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Abstract
Induction is a successful approach for verification of hardware and
software systems. A common practice is to model a system using
logical formulas, and then use a decision procedure to verify that
some logical formula is an inductive safety invariant for the system.
A key ingredient in this approach is coming up with the inductive
invariant, which is known as invariant inference. This is a major
difficulty, and it is often left for humans or addressed by sound but
incomplete abstract interpretation. This paper is motivated by the
problem of inductive invariants in shape analysis and in distributed
protocols.

This paper approaches the general problem of inferring first-
order inductive invariants by restricting the language L of candidate
invariants. Notice that the problem of invariant inference in a
restricted language L differs from the safety problem, since a system
may be safe and still not have any inductive invariant inL that proves
safety. Clearly, if L is finite (and if testing an inductive invariant is
decidable), then inferring invariants in L is decidable. This paper
presents some interesting cases when inferring inductive invariants
in L is decidable even when L is an infinite language of universal
formulas. Decidability is obtained by restricting L and defining a
suitable well-quasi-order on the state space. We also present some
undecidability results that show that our restrictions are necessary.
We further present a framework for systematically constructing
infinite languages while keeping the invariant inference problem
decidable. We illustrate our approach by showing the decidability
of inferring invariants for programs manipulating linked-lists, and
for distributed protocols.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal methods; F.3.1 [Specifying and Verifying and
Reasoning about Programs]: Invariants

Keywords verification, invariant inference, well-quasi-order, effec-
tively propositional logic

1. Introduction
Verifying the safety of infinite-state systems is a central problem for
automatic program verification. Given a program which describes a
transition relation τ , an assumption init on the initial states, and a
safety property P , we wish to automatically prove that every state
that is τ -reachable from a state satisfying init, satisfies P .

One of the most useful techniques for proving safety already
advocated by Floyd [17] is using inductive invariants. We say that
an invariant I is inductive for 〈init, τ, P 〉 if I satisfies the following
three conditions: (i) init⇒I (initiation). (ii) I⇒P (safety). (iii) I
is closed under τ , i.e., for every execution of τ which starts in a
state satisfying I , I also holds after executing τ (consecution). It is
well known that P holds if and only if there exists such an inductive
invariant (in a sufficiently powerful language).

Deductive verification tools such as Dafny [28] accept as input:
(i) a program, (ii) safety property and (iii) a candidate inductive
invariant I . These tools invoke a theorem prover such as Z3 [15]
to check that I is an inductive invariant. This approach raises two
technical challenges: (a) coming-up with an inductive invariant, and
(b) checking that a given invariant is inductive. Step (b) can be
fully automated if the program, the property, and the invariant are
expressed in a decidable logic [25, 32]. Many techniques attempt
to mechanize step (a) by searching for an inductive invariant. Such
tools are only able to infer inductive invariants in a certain language1,
and are hence necessarily incomplete in verifying safety. Their
output might be: (i) program is safe (found inductive invariant);
or (ii) program is unsafe (found a concrete counterexample); or
(iii) don’t know or diverge. Since the safety verification problem is
undecidable, this incompleteness is expected and therefore mostly
accepted by users of such techniques. However, since actual tools
search for inductive invariants in a certain language, the underlying
decision problem they address is in fact “is there an inductive
invariant in a certain language?” A key premise of this work is
that this problem is different from the safety problem, and hence
might be decidable even in cases where safety verification is not.

This work investigates the decidability of the problem of infer-
ring inductive invariants in a given language. Here, the expected out-
come is not “safe/unsafe”, but rather “inductive invariant exists/does
not exist in the given language”. Investigating the decidability of this
problem is important to better understand the foundation of existing
methods for invariant inference (e.g. abstract interpretation [13],
PDR [9, 26]): whenever the problem is undecidable, no tool will be

1 A language here means a (usually infinite) set of potential inductive
invariants.
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able to be complete even for the language in which it is searching;
in contrast, when the problem is decidable, tools builders can aim to
have complete algorithms for a restricted language.

This work formulates the general problem of inferring inductive
invariants in a restricted language L (Section 3), and applies the
technique of [2–5] based on well-quasi-orders (wqo’s) to get suffi-
cient conditions for decidability of invariant inference (Section 4).
The formalization is parametric in the language L, and associates
with each language L a quasi-order vL on the state space, such that
ifvL is a wqo, then invariant inference in L is decidable. This leads
to a (parametric) connection between languages in first-order logic
(presented in Section 5) and the decidability technique based on
wqo’s. This connection is the basis for the main results of this work.

This work makes the following contributions:

Decidability of universal invariants for linked data structures
We prove (Section 6) that when modeling programs manipulating
singly-linked-lists with effectively propositional logic as in [25], and
restricting to universal invariants, the invariant inference problem
is decidable (while safety is still undecidable). The technical proof
builds on Kruskal’s Tree Theorem [27] to show that the suitable vL

is a wqo. Being formulated in logic, this result naturally extends to
capture programs with additional structure beyond list reachability
(e.g. sorting algorithms). The complexity of inferring universal
invariants for linked-list is non-elementary (Section 8.4).

Undecidability of alternation-free invariants for linked data struc-
tures We show (Section 8.2) that in the same setting, inferring
alternation-free invariants is undecidable. This demonstrates that
the invariant inference problem is theoretically harder than invari-
ant checking, since in this setting checking inductiveness of an
alternation-free invariant is decidable. This also shows that mix-
ing universal and existential information even without alternation
makes invariant inference undecidable, so in this setting the restric-
tion to universal invariants is necessary for decidability of invariant
inference.

Undecidability of universal invariants for general systems Mod-
eling systems beyond linked-lists requires additional unrestricted
relations. However, we show (Section 8.3) that in the presence of
a single unrestricted binary relation, invariant inference is undecid-
able even when restricting to universal invariants. This is done by
constructing a safe transition system that has a universal inductive
invariant if and only if a given counter machine halts.

New decidability from old To overcome the general undecidabil-
ity while allowing unrestricted relations, we provide (Section 7)
systematic ways to construct classes of systems and languages for
invariants for which invariant inference is decidable. These construc-
tions start with some established wqo, (e.g. the linked-lists class
with universal invariants) and gradually extend it to construct new
systems with suitable wqo’s. This process results in systems richer
than the original one, while decidability is maintained by further
restricting the language of potential invariants. We demonstrate the
constructions by obtaining a decidable fragment of the invariant
inference problem that captures a nontrivial example of a network
learning switch.

2. Overview
In this section we provide a short overview of the problem addressed
by the paper, and its main results.

2.1 Motivation and Background
Inductive invariants may be difficult to find either manually or using
automatic program analysis. For example, Figure 1 shows a simple

x := 1; y := 2;
while * do

assert x > 0;
x := x + y; y := y + 1

Figure 1. A simple loop example.

loop with a property P = x > 0.2 The program executes the loop
an unbounded number of times starting from x = 1 and y = 3.
Obviously, x < 1000 is not an invariant at all in this program since
it is violated after 500 loop iterations. Interestingly, the required
safety property P = x > 0 is invariant in this program but it is not
inductive. For example, if we execute the program in states in which
y is negative, it will be violated. In order to come up with inductive
invariants we need to also prove something about y. For example,
x > 0 ∧ y ≥ 2 and x > 0 ∧ y > 0 are both inductive invariants for
P . However, if we restrict the language of inductive invariants to
consider x only, then no inductive invariant for P exists.

Inferring restricted inductive invariants This paper addresses the
decision problem that corresponds to inductive invariant inference,
defined as follows:

given a (usually infinite) family of candidate invariants L, a
transition relation, τ , initial assumptions init, and a safety
property P : does there exist a formula in L which is an
inductive invariant for 〈init, τ, P 〉?

Notice that this problem is relevant for abstract interpretation [13]
since L can be viewed as an abstract domain, in which case this
question amounts to asking if the abstract domain is precise enough
for the given program and property. Also notice that in reality one
is interested in efficient decision procedures, which is beyond the
scope of this paper. Finally, we note that if L is a finite set and
if invariant checking is decidable, then the problem of inferring
inductive invariants is trivially decidable.

Working with a restricted language of potential invariants L is
beneficial in many situations, as it may lead to decidability both
of invariant checking, and of invariant inference. Additionally, we
note that a negative answer to the invariant inference problem of the
form: “There exists no inductive invariant in L which can be used to
verify that your program satisfies P ” can be useful for programmers.
The programmer may decide to simplify her program such that there
will be an inductive invariant in L. In our limited interaction with
systems researchers, we observed that they are willing to change
their programs if the verifier provides a clear explanation as to why
there is no inductive invariant in the restricted language. In any case,
such an answer is better than an inconclusive alarm of the form:
“Your program may not satisfy P ” which even the most sophisticated
static analysis tools sometimes provide.

Well-Quasi-Orders To address the decidability of inferring induc-
tive invariants in a restricted language L, we apply the technique
of [2–4] based on well-quasi-orders (wqo’s).

The set of candidate invariants L naturally defines the following
quasi-order on states (models):

s vL s
′ iff ∀I ∈ L. s′ |= I ⇒ s |= I (1)

Thus, lower states satisfy more formulas from L. Notice that this
is a quasi-order, i.e., it is reflexive and transitive. Whenever vL is
a well-quasi-order (wqo), that is any infinite sequence s0, s1, . . .,
contains an increasing pair si vL sj with i < j, then invariant
inference in L is decidable. Intuitively, invariant inference in L can
be done by backward reachability analysis (which can be seen as

2 We note that this work does not consider numeric domains, but it is useful to
illustrate the notion of inductive invariants using a simple numeric program.
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iterative application of weakest precondition). The fact that vL is a
wqo guarantees the termination of this process.

Universal invariants A natural and useful language for inductive
invariants is the set of universal sentences. Universal invariants
can be used to prove properties of many infinite-state systems,
e.g. parameterized systems and programs with unbounded heap
allocation or unbounded arrays. The universal quantification is
usually over all nodes in a network, or all the elements in the heap or
the array (e.g. [35] for heaps and [14, 34] for arrays). Furthermore,
linked-lists can be formulated using a theory of list reachability
which allows deciding inductiveness of universal invariants using
effectively proportional logic (EPR) [25]. When L is the set of all
universal sentences, we denote the quasi-order of Equation (1) by
v∀∗ . We note that v∀∗ is the substructure relation known from
model theory (e.g. [12]). That is, s v∀∗ s′ iff s is isomorphic to a
substructure of s′ (s can be embedded in s′).

2.2 Decidability of Inferring Universal Invariants for Linked
Data Structures

When modeling programs manipulating singly-linked-lists with
effectively propositional logic as in [25], we prove that the structures
that arise are well-quasi-ordered by the substructure relation. This
leads to decidability of inferring universal invariants for such
programs. The proof utilizes Kruskal’s Tree Theorem [27], and
relates homeomorphic embedding of trees with the substructure
relation. The proof using Kruskal’s Tree Theorem naturally supports
adding any finite number of unary relations, which denote sets
of individuals, while still maintaining decidability of invariant
inference. This allows adding unary instrumentation relations, which
is useful for example in verifying sorting implementations [30].

2.3 Undecidability and Complexity of Invariant Inference
A natural way to extend universal invariants is by allowing Boolean
combinations of universal invariants and existential invariants. These
are called alternation-free invariants since they forbid alternating
universal and existential quantifiers. In [25], it was shown that this
class of invariants suffices to prove partial correctness of many
linked-list manipulating programs. Moreover, checking inductive-
ness of alternation-free invariants is still decidable.

