(x), which 
means, “x is vertex number i, in the Sue ordering,” in quantifier rank log(n) + 1. This 
is done by inductively defining the formulas P,(x, y) to mean that there is a successor 
path of length exactly i from x to y. 

P,(x, y) = Suc(x, y) ; 

P*,-1(x. y) = %[P,-,(x9 z) & P”(Z, Y>l ; 
p*“(x, Y) = 3z[P,(x, z) &  P,(G Y)\. 

Now we identify the ith point by saying that there is a path of length i from the first 
point to it: 



402 NEIL IMMERMAN 

N,,(x) has quantifier rank log(n) + 1 and can also be written with O[log n] quantifiers 
using the abbreviation trick. 

Now using NJx) we can completely describe any graph G as follows: 

FG=A,=,.*.” 3X 3y[Ni(X) & Nj( Y) & Ei’(xp U)l ’ 
Here E”(x, y) is E(x, y), or -,E(x, y) according as E(v,, vi) holds or does not hold in 
G. Note that F, has quantifier rank log(n) + 3. Let C, = {G] G E C & ] G] < n}. We 
define S, as the disjunction over all G in C, of F,; i.e., 

This is the desired complete description of C,. Although it may have length 2”: S, 
has quantifier rank only log(n) + 3. I 

In spite of the above proposition there is still hope. Recall that from the last 
section we have a pair of structures Gi and HL which are 2(‘og”)“2 equivalent but 
differ on the AGAP property. We conjecture that AGAP is not in QNS[2(‘ogn’“2]. 

Consider the set of all possible orderings of a graph G: 

S(G) = {(G, SuC,)( S UC is a successor relation on G}. i 

Thus S(G;) and S(H;) are families of ordered structures which we suspect cannot be 
separated by a sentence with 2(‘ogn)“’ quantifiers. To make the notion “separated” 
precise we give the following. 

DEFINITION. Let M and N be families of structures of the same finite type, r. We 
say that M and N are k-inseparable if there is no sentence, F, from L[r] with k 
quantifiers such that: 

MFF and Nl=lF; 

i.e., every structure in A4 satisfies F and no structure in N does. Otherwise M and N 
are k-separable. 

Clearly if we could show that S(Gk) and S(Hh) are logk(n) inseparable it would 
follow that AGAP is not in QNS[logk(n)]. The notion, “AGAP, and 7AGAP, are 
O[f(n)]-separable,” would be the same as the condition, “AGAP is in QNS[f(n)],” if 
we had omitted the uniformity requirement in the definition of QNS. Thus the 
following generalization of Theorem 2 holds: 

PROPOSITION 9. Let C be any set of ordered graphs. Then: 

a. Suppose C is in NSPACET[log n] for some sparse oracle set T. Then C, is 
0 [log n]-separable from -4,) for every n. 

b. Suppose C, is O[log n]-separable from 7C,, for every n. Then is a sparse 
oracle, T, such that C is in DSPACET[log2(n)]. 



NUMBEROF QUANTIFIERS 403 

Proof. T is a sparse set if there are at most nk objects in T of length n. A 
SPACET[f(n)] machine has a size f(n) query tape on which it may write words and 
ask if they are in T. The proof of this proposition is similar to that of Theorem 2. The 
differences are: 

For part (a), we must code into F, the nk elements of T that the log n space Turing 
machine can look at. Thus the formula, P,(ID,, ID,), saying that ID, follows from 
ID, in one step of MT  must include the disjunction over nk possible questions to the 
oracle. However, all quantifiers may be placed outside this disjunction so the quan- 
tifier number is unchanged. 

In part (b), we must code the sentence F, into Tn {WI ] w 1 = 2’Og2(“}. Note that 
any sentence with f(n) quantifiers and binary predicates is equivalent to some 
sentence of length Cf*(“). We use the first ef*(“) words of lenth 2’og2(n) to code F, as a 
binary string. Thus there are at most Cfzcn) members of T of length 2’og2(n). Thus T is 
sparse. I 

Proposition 9 is encouraging because it suggests that PTIME complete properties 
may be O[log n]-inseparable from their complements. We close this section with a 
modified version of Ehrenfeucht-Fraisse games which test for separability: 

DEFINITION. Given families of structures, M  and N, of the same finite type, we 
define the k-move separability game on M  and N as follows: 

On each of the k moves Player I chooses a point from each structure on one side 
or the other. Player II then chooses a corresponding point from each structure on the 
other side. II is allowed to make copies of structures so that she may choose several 
different answers from the same structure. 

