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Spike of attention to P vs. NP problem, Aug. 2010

“Deolalikar claimed that he had tamed the wildness of algorithms
and shown that P indeed doesnt equal NP. Within a few hours of
his e-mail, the paper got an impressive endorsement: ‘This appears
to be a relatively serious claim to have solved P versus NP,’
emailed Stephen Cook of the University of Toronto, the scientist
who had initially formulated the question. That evening, a blogger
posted Deolalikar’s paper. And the next day, long before
researchers had had time to examine the 103-page paper in detail,
the recommendation site Slashdot picked it up, sending a fire hose
of tens of thousands of readers and dozens of journalists to the
paper.”

Julie Rehmeyer, Science News, Sept. 9, 2010
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NTIME[t(n)]: a mathematical fiction
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Descriptive Complexity

Query

q1 q2 · · · qn
7→ Computation 7→

Answer

a1 a2 · · · ai · · · am
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Descriptive Complexity

Query

q1 q2 · · · qn
7→ Computation 7→

Answer

a1 a2 · · · ai · · · am

Restrict attention to the complexity of computing individual bits of
the output, i.e., decision problems.
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Descriptive Complexity

Query

q1 q2 · · · qn
7→ Computation 7→

Answer

a1 a2 · · · ai · · · am

· · · Si · · ·

Restrict attention to the complexity of computing individual bits of
the output, i.e., decision problems.

How hard is it to check if input has property S ?
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Descriptive Complexity

Query

q1 q2 · · · qn
7→ Computation 7→
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Restrict attention to the complexity of computing individual bits of
the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?
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Descriptive Complexity

Query

q1 q2 · · · qn
7→ Computation 7→

Answer

a1 a2 · · · ai · · · am

· · · Si · · ·

Restrict attention to the complexity of computing individual bits of
the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?

There is a constructive isomorphism between these two approaches.
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Interpret Input as Finite Logical Structure

Graph G = ({v1, . . . , vn},E , s, t)
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Binary Aw = ({p1, . . . , p8},S)
String S = {p2, p5, p7, p8}

w = 01001011

Vocabularies: τg = (E 2, s, t), τs = (S1)
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First-Order Logic

input symbols: from τ
variables: x , y , z , . . .

boolean connectives: ∧,∨,¬
quantifiers: ∀,∃

numeric symbols: =,≤,+,×,min,max

α ≡ ∀x∃y(E (x , y)) ∈ L(τg )

β ≡ ∃x∀y(x ≤ y ∧ S(x)) ∈ L(τs)

β ≡ S(min) ∈ L(τs)
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Second-Order Logic

Φ3−color ≡ ∃R1 G1 B1 ∀ x y ((R(x) ∨ G(x) ∨ B(x)) ∧

(E (x , y) → (¬(R(x) ∧ R(y)) ∧ ¬(G (x) ∧ G(y))

∧ ¬(B(x) ∧ B(y)))))
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Second-Order Logic

Fagin’s Theorem: NP = SO∃

Φ3−color ≡ ∃R1 G1 B1 ∀ x y ((R(x) ∨ G(x) ∨ B(x)) ∧

(E (x , y) → (¬(R(x) ∧ R(y)) ∧ ¬(G (x) ∧ G(y))

∧ ¬(B(x) ∧ B(y)))))
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Addition is First-Order

Q+ : STRUC[τAB ] → STRUC[τs ]

A a1 a2 . . . an−1 an

B + b1 b2 . . . bn−1 bn

S s1 s2 . . . sn−1 sn
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Addition is First-Order

Q+ : STRUC[τAB ] → STRUC[τs ]

A a1 a2 . . . an−1 an

B + b1 b2 . . . bn−1 bn

S s1 s2 . . . sn−1 sn

C (i) ≡ (∃j > i)
(

A(j) ∧ B(j) ∧

(∀k.j > k > i)(A(k) ∨ B(k))
)
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Addition is First-Order

Q+ : STRUC[τAB ] → STRUC[τs ]

A a1 a2 . . . an−1 an

B + b1 b2 . . . bn−1 bn

S s1 s2 . . . sn−1 sn

C (i) ≡ (∃j > i)
(

A(j) ∧ B(j) ∧

(∀k.j > k > i)(A(k) ∨ B(k))
)

Q+(i) ≡ A(i) ⊕ B(i) ⊕ C (i)
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Parallel Machines:

CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO(1)]
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Parallel Machines: Quantifiers are Parallel

CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO(1)]
Assume array A[x ] : x = 1, . . . , r in memory.
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Parallel Machines: Quantifiers are Parallel

CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO(1)]
Assume array A[x ] : x = 1, . . . , r in memory.