While checking inductiveness is still decidable, we show that
the invariant inference problem is undecidable for alternation-free
invariants. This is proven by a reduction from the halting problem
of counter machines: given a counter machine we construct a
program and property such that the counter machine terminates
in k steps if and only if there exists an inductive invariant with
O(k) quantifiers for the program. While this result is somehow
expected given the unbounded nature of quantified invariants and
the complexity of inductive reasoning, we note that it differs from the
standard reductions (e.g.,[8]) which show that the safety problem for
programs with infinite state space is undecidable, as the constructed
program is safe whether the counter machine halts or not. This result
shows an interesting case where invariant inference is undecidable
while invariant checking is decidable.

The undecidability result implies that for linked-list manipulating
programs, restricting to universal invariants is necessary for the
decidability of invariant inference. By using a similar reduction,
we also show that inferring universal invariants has non-primitive
complexity. This reduction is from the safety problem of lossy
counter machines: given a lossy counter machine, we construct a
program such that the program has a universal inductive invariant
iff the lossy counter machine is safe.

For modeling systems beyond linked-lists, additional unrestricted
relations are needed. However, we show that even when restricting
to universal invariants, invariant inference becomes undecidable in
the presence of a single unrestricted binary relation. We do this by

a similar reduction from the halting problem of counter machines.
As before, we construct a system that has a universal invariant with
O(k) quantifiers iff a given counter machine halts in k steps. This
shows that for many general systems beyond linked-lists, inferring
universal invariants is undecidable.

2.4 Systematic Constructions for Decidability
The most exciting part of our work is the ability to show that it is
decidable to infer restricted universal invariants in many parametric
systems. We note that despite their inherent limitations, universal
invariants can be used to model many aspects of systems by using
uninterpreted relations. This includes relations with high-arity,
partial and total orders. However, as noted above, for the language
of all universal invariants, even one unrestricted binary relation
makes invariant inference undecidable. To obtain decidability, we
further restrict the language of potential universal invariants. To
do so, we start from an already established “base” wqo (e.g., the
linked-lists class with universal invariants), and present systematic
constructions that extend classes of systems and languages for
invariants in a limited way to construct new systems for which vL

is a wqo by construction, and thus invariant inference is decidable
(see Section 7). The resulting languages are subsets of the set of all
universal invariants.

Symmetric lifting We show that a decidability result for some
class of programs and language which relies on an underlying theory
(e.g., the theory of singly-linked-lists [25]) can be lifted to systems
that are modeled by an unbounded number of instances of the theory,
by creating a language of restricted universal sentences, that do not
correlate the different instances. We call this operation symmetric
lifting, and it can be used to model systems beyond linked-lists
by using high-arity relations. For example, the routing tables in a
network of switches may be modeled by a ternary relation route,
where route(d,m, n) denotes that messages sent to destination d
which arrive at switch m will be forwarded to n. Essentially, the
routing tables can be viewed as an unbounded number of linked-lists
— one for each destination d. In many cases the invariants do not
need to correlate the different instances of the original theory (e.g., it
is unnecessary to relate the routing tables for different destinations).
For such cases, we show that an established wqo (e.g. that of linked-
lists) can be lifted to obtain a wqo for a system where the relations
have an increased arity, which corresponds to an unbounded number
of instances of the base theory. The fact that wqo’s are preserved by
symmetric lifting is proved using Higman’s Lemma [23].

Bounded occurrences of unrestricted relations It is sometimes
necessary for the invariant to mention unrestricted relations (i.e.,
relations that do not obey any background theory). For example, a
model of a distributed protocol such as a learning switch may use
a relation pending of arity 4, where pending(s, d,m, n) denotes
that a packet with source s and destination d is pending on the link
from n to m. Moreover, the invariant might need to relate pending
messages to reachability information such as forwarding paths.
To handle such cases, we show that wqo and thus decidability of
invariant inference is preserved by extending a language of universal
invariants to include unrestricted relations, as long as only a bounded
number of occurrences of these relations appear in each universal
clause.

This is not trivial since the occurrences of the unrestricted
relations are allowed to create correlations with relations that may
appear an unbounded number of times under an unbounded number
of quantifiers (e.g., to correlate pending messages to paths in a
forwarding graph). For this reason, this result cannot be obtained
as a straightforward cartesian product with a finite domain, and the
proof also relies on Higman’s Lemma to preserve the wqo.
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3. The Inductive Invariant Inference Problem
In this section we formalize the inductive invariant decision problem
parameterized by the language of invariants, and contrast it with the
classical safety decision problem. We start with basic definitions
related to the problem at hand.

Transition systems and safety properties A transition system is
a triple TS = (S, S0, R) where S is a set of states, S0 ⊆ S is
a set of initial states, and R ⊆ S × S is a transition relation. A
trace of TS is a sequence of states s0, s1, . . . , sn such that s0 ∈ S0

and for every 0 ≤ i ≤ n − 1, (si, si+1) ∈ R. A state s′ ∈ S is
reachable if there exists a trace s0, s1, . . . , sn such that sn = s′.
Given a set A ⊆ S, the image of A denoted by R(A) is given by
R(A) = {s′ ∈ S | ∃s ∈ A. (s, s′) ∈ R}.

A safety property is defined by a set of states P ⊆ S. TS is
safe with respect to P , denoted TS |= P , if the set of all reachable
states of TS is a subset of P . With overloading of terminology, we
sometimes use the phrase transition system to mean a transition
system and a safety property: (S, S0, R, P ).

Classes of transition systems and properties We are interested
in formulating decision problems where the input consists of a
transition system and a safety property. In the following sections
we investigate decidability of these problems for various classes of
transition systems and safety properties. We use C to denote such
a class. For example, the class of digital circuits describes the set
of states of a transition system by Boolean variables, and describes
the set of initial states, the transition relation and the property using
propositional formulas. Another example is that of programs in
some programming language, where the property might be defined
via assertions within the program. We write (TS, P ) ∈ C to denote
that (TS, P ) is an instance of class C.

The safety decision problem The classical problem of determin-
ing the safety of a transition system taken from a given class C
of transition systems can be formulated as the following decision
problem:

SAFE[C] = {(TS, P ) ∈ C | TS |= P}
Recall that for many classes of infinite-state transition systems,

SAFE[C] is undecidable (as TS can encode a Turing machine).

Inductive invariants Let (S, S0, R, P ) be a transition system with
safety property. A set I ⊆ S is an inductive invariant for the
transition system if (i) S0 ⊆ I , (ii) R(I) ⊆ I , and (iii) I ⊆ P . It
is well known that TS |= P if and only if there exists an inductive
invariant for (TS, P ). Specifically, if TS |= P , then the set of all
reachable states of TS is an example of an inductive invariant.

Definition 1 (Counterexample to Inductiveness). Let (S, S0, R, P )
be a transition system with safety property, and let I ⊆ S be a set
of states. A state s ∈ S is a counterexample to inductiveness of I
if (i) s ∈ S0 but s 6∈ I , or (ii) s ∈ I , but there exists s′ 6∈ I such
that (s, s′) ∈ R, or (iii) s ∈ I but s 6∈ P . Clearly, a set I ⊆ S is
inductive iff there is no counterexample to inductiveness of I .

Languages for expressing inductive invariants We are interested
in deciding whether a given transition system has an inductive
invariant which is expressible in a given language. Therefore, the
input to the inductive invariant problem is a transition system with a
safety property, (TS, P ), and a language L ⊆ 2S (where S is the set
of states of TS) that determines the inductive invariants of interest.
As such, the inductive invariant problem is defined not only with
respect to a class C of transition systems (and properties), but also
with respect to a class L of languages.

For example, if C is the class of digital circuits defined via propo-
sitional formulas over Boolean variables, then L might restrict to
languages L that contain sets expressible by propositional formulas

over some of the variables. In this case, if the formulas can mention
all the propositional variables, then every set of states is in L. On
the other hand, if C defines transition systems using first-order logic
formulas, andL restricts to languages L that contain sets expressible
by quantifier free formulas (or universal formulas), some sets of
states might not be in L. Since the definition of L might depend on
C, we consider them as a pair (C,L). We write (TS, P, L) ∈ (C,L)
to denote that (TS, P, L) is an instance of (C,L). We say that a set
A ⊆ S is expressible in L if A ∈ L.

The inductive invariant inference problem Given C and L, we
define the decision problem INV[C,L] as follows: given a transition
system, TS, a safety property, P , and a language, L ⊆ 2S , such
that (TS, P, L) ∈ (C,L), is there an inductive invariant for (TS, P )
which is expressible in L. Formally:

INV[C,L] = {(TS, P, L) ∈ (C,L) |
∃I ∈ L s.t. I is an inductive invariant for (TS, P )}

Note that for every C and L, if (TS, P, L) ∈ INV[C,L] then
(TS, P ) ∈ SAFE[C]. That is, if there exists an inductive invariant
(in L) for a transition system then it is safe. The converse does not
necessarily hold, and there could be cases where (TS, P ) ∈ SAFE[C]
but (TS, P, L) 6∈ INV[C,L]. This can happen if the language L is
not expressive enough to describe an inductive invariant for (TS, P ).
This suggests that INV[C,L] may be decidable even if SAFE[C] is
undecidable.

Also note that decidability issues are of interest when C allows
the definition of an infinite set of states and L allows the definition
of infinitely many sets, since in the finite case both SAFE[C] and
INV[C,L] can be decided by a naive enumeration. This is the case,
for example, for the class of digital circuits with invariants expressed
as propositional formulas.

Effectiveness assumptions In the sequel we restrict our attention
to classes C and languages L such that: (i) there is a decision
procedure that, given (TS, P, L) ∈ (C,L), determines membership
in S, S0, R, P and L, (ii) there exists a decision procedure that
checks, given (TS, P, L) ∈ (C,L) and a set I ∈ L, whether I is an
inductive invariant for (TS, P ), and provides a counterexample to
inductiveness of I if it is not.

Note that since C and L are used to define decision problems,
they come with a finite encoding of their instances, and the set of
instances of (C,L) is always enumerable and decidable.

4. Sufficient Conditions for Decidability of
INV[C,L]

In this section, we apply the technique of [2–5] to obtain suffi-
cient conditions for the decidability of INV[C,L]. To do so, for
(TS, P, L) ∈ (C,L), we define a quasi-order, denoted vL, on the
states of the transition system TS. The quasi-order vL has the prop-
erty that if it is a well-quasi-order, and if (C,L) has several other
simple properties, then INV[C,L] is decidable.

Well-founded sets and well-quasi-orders We first recall the def-
initions of a well-quasi-order (wqo) and a well-founded set. Let
(X,≤) be a quasi-order, i.e., ≤ is reflexive and transitive. We say
that (X,≤) is well-founded if it does not contain any infinite strictly
decreasing chain x0 > x1 > . . .. We say that the infinite sequence
x0, x1, . . . is an antichain if every two elements in it are incompara-
ble, i.e., xi 6≤ xj for all i 6= j. We say that (X,≤) is a well-quasi-
order (wqo) if for every infinite sequence of elements x0, x1, . . .
there exists i < j such that xi ≤ xj . Equivalently, (X,≤) is a wqo
if (X,≤) is well-founded and does not contain antichains.
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4.1 Quasi-Order and Exclusion Operator for L
Definition 2 (vL). For any language L ⊆ 2S , we define a quasi-
order vL on S given by

s1 vL s2 iff for all A ∈ L : s2 ∈ A implies s1 ∈ A
Thinking of A as an L-property, s1 vL s2 says that every L-

property satisfied by s2 is satisfied by s1. That is, s1 satisfies more
(or the same) L-properties than s2.