We say that Player ZZ wins if there is a pair of structures and sequences of moves, 
(Gi, m i, ... m:) and (Hj, nji . . . n$) one from each side such that the map which sends 
constants from Gi to constants from Hi and maps rn: to n’, is an isomorphism of the 
induced substructures. 

THEOREM 10. Player ZZ has a winning strategy for the k move game on M  and N 
iff M  and N are k-inseparable. 

ProoJ By induction on k. 
k = 0. Here if Player II wins then there is a pair of structures G E M  and H E N 

whose constants are isomorphic. It follows that G  and H satisfy all the same quan- 
tifier free formulas and so M  and N are O-inseparable. Conversely if there is no such 
pair then the quantifier free formula, F,, which is a disjunction of all the 
isomorphism types of constants from M  is satisfied by all of M  and none of N. 

Inductively, assume that the r + 1 quantifier formula 3xP(x) is true in M  and false 
in N. Them Player I’s first move will be to choose a point rni, from each Gi E M  in 
such a way that Gi K P(mf), No matter what II does, no structure Hj E N will satisfy 
P(n/). Think of the language as now having a new constant symbol c,. Thus 
(M, m,) + P(cl) and (N, n,) + ,P(ci) so by induction Player I wins. 



404 NEIL IhfMERki.4~ 

Conversely assume that M and N are r + l-inseparable and let Player 1 choose n( 
from each G, E it4. Let F, .*a F, be a list of all the r quantifier formulas with the new 
symbol c, that are true for each structure in M, that is: 

(M ml> I= FdcA i= 1 . . . s. 

Therefore, 

M b 3xFi(x), i= 1 . . . s. 

Since 3F,(x) cannot separate M from N there must be some Hi in N such 
Hi b 3xF,(x). Thus Player II can play these s witnesses from the appropriate His and 
forget about the rest of N. Note that this is where the making of copies is needed in 
case Hi = Hi for some i # j. Thus Player II can preserve the condition that M and N 
are r-inseparable and so by induction she will win. n 

Little is known about how to play the separability game. We leave it here as a 
jumping off point for further research. We urge others to study it, hoping that the 
separability game may become a viable tool for ascertaining some of the lower 
bounds which are “well believed” but have so far escaped proof. 

5. CONCLUSIONS 

We have shown that quantifier number is another measure of space complexity. 
Thus combinatorial techniques in the spirit of Ehrenfeucht-Fraisse games seem likely 
tools for demonstrating lower bounds for space. 

That the difficulty of expressibility is closely tied to computational complexity is 
no accident. The deep connections between logic and complexity theory are 
inescapable. Just think, for example, of the link alternation (fundamentally an 
attribute of quantifiers, not Turing machines) gives in both directions between time 
and space. We believe that the notion of a property being expressible in some 
language is much simpler to understand and to prove things about than its being 
checkable by some Turing machine. 

Finally, we expect further research in at least the following directions: 

1. Characterize the difference between QN and QNS. We know that for some 
“natural” problems like connectivity Sue gives no gain in expressibility, whereas for 
other problems, such as counting the size of some set, there is an exponential gain. It 
would be very useful if there were some criterion to determine whether or not Sue will 
help in a certain case. 

2. R. Fagin and others have studied the notion of sentences probably holding 
in finite structures. (See [6].) It seems to me that an average successor relation would 
not help to separate the graphs Gk and Hk (mentioned above) which differed on a 
PTIME property. Thus there is hope of proving that the set of short sentences which 
hold for most successors is the same for G as for H. A similar idea would be to 



NUMBER OF QUANTIFIERS 405 

modify the notion of forcing in model theory (an adaption by Robinson of work of 
Cohen) to determine which short sentences are true for a “generic” successor. 