∀x(A(x)) ≡ write(1); proc pi : if (A[i ] = 0) then write(0)
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Inductive Definitions

E ⋆(x , y) ≡ x = y ∨ E (x , y) ∨ ∃z(E ⋆(x , z) ∧ E ⋆(z , y))
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Inductive Definitions

E ⋆(x , y) ≡ x = y ∨ E (x , y) ∨ ∃z(E ⋆(x , z) ∧ E ⋆(z , y))

ϕtc (R , x , y) ≡ x = y ∨ E (x , y) ∨ ∃z(R(x , z) ∧ R(z , y))
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Inductive Definitions

E ⋆(x , y) ≡ x = y ∨ E (x , y) ∨ ∃z(E ⋆(x , z) ∧ E ⋆(z , y))

ϕtc (R , x , y) ≡ x = y ∨ E (x , y) ∨ ∃z(R(x , z) ∧ R(z , y))

G ∈ REACH ⇔ G |= (LFPϕtc )(s, t)
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Inductive Definitions

E ⋆(x , y) ≡ x = y ∨ E (x , y) ∨ ∃z(E ⋆(x , z) ∧ E ⋆(z , y))

ϕtc (R , x , y) ≡ x = y ∨ E (x , y) ∨ ∃z(R(x , z) ∧ R(z , y))

G ∈ REACH ⇔ G |= (LFPϕtc )(s, t)

Thus, REACH ∈ IND[log n].
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Inductive Definitions

E ⋆(x , y) ≡ x = y ∨ E (x , y) ∨ ∃z(E ⋆(x , z) ∧ E ⋆(z , y))

ϕtc (R , x , y) ≡ x = y ∨ E (x , y) ∨ ∃z(R(x , z) ∧ R(z , y))

G ∈ REACH ⇔ G |= (LFPϕtc )(s, t)

Thus, REACH ∈ IND[log n].
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Next, we’ll show that REACH ∈ FO[log n].
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ϕtc(R, x , y) ≡ x = y ∨ E (x , y) ∨ ∃z (R(x , z)∧R(z , y))

1. Dummy universal quantification for base case:

ϕtc (R , x , y) ≡ (∀z .M1)(∃z)(R(x , z) ∧ R(z , y))

M1 ≡ ¬(x = y ∨ E (x , y))
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ϕtc(R, x , y) ≡ x = y ∨ E (x , y) ∨ ∃z (R(x , z)∧R(z , y))

1. Dummy universal quantification for base case:

ϕtc (R , x , y) ≡ (∀z .M1)(∃z)(R(x , z) ∧ R(z , y))

M1 ≡ ¬(x = y ∨ E (x , y))

2. Using ∀, replace two occurrences of R with one:

ϕtc (R , x , y) ≡ (∀z .M1)(∃z)(∀uv .M2)R(u, v)

M2 ≡ (u = x ∧ v = z) ∨ (u = z ∧ v = y)
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ϕtc(R, x , y) ≡ x = y ∨ E (x , y) ∨ ∃z (R(x , z)∧R(z , y))

1. Dummy universal quantification for base case:

ϕtc (R , x , y) ≡ (∀z .M1)(∃z)(R(x , z) ∧ R(z , y))

M1 ≡ ¬(x = y ∨ E (x , y))

2. Using ∀, replace two occurrences of R with one:

ϕtc (R , x , y) ≡ (∀z .M1)(∃z)(∀uv .M2)R(u, v)

M2 ≡ (u = x ∧ v = z) ∨ (u = z ∧ v = y)

3. Requantify x and y .

M3 ≡ (x = u ∧ y = v)

ϕtc (R , x , y) ≡ [ (∀z .M1)(∃z)(∀uv .M2)(∃xy .M3) ] R(x , y)

Every FO inductive definition is equivalent to a quantifier block.
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QBtc ≡ [(∀z .M1)(∃z)(∀uv .M2)(∀xy .M3)]