Definition 3 (AvoidL). Let s ∈ S be a state and let A ∈ L be a
set such that s 6∈ A, and for every A′ ∈ L, if s 6∈ A′ then A′ ⊆ A.
Then we denote A by AvoidL(s).

That is, AvoidL(s) is the maximum (w.r.t. set inclusion) over all
sets in L that do not include s. Note that AvoidL(s) need not exist.
However, if it exists, it is unique and equal to the union of all sets in
L that do not include s. AvoidL(s) and vL are strongly related:

Lemma 4.1. For all s, s′ such that AvoidL(s) exists, s vL s′ iff
s′ 6∈ AvoidL(s).

Proof. The “only-if” direction directly follows from the definitions.
For the “if” direction, assume s 6vL s′. Then there exists A ∈ L
such that s′ ∈ A, but s 6∈ A. The latter implies A ⊆ AvoidL(s) and
thus, s′ ∈ AvoidL(s).

4.2 L-Relaxed Transition System & Decidability of INV[C,L]

In this section, we formulate sufficient conditions for decidability
of INV[C,L]. Given (C,L), we say that AvoidL is computable in
(C,L) if there exists a procedure that, given (TS, P, L) ∈ (C,L)
and s ∈ S, computes AvoidL(s). (In particular, this implies that
AvoidL(s) exists for every s ∈ S.)

Theorem 4.2. Let (C,L) be such that (i) for every (TS, P, L) ∈
(C,L), (S,vL) is a wqo, (ii) AvoidL is computable in (C,L), and
(iii) for every (TS, P, L) ∈ (C,L), L is closed under finite intersec-
tions. Then INV[C,L] is decidable. Furthermore, Algorithm 1 is a
decision procedure for it.

Algorithm 1: Backward Reachability Analysis
1 I := S

2 while I is not an inductive invariant for (TS, P ) do
3 if S0 6⊆ I then return no inductive invariant in L

4 let s be a counterexample to inductiveness of I
5 I := I ∩ AvoidL(s)
6 return I is an inductive invariant in L

We prove Theorem 4.2 by proving partial correctness and
termination of Algorithm 1. Intuitively, Algorithm 1 simulatneously
searches for an inductive invariant in L and for an indication
that such an inductive invariant does not exist. The algorithm
uses counterexamples to inductiveness to iteratively strengthen
the candidate invariant. Strengthening is performed by excluding
the counterexamples using AvoidL (Line 5). An indication that an
inductive invariant in L does not exist comes in the form of a trace
of a relaxed transition system, which we define below, from an
initial state to a “bad” state (violating P ). Such a trace does not
imply that the original transition system is unsafe, but as we show
next, it implies that no inductive invariant exists in L, hence partial
correctness of the algorithm follows. Finally, the wqo property
is used to rule out an infinite sequence of strengthenings, hence
ensuring termination of Algorithm 1 and proving Theorem 4.2.

Definition 4. Given a transition system TS = (S, S0, R) and
a language L ∈ 2S , we define the L-relaxed transition system

TSL = (S, S0, R
L) by

(s, s′) ∈ RL iff (s, s′) ∈ R or s′ vL s.

We say that a trace of TSL is an L-relaxed trace of TS.

Lemma 4.3. Let (TS, P, L) ∈ (C,L) be a transition system and
language. Then (TS, P, L) ∈ INV[C,L] implies TSL |= P .

Proof. If (TS, P, L) ∈ INV[C,L], there is I ∈ L that is an inductive
invariant for (TS, P ). Let s0, . . . , sN be an L-relaxed trace. We
prove by induction that for all i ≤ N , si ∈ I . Indeed, since s0 ∈ S0

and S0 ⊆ I , we have s0 ∈ I . For the induction step, assume si ∈ I
and consider the L-relaxed transition step (si, si+1) ∈ RL. If
(si, si+1) ∈ R, then si+1 ∈ I by inductiveness of I . If si+1 vL si,
then si+1 ∈ I since I ∈ L. Since I ⊆ P , we conclude that any
reachable state of TSL is in P , and thus TSL |= P .

Lemma 4.4 (Partial Correctness of Algorithm 1). If Algorithm 1
terminates, then its output is correct.

Proof. If Algorithm 1 determines that I is an inductive invariant,
correctness follows from the loop condition. For the case where
Algorithm 1 determines that no inductive invariant exists in L, we
prove by induction on the number of loop iterations that for every
state s′ 6∈ I , there exists an L-relaxed trace of TS leading from s′ to
some state 6∈ P . Hence, if S0 6⊆ I , it follows that TSL 6|= P , and by
Lemma 4.3, (TS, P, L) 6∈ INV[C,L]. The base case of the induction
is clear. For the induction step, let s′ be a state that is removed from
I since it is not in AvoidL(s). By Definition 1, either s 6∈ P or there
exists s′′ 6∈ I such that (s, s′′) ∈ R. By the induction hypothesis for
I , we get that in both cases, s itself has an L-relaxed trace leading
to some state 6∈ P . By Lemma 4.1, s vL s′, so s′ also has an
L-relaxed trace leading to a state 6∈ P .

In the general case, Algorithm 1 is not guaranteed to terminate.
However, the following lemma gives a natural condition for its
termination:

Lemma 4.5 (Termination of Algorithm 1). If (L,⊆) is well-
founded, then Algorithm 1 always terminates.

Proof. For i ≥ 0, let Ii denote the set I at the i’th loop iteration
of Algorithm 1. The sequence I0, I1, . . . is strictly decreasing with
respect to set inclusion, so it must be finite by well-foundedness.

The proof Theorem 4.2 is completed by the following lemma:

Lemma 4.6. Let L ⊆ 2S be a language such that (S,vL) is a wqo,
then (L,⊆) is well-founded.

Proof. Assume to the contrary that there exists a strictly decreasing
infinite sequence A0 ⊃ A1 ⊃ A2 . . . of sets in L. For every i ≥ 0
let si be a state in Ai \ Ai+1. For every i < j, Aj ⊆ Ai+1, and
therefore si 6∈ Aj . Hence, for every i < j, Aj ∈ L and sj ∈ Aj

but si 6∈ Aj . This implies that si 6vL sj for every i < j, in
contradiction to the fact that (S,vL) is a wqo.

In fact, the correctness proof of Algorithm 1 also implies the
converse of Lemma 4.3 under the conditions of Theorem 4.2. This
will become useful in Section 8.4.

Corollary 4.7. Let (C,L) be such that (i) for every (TS, P, L) ∈
(C,L), (S,vL) is a wqo, and (ii) AvoidL is computable in (C,L).
Then (TS, P ) ∈ INV[C,L] if and only if TSL |= P .

Proof. If TSL |= P , then a L-relaxed trace leading from an initial
state to a state 6∈ P does not exist. By the proof of Lemma 4.4,
this implies that Algorithm 1 does not terminate in Line 3. Thus, it
necessarily finds an inductive invariant.
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5. FOL Classes of Transition Systems and
Languages of Invariants

In the rest of the paper we focus on classes of transition systems and
properties and on languages of inductive invariants that are based
on first-order logic, as we describe next.

5.1 FOL Classes of Transition Systems and Properties
FOL classes use first-order logic to specify transition systems and
their properties. A transition system TS = (S, S0, R) is specified by
a tuple TS = (Σ,Γ, ϕ0, τ) where Σ is a vocabulary which consists
of constants and relation symbols, Γ is a background theory given
as a set of closed formulas over Σ,3 ϕ0 is a closed formula over Σ
representing the initial states formula, and τ is a two-vocabulary
closed formula representing the transition relation. In more detail, τ
has vocabulary Σ∪Σ′ where Σ′ = {v′ | v ∈ Σ}. A safety property
is also represented by a formula, ϕP , over Σ.

In the sequel, unless explicitly stated otherwise, all formulas we
consider are closed formulas (sentences).

A structure, s = (D, I) ∈ STRUCT[Σ] consists of a finite
domain, D, and an interpretation function, I, mapping each symbol
of Σ to its meaning in s.

The set of states of the transition system, S = STRUCT[Σ,Γ],
is the set of all (finite) structures in STRUCT[Σ] that satisfy Γ. The
set of initial states, S0, is the set of states satisfying ϕ0. Similarly,
for the set of “safe” states represented by ϕP .

The two-vocabulary transition formula τ , represents transitions
from s = (D, I) to s′ = (D, I′). The set of transition pairs is

R = {((D, I1), (D, I2)) ∈ S × S | (D, I1 ∪ I′2) |= τ}
where I2(v) = I′2(v′).

FOL classes differ in the restrictions they impose on Σ, and on
the formulas in Γ, ϕ0,τ and ϕP .

EPR classes Of special interest are formulas expressed in the
effectively-propositional (EPR) fragment of first-order logic, also
known as the Bernays-Schönfinkel-Ramsey class. EPR is restricted
to relational first-order formulas (i.e., formulas over a relational
vocabulary that may contain constant symbols and relation symbols
but no function symbols) with a quantifier prefix ∃∗∀∗ when
written in prenex normal form (i.e., when written as a prefix of
quantifiers followed by a quantifier-free formula). Satisfiability of
EPR formulas is reducible to Boolean SAT, hence decidable [25].
Moreover, theories in this fragment enjoy the small model property,
meaning that a satisfiable formula is guaranteed to have a finite
model of a size proportional to the depth of quantifier nesting. An
EPR class is a FOL class which imposes the following restrictions:

Definition 5. An EPR transition system is a transition system
(TS, ϕP ), such that TS = (Σ,Γ, ϕ0, τ) where Γ is a finite set of
EPR formulas, ϕ0 and τ are EPR formulas, and ϕP has a quantifier
prefix ∀∗∃∗. (In particular, Σ contains no function symbols.)

The class Cn∗ of programs manipulating singly-linked-lists In
this section we define the EPR class Cn∗ , which uses the surpris-
ingly useful but simple theory introduced in [25] to describe prop-
erties of programs manipulating singly-linked-lists in EPR. As de-
scribed in [25], this theory can be used to model both acyclic and
cyclic linked-lists, even though the underlying formulation assumes
acyclicity.

Each instance of Cn∗ consists of an EPR transition system
defined over vocabulary Σn∗ and background theory Γn∗ , defined
as follows.

3 A background theory defines a set of models. In this work, we follow
the standard approach where the theory is expressed by a set of formulas.
However, the definitions naturally extend to the more general case.

Let the vocabulary Σn∗ contain one binary relation symbol n∗,
a finite number of unary relation symbols u1, ..., uk, and a finite
number of constant symbols c1, ..., cm. The idea is that we want
to model a next pointer, n, by only mentioning the binary relation
symbol n∗, that encodes the reflexive, transitive closure of n.

We use the following background theory, Γn∗ [25]:

∀x, y, z. (n∗(x, y) ∧ n∗(y, x)↔ x = y) ∧
(n∗(x, y) ∧ n∗(y, z)→ n∗(x, z)) ∧
(n∗(x, y) ∧ n∗(x, z)→ n∗(y, z) ∨ n∗(z, y))

(2)

which says that n∗ is reflexive, anti-symmetric, transitive, and semi-
linear in the sense that the set of all points reachable from any given
point is linearly ordered.