3. NSPACE[log n] can be simulated by an existential sentence of quantifier 
rank log n and size O[n], or by a sentence of O[log n] alternating quantifiers. This 
m irrors the simulation of NSPACE by Parallel Time and by Alternating Time, 
respectively. In the first case the number of quantifiers corresponds to the number of 
processors in the parallel computation. This insight may lead to a new technique for 
analyzing parallelism and the time versus number of processor trade off. 

4. The way we added Sue is a bit strange. F, expresses property P in QN” if 
for all structures G of size n and for all binary relations Sue such that Sue is a valid 
successor relation on the universe of G. G is in P if and only if (G, Sue) satisfies F,. 
We can consider adding relations with other properties besides successor. One such 
property which we call a “marking,” capures PTIME. It would be lovely to have a 
coherent theory of the increase in expressibility gained by adding an arbitrary 
relation with a given property. 

5. An investigation of the classes QN”[f(n)J, for f(n) < log n, is needed. An 
intriguing fact is that a regular set such as EVEN requires log n quantifiers even with 
successor, and yet the set, Clique(k), of graphs which contain a k-clique, only needs a 
constant number of quantifiers. The latter class seems to require DTIME[nk]. 

ACKNOWLEDGMENTS 

I would like to thank my advisor Juris Hartmanis for his kind help and excellent advice. Thanks to 
John Hopcroft, Albert Meyer, and Michael Morley for very helpful discussions. Thanks also to the 
referees who pointed out errors and lack of clarity in some of the proofs. 

REFERENCES 

I. A. BORODIN. On relating time and space to size and depth. SIAM J. Comput. 6, No. 4 (1977). 
733-744. 

2. S. CHANDRA AND L. STOCKMEYER, Alternation, in “Proceedings, 17th FOCS, 1976,” pp. 98-108. 
3. A. EHRENFEUCHT. An application of games to the completeness problem for formalized theories. 

Fund. Math. 49 (1961), 129-141. 
4. H. ENDERTON. “A Mathematical Introduction to Logic,” Academic Press, New York, 1972. 
5. R. FAGIN, Generalized first-order spectra and polynomial-time recognizable sets, in “Complexity of 

Computation” (R. Karp, Ed.), SIAM-AMS Proc. 7, pp. 43-73, 1974. 
6. R. FAGIN. Probabilities on finite models, J. Symbolic Logic 41, No. 1 (1976), pp. 50-58. 
7. M. FISCHER AND M. RABIN, Super-exponential complexity of presburger arithmetic, in “Complexity 

of Computation” (R. Karp, F%.), SIAM-AMS Proc. 7, pp, 27-41, 1974. 
8. R. FRAISSE. Sur les classifications des syttmes de relations, Publ. Sci. Uniu. Alger 1, 1954. 
Y. L. GOLDSCHLAGER, The monotone and planar circuit value problems are log space complete for P. 

SfGACT News 9, No. 2 (1977). 
IO. J. HARTMANIS. N. IMMERMAN, AND S. MABANEY. One-way log tape reductions, in “Proceedings. 

19th FOCS. 1978.” pp. 65-72. 



406 NEIL IMMERMAN 

11. J. HOPCROFT, W. PAUL, AND L. VALIANT, On time space, J. Assoc. Comput. Mach. 24, No. 2 
(1977), 332-337. 

12. N. IMMERMAN, Length of predicate calculus formulas as a new complexity measure, in 
“Proceedings, 20th FOCS, 1979,” pp. 337-347. 

13. N. IMMERMAN, Ph. D. Thesis, Cornell University, 1980. 
14. N. JONES, Space-bounded reducibility among combinatorial problems, . Comput. Sci. I I (1975), 

68-75. 
15. D. KOZEN, On parallelism in turing machines, in “Proceedings, 17th FOCS, 1976,” pp. 89-97. 
16. W. SAVITCH, Maze recognizing automata and nondeterministic tape complexity, J. Comput. System 

Sci. 7 (1973), 389403. 
17. W. SAVITCH AND M. STIMSON, Time bounded random access machines with parallel processing, J. 

Assoc. Comput. Mach. 26, No. 1 (1979), 103-118. 
lg. L. STOCKMEYER, The polynomial-time hierarchy, Theoret. Comp. Sci. 3 (1977) l-22. 