ϕtc (R , x , y) ≡ [(∀z .M1)(∃z)(∀uv .M2)(∃xy .M3)]R(x , y)
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QBtc ≡ [(∀z .M1)(∃z)(∀uv .M2)(∀xy .M3)]

ϕtc (R , x , y) ≡ [(∀z .M1)(∃z)(∀uv .M2)(∃xy .M3)]R(x , y)

ϕtc (R , x , y) ≡ [QBtc ]R(x , y)
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QBtc ≡ [(∀z .M1)(∃z)(∀uv .M2)(∀xy .M3)]

ϕtc (R , x , y) ≡ [(∀z .M1)(∃z)(∀uv .M2)(∃xy .M3)]R(x , y)

ϕtc (R , x , y) ≡ [QBtc ]R(x , y)

ϕr
tc (∅) ≡ [QBtc ]

r (false)
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QBtc ≡ [(∀z .M1)(∃z)(∀uv .M2)(∀xy .M3)]

ϕtc (R , x , y) ≡ [(∀z .M1)(∃z)(∀uv .M2)(∃xy .M3)]R(x , y)

ϕtc (R , x , y) ≡ [QBtc ]R(x , y)

ϕr
tc (∅) ≡ [QBtc ]

r (false)

Thus, for any structure A ∈ STRUC[τg ],

A ∈ REACH ⇔ A |= (LFPϕtc )(s, t)

⇔ A |= ([QBtc ]
⌈1+log ||A||⌉ false)(s, t)
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CRAM[t(n)] = concurrent parallel random access machine;

polynomial hardware, parallel time O(t(n))

IND[t(n)] = first-order, depth t(n) inductive definitions

FO[t(n)] = t(n) repetitions of a block of restricted quantifiers:

QB = [(Q1x1.M1) · · · (Qkxk .Mk)]; Mi quantifier-free

ϕn = [QB][QB] · · · [QB]
︸ ︷︷ ︸

t(n)

M0
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parallel time = inductive depth = QB iteration

Thm: For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

Thm: For all t(n), even beyond polynomial,

CRAM[t(n)] = FO[t(n)]
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For t(n) poly bdd,
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For all t(n),
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Thm: For v = 1, 2, . . . , DSPACE[nv ] = VAR[v + 1]

Number of variables corresponds to amount of hardware.

Since variables range over a universe of size n, a constant number
of variables can specify a polynomial number of gates:

A bounded number of variables corresponds to polynomially much
hardware.
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Key Issue: Parallel Time versus Amount of Hardware
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Key Issue: Parallel Time versus Amount of Hardware

◮ We would love to understand this tradeoff.
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Key Issue: Parallel Time versus Amount of Hardware

◮ We would love to understand this tradeoff.

◮ Is there such a thing as an inherently sequential problem? No
one knows.
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Key Issue: Parallel Time versus Amount of Hardware

◮ We would love to understand this tradeoff.

◮ Is there such a thing as an inherently sequential problem? No
one knows.

◮ Same tradeoff as number of variables vs. number of iterations
of a quantifier block.
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Key Issue: Parallel Time versus Amount of Hardware

◮ We would love to understand this tradeoff.

◮ Is there such a thing as an inherently sequential problem? No
one knows.

◮ Same tradeoff as number of variables vs. number of iterations
of a quantifier block.

◮ One second-order variable can name 2n gates.

Neil Immerman P versus NP: Approaches, Rebuttals, and Does It Matter?



Key Issue: Parallel Time versus Amount of Hardware

◮ We would love to understand this tradeoff.

◮ Is there such a thing as an inherently sequential problem? No
one knows.

◮ Same tradeoff as number of variables vs. number of iterations
of a quantifier block.

◮ One second-order variable can name 2n gates.

◮ Thus, SO[t(n)] = CRAM-HARD[t(n), 2nO(1)
].
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Recent Breakthroughs in Descriptive Complexity

Theorem [Ben Rossman] Any first-order formula with any numeric
relations (≤,+,×, . . .) that means “I have a clique of size k” must
have at least k/4 variables.

Creative new proof idea using Håstad’s Switching Lemma gives the
essentially optimal bound.