The following two formulas will be useful:

ϕnext(x, y) ≡ n∗(x, y) ∧ x 6= y ∧
∀z. n∗(x, z)→ x = z ∨ n∗(y, z)

ϕroot(x) ≡ ∀y. n∗(x, y)→ x = y

Intuitively, ϕnext(x, y) recovers the edge relation n from its reflex-
ive, transitive closure, and ϕroot(x) says that x has no outgoing
edges, i.e., it is a root.

The reader should convince herself that the finite models of Γn∗

are directed forests, with the edges directed towards the roots.

5.2 FOL Languages of Inductive Invariants
As we consider classes of transition systems expressed in FOL,
we also wish to express inductive invariants as logical formulas
in languages based on first-order logic. Of special interest are the
following two classes of languages:

• L∀∗ : class of universal invariants. The L∀∗ class of languages
restricts formulas to closed universal formulas (i.e., formulas
with a ∀∗ prefix). Each vocabulary Σ induces another language
of classL∀∗ . Since Σ is typically clear from the context, we omit
it from the notation, and simply write ∀∗ to denote a language
from L∀∗ .
• LAF: class of alternation-free invariants. The LAF class of

languages restricts formulas to alternation-free formulas. These
are formulas obtained by conjunctions and disjunctions of closed
universal formulas (with a ∀∗ prefix) and closed existential
formulas (with a ∃∗ prefix).

5.3 Effectiveness Assumptions in FOL
When FOL classes of transition systems and languages are con-
sidered, the effectiveness assumption (i) formulated in Section 3
corresponds to decidability of checking whether a given structure
satisfies a formula, and assumption (ii) corresponds to decidability
of satisfiability, as explained below.

For the transition system TS = (Σ,Γ, ϕ0, τ) and the safety
property P given by a first-order formula ϕP , checking whether
the first-order formula ϕ represents an inductive invariant amounts
to checking whether (i) ϕ0 ⇒Γ ϕ, (ii) ϕ ∧ τ ⇒Γ∪Γ′ ϕ

′, and
(iii) ϕ ⇒Γ ϕP , where ϕ′ denotes ϕ except that every v ∈ Σ is
substituted by v′ ∈ Σ′, and similarly for Γ′, and ϕ1 ⇒Γ̃ ϕ2 denotes
that for every structure s ∈ STRUCT[Σ, Γ̃], if s |= ϕ1, then s |= ϕ2

as well. When Γ̃ is clear from the context, we simply write ⇒
instead of ⇒Γ̃. Recall that validity of a formula is equivalent to
unsatisfiability of its negation.

A counterexample to inductiveness of ϕ (see Definition 1) is
now a structure s ∈ STRUCT[Σ,Γ] such that (i) s |= ϕ0 ∧ ¬ϕ, or
(ii) there exists s′ ∈ STRUCT[Σ,Γ] such that (s, s′) |= ϕ∧τ∧¬ϕ′,
or (iii) s |= ϕ ∧ ¬ϕP .

In this paper, all classes we consider are EPR classes, and all
languages are alternation-free, usually universal. Note that for an
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EPR transition system, checking inductiveness of an alternation-
free formula amounts to checking unsatisfiability of EPR formulas,
hence it is decidable. In addition, if one of the checks fails, the sat-
isfying finite structure provides a counterexample to inductiveness.
Therefore, all the effectiveness requirements are satisfied.

5.4 vL and AvoidL in FOL
Finally, we recast in FOL the definitions of vL and AvoidL(s),
which are used to formulate the sufficient conditions for decidability
in Theorem 4.2.

A FOL language L of inductive invariants corresponds to a
set of formulas, each of which represents a set of states. In this
setting, s1 vL s2 iff for all ϕ ∈ L, s2 |= ϕ implies s1 |= ϕ.
Similarly, AvoidL(s) is the weakest formula ϕ ∈ L such that s 6|= ϕ.
That is, s 6|= AvoidL(s), and for every ϕ′ ∈ L, if s 6|= ϕ′ then
ϕ′ ⇒ AvoidL(s).

We note that for FOL languages, requirement iii of Theorem 4.2
corresponds to closure of L under (finite) conjunctions. This prop-
erty holds for all languages considered in this paper.

6. Decidability of Inferring Universal Invariants
for Programs Manipulating Linked-Lists

In this section we consider the class of programs manipulating
singly-linked-lists, described in Section 5.1, and use Theorem 4.2
to prove that inferring universal invariants for these programs is
decidable:

Theorem 6.1. INV[Cn∗ ,L∀∗ ] is decidable.

Technically, we first prove the requirement of Theorem 4.2 that
refers to the computability of Avoid∀∗ with respect to the more
general class of EPR transition systems. We then prove that the
first-order representation of linked-lists using STRUCT[Σn∗ ,Γn∗ ]
from [25], described in Section 5.1, forms a wqo via v∀∗ (Theo-
rem 6.4). Since all effectiveness assumptions also hold (and univer-
sal invariants are closed under conjunction), it follows that for such
programs, inferring universal inductive invariants is decidable. This
is in contrast to the fact that the safety problem for such programs
is undecidable, as they are Turing Complete. A later result (Theo-
rem 8.1) shows that restricting to universal invariants is necessary
for decidability, since inferring alternation-free invariants for such
programs is undecidable.

6.1 Computability of Avoid∀∗ for EPR Classes
To show that Avoid∀∗ is computable, we use the model theoretic
notion of a diagram (e.g. [12])

Definition 6 (Diagram). Let s = (D, I) be a finite structure over Σ
and letD = {e1, . . . , e|D|}. The diagram of s, denoted by Diag(s),
is the following formula over Σ:

∃x1 . . . x|D|. distinct(x1 . . . x|D|) ∧ ψ
where ψ is the conjunction of:
• xi = c for every constant symbol c such that I(c) = ei, and
• r(xi1 , . . . , xik ) for any relation r of arity k in Σ and any
i1, . . . , ik s.t. (ei1 , . . . , eik ) ∈ I(r), and
• ¬r(xi1 , . . . , xik ) for any relation r of arity k in Σ and any
i1, . . . , ik s.t. (ei1 , . . . , eik ) 6∈ I(r).

Intuitively, one can think of Diag(s) as the formula produced
by treating individuals in s as existentially quantified variables and
explicitly encoding the interpretation of every constant and every
relation symbol. Note that the diagram is well defined since we
consider finite structures. Recall that s1 = (D1, I1) is a substructure
of s2 = (D2, I2) if D1 ⊆ D2 and for every v ∈ Σ, I1(v) is the
restriction of I2(v) to D1. It is well known that s2 |= Diag(s1)

Figure 2. Infinite sequence of incomparable models w.r.t. v∀∗ .

iff s1 is isomorphic to a substructure of s2. Moreover, for every
closed existential formula ϕ over Σ, s |= ϕ iff Diag(s)⇒ ϕ. This
immediately implies the following two lemmas:

Lemma 6.2. s1 v∀∗ s2 iff s1 is isomorphic to a substructure of s2.

That is, for finite structures, v∀∗ is the same as the substructure
relation (up to isomorphism).

Lemma 6.3. For every s = (D, I), Avoid∀∗(s) is given by the
prenex normal form of ¬Diag(s). In particular, it is computable.

6.2 Linked-Lists are WQO via v∀∗
The proof of Theorem 6.1 is completed by the following theorem:

Theorem 6.4. (STRUCT[Σn∗ ,Γn∗ ],v∀∗) is a wqo.

The proof uses Kruskal’s Tree Theorem (which we explain next).
Note that in general, (STRUCT[Σ],v∀∗) is not a wqo if Σ contains
a binary relation symbol. For example, all the models from the
infinite sequence in Figure 2 are incomparable w.r.t. v∀∗ , since
none of them can be isomorphically embedded into another.

Kruskal’s Tree Theorem Let X be a set. A labeled graph over
X is a finite undirected graph G = (V,E, `) that includes a vertex
labeling function ` : V → X . If G is a tree (undirected connected
acyclic graph), then it is called a labeled tree over X .

Definition 7 (Tree homeomorphic embedding). Suppose that
(X,≤) is an ordered set. Let (T (X),�) be the set of all labeled
trees over X , with the following ordering: T1 � T2 iff if T1 can be
obtained from T2 by a finite number of the following operations:

• Removing a node of degree 1 (and the corresponding edge).
• Removing a node of degree 2 (and the corresponding edges),

and adding an edge between its two neighbors.
• Changing the label of a node to a lower value.

Note that the degree of a node is the number of adjacent edges (and
not the number of children—since we consider unrooted trees, the
notion of children of a node is not well defined).

Fact 6.5 (Kruskal’s Tree Theorem, [27, 33].). If (X,≤) is a wqo,
then so is (T (X),�).

Proof of Theorem 6.4. We will encode the directed forests of
(STRUCT[Σn∗ ,Γn∗ ],v∀∗) into the undirected trees of (T (X),≤)
where X is a certain finite set under the trivial wqo (X,=). We
will then apply Fact 6.5 to obtain that (T (X),≤) is a wqo. The
properties of the encoding will guarantee that this implies that
(STRUCT[Σn∗ ,Γn∗ ],v∀∗) is a wqo.

We first define a function f : STRUCT[Σn∗ ,Γn∗ ] → T (X)
which encodes each ordered forest F as an undirected tree f(F ).
The mapping f adds a special new root, vroot, connects vroot to each
root of F , and makes all the n-edges determined by n∗, undirected.

LetX = 2{u1,...,uk,c1,...,cm}∪{lroot}. We use this finite setX
to label each vertex in f(F ) according to whether the corresponding
vertex from F satisfies each unary predicate, ui and whether it is
equal to the constant cj . The new vertex vroot is labeled lroot. The
mapping f is illustrated in Figure 3.
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Figure 3. The transformation between STRUCT[Σn∗ ,Γn∗ ] and
T (X). Left: a structure with three constants: a, b, c; dashed edges
depict n∗; solid edges illustrate next. Right: an undirected labeled
tree corresponding to the structure on the left.

The following equations explicitly define the mapping f . Given
F = (D, I), we put f(F ) = (V,E, `) where:

V =D ∪ {vroot} where vroot 6∈ D
E = {{a, b} | a, b ∈ D and F, a, b |= ϕnext}∪

{{a, vroot} | F, a |= ϕroot}

`(a) =

{
{ui | a ∈ I(ui)} ∪ {ci | a = I(ci)} a 6= vroot
lroot a = vroot

The labeling clearly maintains all the information contained in
the structure about the constants and the unary predicates, and the
new node vroot (made distinct by the label lroot ). It is easy to
regain F from the labeled undirected tree, f(F ). To formalize this,
we define Tn∗ ⊆ T (X) to be the set of all labeled trees, (V,E, `),
over X such that there is exactly one node labeled lroot, and for
every constant symbol ci there is exactly one node a ∈ V such that
ci ∈ l(a). Then, f is one-to-one and onto (up to isomorphism) from
STRUCT[Σn∗ ,Γn∗ ] to Tn∗ .

Define the inverse mapping g : Tn∗ → STRUCT[Σn∗ ,Γn∗ ]
as follows. Given T = (V,E, `) ∈ Tn∗ , let vroot be the
unique element in V labeled lroot, and let g(T ) = (D, I) ∈
STRUCT[Σn∗ ,Γn∗ ], where:

D = V \ {vroot}
I(ci) = vci such that ci ∈ `(vci)
I(ui) = {v ∈ D | ui ∈ `(v)}
I(n∗) = {(u, v) ∈ D2 | the path in T from u to vroot contains v}

Note that for any T ∈ Tn∗ , g(T ) |= Γn∗ , and g = f−1.
To complete the proof that (STRUCT[Σn∗ ,Γn∗ ],v∀∗) is

a wqo, let s1, si, . . . be an infinite sequence of structures in
STRUCT[Σn∗ ,Γn∗ ]. Consider the infinite sequence f(s1), f(s2),
. . . of labeled trees. Since (T (X),�) is a wqo, there exists i < j
such that f(si) can be obtained from f(sj) by the three opera-
tions of Def. 7. Since the labels are ordered by equality, there are
only two operations to consider: removing a node of degree 1,
and replacing a node of degree 2 by an edge. Note that since both
f(si), f(sj) ∈ Tn∗ , the node labeled by lroot and nodes represent-
ing constants cannot be removed. Now, consider any T ∈ Tn∗ . If
T ′ is obtained from T by removing a node v of degree 1 that is not
labeled by lroot and does not represent a constant, then clearly g(T ′)
is isomorphic to a substructure of g(T ), obtained by removing v
from the domain of g(T ). This is also true for removing a node of
degree 2 and replacing it by an edge, since this operation preserves
n∗ between all remaining nodes. Since f(si) can be obtained from
f(sj) by a finite sequence of such operations, we conclude that
si is isomorphic to a substructure of sj , i.e., si v∀∗ sj . Thus,
(STRUCT[Σn∗ ,Γn∗ ],v∀∗) is a wqo.

pending := ∅; route := ∅; learned := ∅; route∗ := {(D,X,X)}
while ∗ :
# choose an arbitrary new or pending packet
src, dst, sw1, sw2 := ∗, ∗, ∗, ∗
assume pending(src, dst, sw1, sw2) ∨ (src = sw1 = sw2)
if ∗ :

pending := pending \ {(src, dst, sw1, sw2)}
# if the packet’s source is unknown at sw2, learn a new route
if ¬learned(src, sw2) ∧ src 6= sw2 :
# assert that a cycle is not created
assert¬route∗(src, sw1, sw2)
# update the routing table
learned := learned ∪ {(src, sw2)}
route := route ∪ {(src, sw2, sw1)}
route∗ := route∗ ∪ {(src, X, Y ) |

route∗(src, X, sw2) ∧ route∗(src, sw1, Y ))}
# if dst = sw2 consume the packet, otherwise forward it
if dst 6= sw2 :
if ¬learned(dst, sw2) :
# if no route to dst is known, flood the packet
pending := pending ∪ {(src, dst, sw2, V ) | link(sw2, V ) ∧ V 6= sw1)}

else : # otherwise forward according to route
pending := pending ∪ {(src, dst, sw2, V ) | route(dst, sw2, V )}

Figure 4. Model of a learning switch that learns the first connection.

7. Systematic Constructions of Decidable Classes
The result of Section 6 implies that inference of universal invari-
ants is decidable for programs manipulating linked-lists. To model
systems beyond linked-lists, one has to use relations of higher arity
and/or relations unrestricted by any background theory. However, in
Section 8.3 we show that this quickly leads to undecidability of in-
ferring universal invariants. In this section, we develop constructions
that maintain decidability of invariant inference imposing further
syntactic restrictions on the potential invariants. When combined,
the constructions we develop are quite general, and can capture the
interesting example of a network learning switch.

Motivating example: network learning switch As a motivating
example, we consider the network learning switch protocol. Learn-
ing switches maintain routing tables, and learn routes as they receive
packets. When a packet first arrives from an unknown source, the
switch learns a route to its source through the incoming link. It
then checks if it has a route to the packet’s destination, and either
forwards the packet to a known route or floods it to all but the incom-
ing link. For this protocol, we consider the safety property that the
created routing tables do not contain forwarding loops. The learning
switch is a parameterized distributed system with infinite-state, as
there is an unbounded number of switches, and the routing table of
each switch contains an unbounded number of entries. The system
and property can be modeled as an EPR transition system. Figure 4
provides a description of such a model.

We now describe the relations used by the model. The relation
link2 describes the links in the network. The relation pending4

describes pending packets, and pending(s, d, sw1, sw2) denotes
the fact that a packet with source field s and destination field d is
pending on the link from switch sw1 to switch sw2. The relations
learned2, route3, route∗3 store information about the current routing
tables of the switches. learned(d, sw) denotes that switch sw has
learned a route to destination d. route(d, sw1, sw2) denotes that a
packet with destination field dwill be routed by switch sw1 to switch
sw2. Thus for any d, route(d, ·, ·) holds the forwarding graph for
d, that describes how packets with destination d will be forwarded
in the network. We wish to verify that this graph is acyclic for all
d. To this end, the relation route∗ describes paths in this graph:
route∗(d, sw1, sw2) holds if route(d, ·, ·) contains a path from sw1

to sw2. Formally, route∗(d, ·, ·) is the reflexive transitive closure
of route(d, ·, ·) for any d. The modelling maintains this fact by the
standard technique of updating transitive closure (e.g. [25]). The
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assert statement asserts that whenever a switch learns a new route,
it does not introduce a cycle in the forwarding graph.

Gradual extensions While the model of Figure 4 represents an
EPR transition system, it is not apparent how the results of Section 4
and Section 6 can be applied to obtain decidability of invariant
inference for it. In the rest of this section we develop constructions
that obtain this by limiting the invariants to universal sentences that
satisfy further syntactic restrictions. We do so by gradual extensions
of classes of transition systems and languages. The extensions
start from an established decidable class, and each step extends
the expressive power of the transition system or the language for
invariants in a limited way that preserves the fact that vL is a wqo,
and AvoidL is computable (L is the language of invariants).

Formally, each extension starts with an EPR class paired with
a language class of universal invariants (C,L) which satisfy the
conditions of Theorem 4.2, and constructs a new EPR class and
a corresponding language class (C′,L′) that also satisfy these
conditions, ensuring that INV[C′,L′] is decidable. We define (C′,L′)
by describing the vocabulary Σ′, the theory Γ′, and the language L′

used in instances of (C′,L′). For each extension, we show that vL′

is a wqo and AvoidL′ is computable (note that since this section
only considers EPR classes and languages of universal sentences,
all the effectiveness assumptions are trivially satisfied).

Notation. For the remainder of this section, let us fix a vocabulary
Σ, a theory Γ consisting of universal sentences (note that this is the
case for Γn∗ ), and a base language L of universal sentences, taken
from (C,L) that satisfy the conditions of Theorem 4.2. Let cl(L) be
the closure of L under conjunction, disjunction, and rewriting into
an equivalent formula. Note that vL = vcl(L). Thus, we assume
w.l.o.g. that L is closed, i.e., L = cl(L).

Every universal sentence can be written as a conjunction of
closed universal clauses, each of which has the form ∀x1 . . . xr. β
where β is the body, consisting of a disjunction of literals over
x1 . . . xr . From now on we will just talk about these disjunctive
bodies, understanding that L = cl(A) where A is the set of
universal clauses obtained by taking a body formula and universally
quantifying all its free variables.

7.1 Basic Extensions
The following basic extensions of wqo’s are immediate: if
(STRUCT[Σ,Γ],vL) is a wqo then it remains a wqo if we
strengthen the background theory, restrict the language, or ex-
tend the vocabulary (while keeping the language the same set of
formulas).

Proposition 7.1. If (STRUCT[Σ,Γ],vL) is a wqo then so are:

1. (STRUCT[Σ,Γ′],vL), if Γ′ |= Γ
2. (STRUCT[Σ,Γ],vL′), if L′ ⊆ L
3. (STRUCT[Σ′,Γ],vL), if Σ ⊆ Σ′

Proof. If Γ′ |= Γ, then STRUCT[Σ,Γ] ⊆ STRUCT[Σ,Γ′], and
case 1 follows. If L′ ⊆ L, then vL⊆vL′ , and case 2 follows.
Finally, if Σ ⊆ Σ′, let (s′i)

∞
i=1 be an infinite sequence of structures

in STRUCT[Σ′,Γ]. By projecting each state s′i to a state si over Σ,
we obtain the sequence (si)

∞
i=1, for which there exist i < j such

that si vL sj . Since L is defined over Σ, for every ϕ ∈ L, ϕ |= si
iff ϕ |= s′i. Therefore, s′i vL s

′
j as well, and case 3 follows.

Remark 7.2. In the context of Proposition 7.1, if there is a procedure
to compute AvoidL, then the same procedure will work for cases 1
and 3, but not necessarily for case 2.

The wqo property is also preserved under unions of languages:

Proposition 7.3. If (STRUCT[Σ,Γ],vL1), (STRUCT[Σ,Γ],vL2)
are wqo’s then so is (STRUCT[Σ,Γ],vL) where L = cl(L1 ∪ L2).

Figure 5. Infinite sequence of incomparable models w.r.t. vn∗,m∗

∀∗ .
Solid arrows are n-edges, and dashed arrows are m-edges.

Proof. We first prove the claim for L = L1 ∪ L2. As explained
above, vL=vcl(L), hence the claim follows for cl(L1 ∪ L2) as
well. Suppose that s1, s2, . . . is an infinite sequence of structures
from (STRUCT[Σ,Γ],vL). Since (STRUCT[Σ,Γ],vL1) is a wqo,
there must exist an infinite increasing subsequence under vL1 ,
si1 , si2 , . . .. Since (STRUCT[Σ,Γ],vL2) is a wqo, there exist j <
k such that sij vL2 sik Thus, every formula in L1 ∪ L2 satisfied
by sik is satisfied by sij . That is, sij vL sik , as desired.

Remark 7.4. If there are procedures to compute AvoidL1 and
AvoidL2 , then AvoidL for L = cl(L1 ∪ L2) is also computable,
and given by:

AvoidL(s) = AvoidL1(s) ∨ AvoidL2(s)

Remark 7.5. Proposition 7.3 considers L = cl(L1 ∪ L2), which
contains conjunctions and disjunctions of closed universal clauses
from L1 and L2. Let L′ ⊇ L be the universal language containing
also clauses whose bodies are obtained by disjunctions of bodies of
L1 with bodies of L2 (within the scope of the quantifier prefix). It is
tempting to try to prove that vL′ is a wqo. However, in general this
is not the case. Consider a languagevn∗,m∗

∀∗ of universal formulas for
shared lists structures in the signature {n∗,m∗} and the background
theory Γn∗ ∧ Γm∗ that is a conjunction of two singly-linked-list
theories (2). Then we can construct an infinite sequence of models
that represent cycles of even length formed by interchanging n and
m edges, see Figure 5. This shows that vn∗,m∗

∀∗ is not a wqo.
We can also extend L by adding any ground atom, g (this is

applicable for example if case 3 of Proposition 7.1 was applied to
add the predicate and/or constants in g to Σ without extending L).

Proposition 7.6. If (STRUCT[Σ,Γ],vL) is a wqo and g is a
ground atom of Σ, then (STRUCT[Σ,Γ],vL′) is a wqo where L′

has the bodies β, g ∨ β,¬g ∨ β for each body β of L.