This lower bound is for a fixed formula, if it were for a sequence of
polynomially-sized formulas, i.e., a fixed-point formula, it would
follow that CLIQUE 6∈ P and thus P 6= NP.

Best previous bounds:

◮ k variables necessary and sufficient without ordering or other
numeric relations [I 1980].

◮ Nothing was known with ordering except for the trivial fact
that 2 variables are not enough.
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Recent Breakthroughs in Descriptive Complexity

Theorem [Martin Grohe] Fixed-Point Logic with Counting captures
Polynomial Time on all classes of graphs with excluded minors.

Grohe proves that for every class of graphs with excluded minors,
there is a constant k such that two graphs of the class are
isomorphic iff they agree on all k-variable formulas in fixed-point
logic with counting.

Using Ehrenfeucht-Fräıssé games, this can be checked in
polynomial time, (O(nk(log n))). In the same time we can give a
canonical description of the isomorphism type of any graph in the
class. Thus every class of graphs with excluded minors admits the
same general polynomial time canonization algorithm: we’re
isomorphic iff we agree on all formulas in Ck and in particular, you
are isomorphic to me iff your Ck canonical description is equal to
mine.

Neil Immerman P versus NP: Approaches, Rebuttals, and Does It Matter?



What We Know

◮ Diagonalization: more of the same resource gives us more:

DTIME[n] ⊂
6= DTIME[n2],

same for DSPACE, NTIME, NSPACE, . . .
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What We Know

◮ Diagonalization: more of the same resource gives us more:

DTIME[n] ⊂
6= DTIME[n2],

same for DSPACE, NTIME, NSPACE, . . .

◮ Natural Complexity Classes have Natural Complete

Problems

SAT for NP, CVAL for P, QSAT for PSPACE, . . .

◮ Major Missing Idea: concept of work or conservation of
energy in computation, i.e,

in order to solve SAT or other hard problem we must do a
certain amount of computational work.
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Strong Lower Bounds on FO[t(n)] for small t(n)

◮ [Sipser]: strict first-order alternation hierarchy: FO.
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◮ [Beame-Håstad]: hierarchy remains strict up to
FO[log n/ log log n].

◮ NC1 ⊆ FO[log n/ log log n] and this is tight.
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Strong Lower Bounds on FO[t(n)] for small t(n)

◮ [Sipser]: strict first-order alternation hierarchy: FO.

◮ [Beame-Håstad]: hierarchy remains strict up to
FO[log n/ log log n].

◮ NC1 ⊆ FO[log n/ log log n] and this is tight.

◮ Does REACH require FO[log n]? This would imply
NC1 6= NL.
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Does It Matter? How important is P 6= NP?

◮ Much is known about approximation, e.g., some NP complete
problems, e.g., Knapsack, Euclidean TSP, can be
approximated as closely as we want, others, e.g., Clique, can’t
be.
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◮ We conjecture that SAT requires DTIME[Ω(2ǫn)] for some
ǫ > 0, but no one has yet proved that it requires more than
DTIME[n].
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time and number of processors. Are any problems inherently
sequential? How can we best use mulitcores?
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Does It Matter? How important is P 6= NP?

◮ Much is known about approximation, e.g., some NP complete
problems, e.g., Knapsack, Euclidean TSP, can be
approximated as closely as we want, others, e.g., Clique, can’t
be.

◮ We conjecture that SAT requires DTIME[Ω(2ǫn)] for some
ǫ > 0, but no one has yet proved that it requires more than
DTIME[n].

◮ Basic trade-offs are not understood, e.g., trade-off between
time and number of processors. Are any problems inherently
sequential? How can we best use mulitcores?

◮ SAT solvers are impressive new general purpose problem
solvers, e.g., used in model checking, AI planning, code
synthesis. How good are current SAT solvers? How much can
they be improved?
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Descriptive Complexity

Fact: For constructible t(n), FO[t(n)] = CRAM[t(n)]

Fact: For k = 1, 2, . . . , VAR[k + 1] = DSPACE[nk ]

The complexity of computing a query is closely tied to the
complexity of describing the query.

P = NP ⇔ FO(LFP) = SO

ThC0 = NP ⇔ FO(MAJ) = SO

P = PSPACE ⇔ FO(LFP) = SO(TC)
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