Proof. Let (si)
∞
i=1 be an infinite sequence of structures in

STRUCT[Σ,Γ]. Since g is a ground atom, every structure gives it
a valuation of true or false, so (si)

∞
i=1 contains an infinite subse-

quence where all structures give g the same valuation. Therefore
there exist i < j such that si vL sj and si, sj give g the same
valuation. It follows that si vL′ sj , and thus (STRUCT[Σ,Γ],vL′)
is a wqo.

Remark 7.7. If there is a procedure to compute AvoidL, then for L′

of Proposition 7.6, AvoidL′ is also computable, and given by

AvoidL′(s) =

{
AvoidL(s) ∨ ¬g s |= g

AvoidL(s) ∨ g s 6|= g

By combining Propositions and Remarks 7.1, 7.2, 7.6, 7.7 we
get the following corollary:

Corollary 7.8. Extending the vocabulary Σ and the language L by
adding to Σ any number of new relations and adding to any body of
L any number of disjunctions of ground literals constructed from
the new relations maintains wqo and computability of AvoidL.

An operation needed for the constructions that follow later is
extension by a new constant symbol. This requires some uniformity
from the base language, formalized in the following definition:

Definition 8 (Constant-extendable). Let (STRUCT[Σ,Γ],vL) be a
wqo with AvoidL computable. We say that L is constant-extendable
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(in the context of Σ and Γ), if for any finite set of fresh constant
symbols S:

• (STRUCT[Σ ∪ S,Γ],vL′) is also a wqo, where the bodies
of L′ are obtained from the bodies of L by any number of
substitutions of variables by constants from S.
• AvoidL′ is computable over STRUCT[Σ ∪ S,Γ].

Remark 7.9. Since Theorem 6.4 allows an arbitrary number of
constants to begin with, all languages in (Cn∗ ,L∀∗) are constant-
extendable. Also, the reader should convince herself that if the base
languages are constant-extendable, all constructions presented so far
result in constant-extendable languages. Obviously, in the context
of Definition 8, if L is constant-extendable then so is L′.

7.2 Symmetric Lifting
In this section, we show that a decidability result for some vocab-
ulary, theory and language can be lifted to a vocabulary which
describes an unbounded number of instances of the original theory,
by parameterizing the theory and creating a language of symmetric
sentences, that do not correlate the different instances. As an exam-
ple for this, consider the routing tables of learning switches. For
each destination d, each switch has a single “next” pointer for pack-
ets destined to d, which is described by the route relation. Thus,
the routing tables can be seen as an unbounded number of linked-
lists, parameterized by the destination of packets. The extension
developed in this section can be used to lift the results of Section 6
to capture the ternary relation route∗, and allow invariants to refer
to paths in the forwarding graphs with unbounded quantification,
as long as they do not to correlate forwarding graphs of different
destinations.

The basis for lifting a wqo from a theory to an unbounded
number of instances of the theory relies on the following corollary
of Higman’s Lemma [23]:

Fact 7.10 (Higman’s Lemma for finite sets [23]). If (X,≤) is a wqo,
then so is (Pfin(X),�) where Pfin(X) is the set of finite subsets of
X , and A � B iff ∀s ∈ A.∃t ∈ B. s ≤ t.

We start by using Fact 7.10 to show that we can perform
symmetric lifting and preserve wqo’s and computability of AvoidL.
We define symmetric lifting as the removal of a constant symbol
a from the vocabulary Σ, while replacing a by a new universally
quantified variable v, both in the theory Γ and in the formulas of L.
The latter operation is denoted ra (e.g. ra(∀x. P (a) ∨Q(a, x)) =
∀v, x. P (v)∨Q(v, x)). The next proposition shows that symmetric
lifting preserves wqo’s and computability of AvoidL.

Proposition 7.11 (Symmetric lifting). If (STRUCT[Σ,Γ],vL) is a
wqo and a is a constant symbol in Σ, then (STRUCT[Σ′,Γ′],vL′)
is a wqo where

Σ′ = Σ\{a}, Γ′ = {ra(ϕ) | ϕ ∈ Γ}, L′ = {ra(ϕ) | ϕ ∈ L}

Proof. Define the functionAa : STRUCT[Σ′]→ Pfin(STRUCT[Σ])
by

Aa((D, I)) = {(D, I[a 7→ d]) | d ∈ D}
That is, Aa maps a structure of Σ′ to the set of structures of Σ in
which we interpret the new constant symbol, a, in all possible ways.
Note that since all our structures are finite, there are only finitely
many ways to interpret a in any given structure.

The semantics of a universal quantifier tells us that for any
structure s′ ∈ STRUCT[Σ′] and any formula ϕ of vocabulary Σ,

s′ |= ra(ϕ) iff s |= ϕ for each s ∈ Aa(s′). (3)
Thus, if s′ |= Γ′ then for any s ∈ Aa(s′) we have s |= Γ. Thus, Aa

maps STRUCT[Σ′,Γ′] to Pfin(STRUCT[Σ,Γ]).

To prove that (STRUCT[Σ′,Γ′],vL′) is a wqo, let (s′i)
∞
i=1 be an

infinite sequence of structures in STRUCT[Σ′,Γ′]. Now, consider
the infinite sequence (Aa (s′i))

∞
i=1. This is an infinite sequence of

elements of Pfin(STRUCT[Σ,Γ]), which is a wqo by Fact 7.10 and
the fact that (STRUCT[Σ,Γ],vL) is a wqo. Thus, we have i < j
such that:

∀s1 ∈ Aa(s′i) ∃s2 ∈ Aa(s′j) s1 vL s2 (4)

To show that s′i vL′ s
′
j , let ϕ′ be an arbitrary formula from L′

such that s′j |= ϕ′. Thus ϕ′ = ra(ϕ) for some ϕ ∈ L. By eq. (3),
∀s2 ∈ Aa(s′j) s2 |= ϕ. Thus, by eq. (4), ∀s1 ∈ Aa(s′i) s1 |= ϕ.
Thus, again by eq. (3), s′i |= ϕ.

Remark 7.12. In the setting of Proposition 7.11, if AvoidL is com-
putable for structures of STRUCT[Σ,Γ], then AvoidL′ is com-
putable for structures of STRUCT[Σ′,Γ′] and is given by:

AvoidL′(s
′) =

∨
s∈Aa(s′)

ra(AvoidL(s))

The correctness of this definition follows from the definitions of L′

andAa(s′), the properties of AvoidL and Equation (3). Furthermore,
if L is constant-extendable (in the context of Σ and Γ), then L′ is
constant-extendable (in the context of Σ′ and Γ′).

We now show that Proposition 7.11 can be used to increase the
arity of relations and maintain wqo’s (e.g. to go from n∗ to route∗).
To do this, we start from a constant-extendable language L, and
extend it by a fresh constant symbol a. We use a to replace an n-ary
relation r with a relation r′ of arity n+ 1. Define er 7→r′

a to denote
the substitution of r(t) by r′(at), where t is a tuple of variables and
constants, and at denotes the tuple consisting of a as its first element,
followed by t (e.g. en

∗ 7→route∗
a (n∗(x, y)) = route∗(a, x, y)). Then,

the next proposition is straightforward:

Proposition 7.13 (Arity extension). If (STRUCT[Σ,Γ],vL) is a
wqo, r ∈ Σ is a relation symbol of arity n, r′ 6∈ Σ is a new
relation symbol of arity n + 1, and a ∈ Σ is a constant symbol,
then (STRUCT[Σ′,Γ′],vL′) is a wqo where Σ′ = Σ \ {r} ∪ {r′},
Γ′ = {er 7→r′

a (ϕ) | ϕ ∈ Γ}, L′ = {er 7→r′
a (ϕ) | ϕ ∈ L}.

Remark 7.14. In the setting of Proposition 7.13, if AvoidL is com-
putable for structures of STRUCT[Σ,Γ], then AvoidL′ is com-
putable for structures of STRUCT[Σ′,Γ′], and is given by:

AvoidL′(s
′) = er 7→r′

a (AvoidL(s))

where, for s′ = (D′, I′), we define s = (D′, I) where I (defined
over Σ′ \ {r′} ∪ {r}) is the same as I′, except for I(r) which is
obtained from I′(r′) by truncating the first element in each tuple.
Furthermore, if L is constant-extendable (in the context of Σ and
Γ), then L′ is constant-extendable (in the context of Σ′ and Γ′).

Extending L by a constant and using Proposition 7.13 followed
by Proposition 7.11 results in a vocabulary, theory and language
where a relation r has been replaced by a relation r′ with increased
arity (e.g. replacing n∗ by route∗). The obtained language L′ con-
tains universal sentences, where the occurrences of r′ are symmetric
in their first argument: every universal clause in L′ can only use one
universally quantified variable as the first argument of r′ in all its
appearances. Therefore, formulas in L′ cannot correlate values of r′

for different elements as the first argument. Note however, that the
variable used for the first argument of r′ can appear elsewhere in
the clause, and can be correlated to other relations, including other
occurrences of r′ (see Section 7.4 for a concrete example).

7.3 Adding Occurrences of Arbitrary Relation Symbols
It is sometimes necessary for the invariant to mention relations that
do not obey any background theory (e.g. the pending relation in the
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learning switch example). This section shows that such relations can
be allowed in the language for potential invariants while maintaining
decidability, as long as only a bounded number of occurrences of
these relations appear in each universal clause.

We note that the clauses of the original language may contain
unbounded quantification, and the bounded occurrences of the
new relations can correlate to other literals in these clauses (the
new relations are added to the bodies, i.e. within the scope of the
universal quantifiers). For this reason, this result requires the use
of Higman’s Lemma, and cannot be obtained as a straightforward
cartesian product with a finite domain. We prove this result more
concisely by building on the operation of symmetric lifting and
Proposition 7.11 (which was proven using Higman’s Lemma).

Let r ∈ Σ be a relation symbol. We are interested in extending
L by adding one occurrence of r to any body, β, of L. Let Ar(β) be
the set of bodies of the form β, r(t) ∨ β, or ¬r(t) ∨ β, where t is a
tuple of variables and constants (including free variables that appear
in β). Let Ar(L) have exactly the bodies Ar(β) for β a body of L.

Proposition 7.15. If (STRUCT[Σ,Γ],vL) is a wqo, AvoidL is
computable, L is constant-extendable, and r ∈ Σ is a relation
symbol, then:

• (STRUCT[Σ,Γ],vAr(L)) is a wqo,
• AvoidAr(L) is computable, and
• Ar(L) is constant-extendable.

Proof. Let n be the arity of r. Let c1, . . . , cn be n fresh constant
symbols. Let Σ1 = Σ ∪ {c1, . . . , cn} and let L1 be L extended by
the constant symbols c1, . . . , cn as in Definition 8. Then, since L is
constant-extendable, we get that (STRUCT[Σ1,Γ],vL1) is a wqo,
AvoidL1 is computable, and L1 is constant-extendable.

Let L2 have the bodies, β, of L1 plus β ∨ g and β ∨ ¬g
for the ground atom g = r(c1, . . . , cn) Then by Proposition 7.6,
(STRUCT[Σ1,Γ],vL2) is a wqo, AvoidL2 is computable, and L2

is constant-extendable.
Finally, let L3 be the language obtained by applying Propo-

sition 7.11 and Remark 7.12 n times to remove the constants
c1, . . . , cn, from the vocabulary (replacing them by universally
quantified variables). By Proposition 7.11 and Remark 7.12
(STRUCT[Σ,Γ],vL3) is a wqo, AvoidL3 is computable, and L3

is constant-extendable. By the constructions of L1, L2, L3, we get
that L3 = Ar(L), which completes the proof.

It immediately follows from Proposition 7.15 that:

Corollary 7.16. Extending the vocabulary Σ by adding an arbitrary
relation (i.e., with any arity) and extendingL by adding to the bodies
of L any number≤ k of occurrences of the new relation symbol, for
some fixed k ≥ 0, maintains the wqo and computability of AvoidL.

7.4 Putting It All Together: Application to Learning Switch
We now illustrate the results of this section by applying it to the
learning switch model of Figure 4, and obtaining a decidable class
for invariant inference that captures it. The class we obtain contains
an inductive invariant that proves the absence of forwarding loops.

Recall that for any d, route∗(d, ·, ·) describes the reflexive
transitive closure of route(d, ·, ·), which is a functional relation (as
explained above), and thus route∗(d, ·, ·) obeys Γn∗ when replaced
for n∗. Thus, we start with the result of Section 6, and apply the
construction of Section 7.2 to lift n∗ to route∗. We denote the
resulting theory Γroute∗ and the resulting language L0. L0 contains
universal clauses with any number of occurrences of route∗ that
are symmetric with respect to its first argument. For the vocabulary
Σ0 = {route∗}, we have that (STRUCT[Σ0,Γroute∗ ],vL0) forms a
wqo with AvoidL0 computable.

(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 6. Depiction of the structures obtained by different encod-
ings of counters for c1 = 3, c2 = 0, c3 = 2: a structure of En∗
(a1) and its substructure (a2); a structure of an unsuccessful encod-
ing En (b1) and its substructure (b2); a structure of En (c1) and its
substructure (c2).

For any k > 0, we obtain Lk by applying Proposition 7.15
4k times (starting with L0) to allow at most k occurrences
of any of the relations link, learned, pending and route. Thus,
for Σls = {link, pending, learned, route, route∗}, we have that
(STRUCT[Σls,Γroute∗ ],vLk ) is a wqo with AvoidLk computable.

For k = 1, Lk contains an inductive invariant for the learning
switch, that contains clauses such as:

∀x, y, z. route∗(x, y, z) ∧ y 6= z → learned(x, y)

∀w, x, y, z. pending(w, x, y, z) ∧ w 6= y → learned(w, y)

Note that these clauses create correlations between the first argument
of route∗ and the other relations, and also between the other
relations and themselves. These correlations are allowed by the
constructions of this section. An example for a clause that would
not be allowed is: ∀x, y, z. route∗(x, y, z)→ route∗(z, y, x), as it
creates correlations of route∗ with different first arguments.

8. Undecidability and Complexity of INV[C,L]
In this section, we present several hardness results for INV[C,L].
We first present a general scheme for proving undecidability by an
interesting reduction from the halting problem of counter machines.
We use this scheme to prove that allowing alternation-free invariants
for Cn∗ leads to undecidability. We then use similar arguments to
show that even if we allow only universal invariants, but consider C
that allows a single “unrestricted” binary relation (i.e., not restricted
to admit the background theory of Cn∗ ) then INV[C,L∀∗ ] is unde-
cidable. This is in contrast to the fact that verifying inductiveness of
a given invariant is decidable in these cases.

We conclude this section by adapting the reduction from counter
machines to a reduction from lossy counter machines, and apply-
ing it to Cn∗ and L∀∗ , which proves that the decidable problem
INV[Cn∗ ,L∀∗ ] has non-elementary complexity.

8.1 Reduction from Counter Machines to INV[C,L]

This subsection presents a reduction scheme from the halting prob-
lem of Minsky (2-counter) machines to INV[C,L]. The scheme is
later instantiated to obtain two undecidability results. The reduction
is parameterized by an encoding for counters, denoted by E . We first
present the reduction, and then the conditions on E needed for it to
be correct.
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Input We are given an arbitrary Minsky machine,M = (Q, c1, c2),
where c1, c2 are counters, both initially 0, and Q = q1, . . . , qn is a
finite sequence of instructions, where q1 is the first instruction, and
qn is the halting instruction. The possible instructions are:

ik: increment counter ck
dk: decrement counter ck
tk(j): if counter ck is 0 go to instruction j

where in each case, control is passed to the next instruction except
when the tested counter is 0 and thus the branch is taken.

Idea The reduction constructs (TS, P, L) ∈ (C,L), such that

(TS, P, L) ∈ INV[C,L] iff M halts

The idea is for TS to simulate M , and in parallel simulate a third
counter c3 that is initially 0, and will always contain an even value.
Specifically, each transition of TS will simulate one step of M , and
will non deterministically increment or decrement c3 by 2. The
safety property P will assert that c3 does not contain the value 1.
Notice that TS |= P regardless of whether M halts. Both TS and
P will be encoded in first-order logic, and the encoding will be
constructed such that the two correctness conditions hold:

1. If M halts, TS will have finitely many reachable configurations,
and there will be an inductive invariant in L, constructed by a
disjunction over formulas in L representing these configurations.

2. If M does not halt, there will be no inductive invariant in L,
since L will not be able to express the fact that the value of c3 is
even, which is needed for inductuveness.

Construction To have TS simulate M , we use nullary relations
q1, . . . , qn to keep track of M ’s current instruction (we overload
the qi’s for instructions and nullary relation symbols). We also need
to encode the value of the three counters, that have infinitely many
possible values. To do so, we will use an encoding E of the counters
over vocabulary ΣE , which will be provided by each instantiation
of the reduction (see Section 8.2 and Section 8.3). The formulas
for TS and P can easily be constructed if E provides the following
formulas (for i = 1, 2, 3):

• inci a transition formula for increasing the value of ci by 1
• deci a transition formula for decreasing the value of ci by 1
• idi a transition formula for keeping the value of ci unchanged
• zeroi a formula for testing if the value of ci is 0

• init a formula for the initial state s.t. init⇒
∧3

i=1 zeroi

The output of the reduction is (TS, P, L) ∈ (C,L), given by the
vocabulary ΣE ∪ {q1, . . . , qn}, and the formulas τ , ϕ0 and ϕP that
are constructed from the formulas that E provides.4

Correctness conditions For the reduction to be correct, E must
guarantee both correctness conditions. For the first correctness
condition, assuming M halts, there are finitely many reachable
configuration, each defined by the current instruction of M and the
values of c1, c2, c3. Denote by Reach ⊆ Q × N3 the finite set of
reachable configurations. An inductive invariant ϕI ∈ L for TS can
be defined as follows:

ϕI =
∨

(qi,`1,`2,`3)∈Reach

qi ∧ ϕE(`1, `2, `3),

where for any `1, `2, `3 ∈ N, ϕE(`1, `2, `3) is a “witness” formula
in the language L that is specific to E . ϕI will be inductive if E

4 Note that if E provides the above formulas in ∃∗∀∗ form, then TS can be
constructed to be an EPR transition system.

guarantees that for any `1, `2, `3 ∈ N the following holds:
3∧

i=1

zeroi ⇒ ϕE(0, 0, 0)

ϕE(`1, `2, `3) ∧ inc1 ∧ id2 ∧ id3 ⇒ ϕE(`1 + 1, `2, `3)′

ϕE(`1, `2, `3) ∧ dec1 ∧ id2 ∧ id3 ⇒ ϕE(`1 − 1, `2, `3)′ for `1 ≥ 1

. . . similarly for inc2, dec2, inc3, dec3 . . .
ϕE(`1, `2, `3)⇒ ¬deci for `i = 0

ϕE(`1, `2, `3)⇒ ¬zeroi for `i 6= 0
(5)

The first requirement guarantees that the initial state will satisfy ϕI ,
and the others guarantee that ϕI will be inductive (i.e. closed under
transitions of TS), and imply the safety property.

8.2 Undecidability of INV[Cn∗ ,LAF ]

Recall that LAF allows only alternation-free invariants. In this
subsection we instantiate the reduction scheme of Section 8.1 to
prove the following theorem:

Theorem 8.1. INV[Cn∗ ,LAF ] is undecidable.

To instantiate the reduction scheme of Section 8.1 for
INV[Cn∗ ,LAF ], we present an encoding En∗ of the counters using
n∗ and linked-lists as per Cn∗ , and show witness formulas ϕE that
are alternation-free as per LAF , that prove the correctness of the
reduction.

Encoding We encode the 3 counters c1, c2, c3 using 3 disjoint
linked-lists, where the length of list i encodes the value of ci.
The vocabulary ΣE contains the binary relation n∗ and 3 constant
symbols h1, h2, h3 for the heads of the lists. Figure 6(a1) provides
an example of a structure that arises in this encoding for c1 =
3, c2 = 0 and c3 = 2. The encoding formulas will be:

• inci will prepend a new node to list i
• deci will remove a node from the start of list i, assuming there

is a next edge from hi (otherwise deci is not satisfied)
• idi will keep hi unchanged
• zeroi will test if there is no next edge from hi

• initwill assert n∗ is the identity relation and the hi’s are distinct

These formulas are all easy to write in EPR using n∗, as presented
in Section 5.1.

Correctness For the second correctness condition of the reduction,
we need to show that if M does not halt, there is no alternation-free
inductive invariant. Intuitively, this is true for this encoding, due to
the fact that it is not expressible in first-order logic to say that the
length of a list is even using n∗.

More formally, any inductive invariant must be true of all the
reachable states. If M does not halt, then these states include
segments corresponding to c3 that are line graphs of unbounded
even length. Suppose that our inductive invariant, ϕ, has quantifier
depth k. Let s be any state satisfying ϕ such that the length of the
list encoding c3 is ` > 2k. If we modify s to s′ only by adding one
more segment to c3’s list leaving everything else the same, then it
is easy to show using Ehrenfeucht-Fraı̈ssé games [24] that s ≡k s

′,
i.e., that they agree on all first-order formulas of quantifier depth k.
Thus s′ |= ϕ. But this leads to a contradiction because s′ is not safe.

Witness formulas For the first correctness condition (namely that
ifM halts there is an alternation-free inductive invariant), we need to
present the existence of alternation-free witness formulas that meet
the conditions of Equation (5). For any `1, `2, `3 ∈ N, the witness
formula ϕE(`1, `2, `3) will be the conjunction of the following:
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• A universal formula asserting the hi’s point to disjoint lists:
∀x. n∗(hi, x) ∧ n∗(hj , x)→ i = j

• An existential formula asserting the length of list i is at least `i:
∃x1 . . . x`i . distinct(hi, x1, . . . , x`i) ∧

∧`i
j=1 n

∗(hi, xj)

• A universal formula asserting the length of list i is at most `i:
∀x0 . . . x`i .¬(distinct(hi, x0, . . . , x`i)∧

∧`i
j=0 n

∗(hi, xj))

The conjunction is clearly alternation-free. These witness for-
mulas guarantee the conditions of Equation (5). Intuitively, this is
because ϕE(`1, `2, `3) is strong enough to guarantee that in any
model of it, the hi’s points to 3 disjoint linked-lists of exactly the
correct lengths.

8.3 Undecidability of INV[Cn,L∀∗ ]
For the second undecidability proof that we present, we first define
the class Cn of transition systems which allows a single binary
relation that is not restricted by a background theory. We show that
INV[Cn,L∀∗ ] is undecidable, and thus INV[C,L∀∗ ] is undecidable
for any extension C of Cn as well.

Definition 9 (Cn). We denote by Cn the class of EPR transition
systems where Σ contains a single binary relation symbol n, any
finite number of nullary relation symbols, and 4 constant symbols,
and there is no background theory.

Therefore, the state space of TS ∈ Cn is STRUCT[Σ] (no
background theory). This subsection proves the following:

Theorem 8.2. INV[C,L∀∗ ] is undecidable for every class C that
extends Cn.

To show undecidability of INV[Cn,L∀∗ ], we present an encoding
En, which uses the single unrestricted binary relation n allowed by
Cn to encode the counters. For the correctness of the reduction we
must show universal witness formulas ϕE , as per L∀∗ , that meet the
conditions of Equation (5).

We use the same idea of Section 8.2, namely to encode the
counters c1, c2, c3 using 3 disjoint linked-lists whose heads are
h1, h2, h3, and to use the list lengths to encode counter values. We
first explain why the fact that L∀∗ allows only universal invariants
(as opposed to alternation-free) makes the reduction trickier, and
then present the encoding that can be used for this reduction.

Encoding A zero-attempt is to make n be n∗, and use the transi-
tion formulas and witness formulas to enforce the theory Γn∗ . This
approach is bound to fail, since INV[Cn∗ ,L∀∗ ] is decidable, but it is
useful to understand where exactly it fails. The second direction of
the reduction (ifM does not halt then there is no inductive invariant)
will be correct exactly as it was in Section 8.2, but the first direction
will fail: since we are targeting L∀∗ , we must present universal
witness formulas and these do not exist.

To make the reduction work, we must take advantage of the
fact that n is not restricted by a background theory. We do this
by using n, to encode next edges directly. It is easy to use n to
express linked-lists operations such as prepending to a linked-list,
removing an element from the head of a list, and checking if the
head has a next edge. Thus, we can use n to write the formulas inci,
deci, idi, zeroi, and init to express the same linked-lists operations
as in Section 8.2, but this time using n and not n∗. Figure 6(b1)
provides an example of a structure that arises in this encoding for
c1 = 3, c2 = 0 and c3 = 2.

However, this also fails. The reason is that any universal formula
is closed under substructure (unlike alternation-free formulas), and a
structure that contains a linked-list of length > 0, has a substructure
where the head of the list does not have a next edge (if we remove
the first node after the head from the domain), and this substructure
will satisfy zeroi. This is demonstrated by Figure 6(b2) which

is a substructure of Figure 6(b1), but zero3 (wrongfully) holds
in it. For this reason, any universal ϕE cannot guarantee that
ϕE(`1, `2, `3)⇒ ¬zeroi for `i 6= 0.

This can be fixed by adding another constant symbol t, to
represent a common tail of the linked-lists, and changing the
formulas to say:

• inci will prepend a new node to list i (creating a new n edge)
• deci will remove a node from the start of list i, assuming hi 6= t

• idi will keep hi unchanged
• zeroi will test if hi = t

• init will say that n is empty and headi = t for i = 1, 2, 3

The key idea is that since the common tail is guarded by a constant,
no “transition to substructure” can transform a list of length > 0 to
a list of length 0. Note however, that a transition to substructure can
remove elements that are part of the n-path from hi to t from the
domain, thus making the list disconnected.

Figure 6(c1) provides an example of the resulting encoding En
for c1 = 3, c2 = 0 and c3 = 2. In this case, the substructure in
Figure 6(c2) no longer satisfies zero3.

Correctness The second correctness condition of the reduction (if
M does not halt then there is no universal inductive invariant) is
correct for this encoding by the same arguments provided for En∗
(it is not expressible in first-order logic to say that the length of
an n-path is even). For the first correctness condition (if M halts
there is a universal inductive invariant), we present universal witness
formulas that meet the conditions of Equation (5).

Witness formulas For any `1, `2, `3 ∈ N, the witness formula
ϕE(`1, `2, `3) will be the conjunction of the following:

• A q.f. formula asserting hi 6= hj unless they are both equal to t
• A universal formula saying the hi’s have no incoming n edges
• A universal formula encoding that list i is of length `i:

∀x0 . . . x`i .

`i∧
j=0

(
(hi = x0 ∧

j−1∧
k=0

n(xk, xk+1))→ (xj = t↔ j = `i)
)

The conjunction is clearly universal, and these witness formulas
guarantee the conditions for inductiveness of Equation (5). Intu-
itively, the first two conjuncts make sure the 3 lists do not interfere
with each other, and the last one makes sure that all n-paths of length
at most `i starting from hi are consistent with the fact that list i is
of length `i: paths shorter than `i must not end in t, and paths of
length `i must end in t.

8.4 Complexity of INV[Cn∗ ,L∀∗ ] is Non-Elementary
As we saw in Section 6, INV[Cn∗ ,L∀∗ ] is decidable. In this section,
we show that the complexity of INV[Cn∗ ,L∀∗ ] is non-elementary.
Therefore this is also true for any (C,L) extending (Cn∗ ,L∀∗) with
any of the constructions presented in Section 7.

Theorem 8.3. The complexity of INV[Cn∗ ,L∀∗ ] is non-elementary.

We prove the theorem by a reduction from the reachability
problem of lossy counter machines, which is known to have non-
elementary complexity [36, 37], to the complement of INV[Cn∗ ,L∀∗ ].
The reachability problem for lossy counter machines is: given a
counter machine M = (Q, c1, . . . , ck) and qgoal ∈ Q, is there
a trace of M under the lossy semantics that leads from the initial
configuration (q1, 0, . . . , 0), to a configuration with qgoal. Recall
that the lossy semantics lets the value of any counter decrease
non-deterministically in any transition.
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The input of the reduction is (M, qgoal), and the output is
(TS, P, L) ∈ (Cn∗ ,L∀∗) such that:

M has a lossy trace to qgoal ⇔ (TS, P, L) 6∈ INV[Cn∗ ,L∀∗ ]

According to Section 6, for any language in the context of
(Cn∗ ,L∀∗), v∀∗ is a wqo and Avoid∀∗ is computable. Therefore,
we can apply Corollary 4.7 and thus:

(TS, P, L) 6∈ INV[Cn∗ ,L∀∗ ] ⇔ TS∀
∗
6|= P

Therefore, it suffices to show that

M has a lossy trace to qgoal ⇔ TS∀
∗
6|= P (6)

To construct TS that satisfies Equation (6), we use the same
encoding presented in Section 8.2. The only difference is that for
this reduction we do not need the special counter that always holds
even values, and we just model the counters of the input machine
M . We encode Q with nullary relations and the values of the
k counters using n∗ and k disjoint linked-lists whose heads are
h1, . . . , hk, where the lengths of the lists keep the values of the
counters. The formulas for the initial state and the transition relation
are constructed as in Section 8.1 and Section 8.2, and the safety
property is given by ϕP = ¬qgoal.

To see that the described TS satisfies Equation (6), recall that
TS∀

∗
6|= P iff TS has a ∀∗-relaxed trace to S \ P , where a ∀∗-

relaxed trace can make transitions to substructures (since v∀∗ is
the substructure relation). The punch line is that for the encoding of
Section 8.2, these transitions exactly correspond to decrements of
the counters. The reader should convince herself that for a linked-list
represented by n∗ and a constant for the head, any substructure is
a linked-list with less elements. (For an example, see Figure 6(c1)
and its substructure Figure 6(c)). Therefore, by the construction of
TS we get that ∀∗-relaxed traces of TS exactly correspond to lossy
traces of the counter machineM , and thus Equation (6) holds, which
completes the proof.

9. Related Work
Decidability for infinite-state systems via wqo’s Following [2–
5], well-quasi-orders and well-structured (monotonic) transition
systems (WSTS’s) have become a standard technique for proving
decidability of various problems over infinite-state systems (e.g.
[16]). Often a WSTS is obtained by relaxing the semantics of a
transition system to a lossy semantics. The classical examples of this
are lossy channel systems [1], lossy counter machines (e.g. [31])
and vector addition systems or Petri nets (e.g. [29]). In [10, 20], this
technique is applied to array-based transition systems. States are
identified with finitely-generated models, and the quasi-order on
states is the substructure relation.

The common approach in these works is to consider a system
under lossy semantics or via an abstraction, and to analyze the
decidability of the safety of the lossy/abstract system. Our work
focuses on transition systems formalized using first-order logic, and
takes the viewpoint of restricting potential inductive invariants to
some language L, and then analyzing the decidability of invariant
inference in L. The two views are connected: every particular
language L can be regarded as an abstraction, where the abstract
domain is formulas in L; or as a lossy semantics, with lossy
transitions according to vL

5.
Our use of first-order logic together with a formalism which is

parameterized by L, allows the systematic constructions presented
in Section 7, that are able to construct restricted languages and
wqo’s that are applicable to complicated systems like the learning

5 Indeed, TSL can alternatively be formulated as a monotonic transition
system, and this can be viewed as monotonic abstraction as in [5].

switch. From a practical perspective, using logic enables to use
existing decision procedures in the invariant inference process. The
operation AvoidL corresponds to concepts found both in Property
Directed Reachability algorithms [9, 26] and in decision procedure
based abstract interpreters, e.g., [39], that automate the process of
inferring inductive invariants. Our work can be seen as studying
the conditions required for termination of such procedures, and the
conditions under which the underlying problem is undecidable and
thus divergence occurs for infinitely many instances.

Linked-lists & counter machines In [8], it was observed that
linked-list programs are counter machines. While the safety of
counter machines is undecidable, the safety of lossy counter ma-
chines is decidable with non-elementary complexity [36]. In the
case of linked-lists, our work can be seen as combining these two
interesting results: “Linked-lists with alternation-free invariants are
counter machines” (and therefore undecidable), and “Linked-lists
with universal invariants are lossy counter machines” (and therefore
decidable with non-elementary complexity).

In [6, 7], monotonic abstractions are defined for linked data
structures. The wqo on heaps defined there is semantically similar to
v∀∗ with n∗, but it is defined via tree operations and not via logic.
This makes the result of Section 6 more powerful because it also
provides unlimited unary predicates, as well as being amenable
to the constructions of Section 7. The wqo of [6] results in a
slightly less precise abstraction compared to that of Section 6, as
it also allows edge deletion (which is not allowed in v∀∗ with n∗).
Interestingly, the proof in [6] does not use Kruskal’s Tree Theorem,
which is the basis for our result.

Undecidability There are many undecidability results for safety
of infinite state systems, e.g., [8, 11]. For the related problem INV of
inferring inductive invariants we show two interesting undecidability
results: for universal invariants over arbitrary domains; and for
alternation free formulas over the theory of linked-list reachability.

Completeness of abstract interpretation The theoretical study
of the precision of abstract interpretation is an ongoing research
area. Usually completeness for abstract interpretation means that
the abstract domain is precise enough to prove all interesting
safety properties, e.g., [21]. In our terms, this means that INV =
SAFE, that is that all safe programs have an inductive invariant
expressible in the abstract domain. Since we are interested in
automatically analyzing Turing Complete programs (for which SAFE
is undecidable), we consider the completeness problem at a later
binding time. Essentially, INV asks if the abstract domain is precise
enough for a given property in a given program.

A very interesting twist on completeness of abstract interpreters
is considered in [22] which algorithmically studies the completeness
of certain abstract domains for certain questions.

For numeric domains (e.g. intervals), techniques such as widen-
ing and policy iteration (e.g. [19]) are used to prove the correctness
of many infinite state systems. Surprising results in [18, 38] show
that for some numeric domains and programs, precise information
can be computed, thus solving INV.
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