Embedding Linkages on an Integer Lattice

Susan Landau* Neil Immerman
MS UBURO02-313 Computer Science Dept.
Sun Microsystems Laboratories University of Massachusetts
P.O. Box 4002 Amherst, MA 01003
Burlington MA 01803-0902 immerman@cs.umass.edu

susan.landau@east.sun.com

Abstract

This paper answers the following question: Given an “erector set”
linkage, a connected set of fixed-length links, what is the minimal €
needed to adjust the edge lengths so that the vertices of the linkage
can be placed on integer lattice points? Each edge length is allowed
to change by at most €. Angles are not fixed, but collinearity must be
preserved (although the introduction of new collinearities is allowed).
We show that the question of determining whether a linkage can be
embedded on the integer lattice is strongly N P-complete. Indeed, we
show that even with ¢ = 0 (under which the problem becomes “Can this
linkage be embedded?”), the problem remains strongly A“P-complete.
However for some applications, it is reasonable to assume that lengths
of the links and the number of “co-incident” cycles are bounded (two
cycles are co-incident if they share an edge). We show that under
these bounding assumptions, there is a polynomial time solution to
the problem.

1 Introduction

In layout on a computer screen, location — especially location at an integer-
grid point — can be more important than getting lengths exactly right. One
can model such a situation by building an “erector set” type linkage that uses
straight, fixed-length links and joints. Angles are free to change, but lengths

“Supported by NSF grants CCR-9204630 and CDA-9753055.
fSupported by NSF grant CCR-9505446

and collinearity properties of the linkage are fixed. A problem in computer-
aided design [8] raised the question of when a linkage can be embedded on
an integer grid (that is with its vertices at integer lattice points), or if the
linkage could not be so embedded, what was the minimal € needed to ensure
that the vertices of the linkage are embedded on integer lattice points if
one is allowed to shrink or stretch lengths of the links by e. Graph edges
are allowed to cross and even to coincide, but the underlying connectivity
properties of the graph must be unchanged under this e transformation.

Suppose edges are allowed to stretch or shrink by a given e. We show
that the question of determining whether a linkage can be embedded on the
integer lattice is N'P-complete. Indeed, we show that even with e = 0 (under
which the problem becomes “Can this linkage be embedded?”), the problem
remains N P-complete. However for some applications, it is reasonable to
assume that lengths of the links and the number of “co-incident” cycles are
bounded (two cycles are co-incident if they share an edge). We show that
under these bounding assumptions, there is a polynomial time solution to
the problem.

Figure 1: A Linkage with Eight Links and Seven Vertices.

This problem has obvious applications to displaying and printing of dia-
grams. Similarly, in fabrication of many kinds of materials including circuits
or machinary, it is convenient to have certain points of the design placed on
evenly spaced grid points. Similar issues come up with robot placement and
assembly by robot.

We note that the problem has some obvious ties to number theory: a
linkage can be embedded only if each of its links can be embedded, and the
latter can happen if and only if each of the links has a length whose square
can be written as the sum of two squares. We explore these connections in
the paper.

This paper is organized as follows: §2 Embedding Fixed Length Linkages,
§3 Embedding Linkages with Restrictions, and §4 What is the minimal €?.

2 Embedding Fixed Length Linkages

A linkage L is defined as a connected graph with fixed-length edges. A link
is an edge of finite length. By abuse of notation, the lengths of each of the
links will be denoted by the same symbol that is used to denote the edge:
l1,...,l,. Links must be of positive length, and each link [; has two distinct
endpoints, ¢; and d;. A link may also contain labelled intermediate points.
In that case, the vertex which lies within another link is collinear with the
endpoints of the link in which it lies. For example, in Figure 1, the link
(v1,v9,v3) must consist of three collinear points, and the distances (v, v3)
and (vg,v3) are fixed.

An arbitrary number of links may connect to a single vertex. We say a
linkage can be embedded on an integer lattice if there is a physical realization
of the linkage that preserves collinearity and connectedness properties while
embedding the linkage on the lattice in such a way that the vertices are
placed on integer lattice points. (It is no problem if the link also passes
through a lattice point.) We say a linkage can be e-embedded on an integer
lattice if there is another linkage £’ such that for each link /; in £ there is
a link I} in L' where |l; — I}| < €, the adjacency matrices of £ and £’ are
the same, any necessarily collinear points of £ are collinear in £’ and the
vertices of L' lie on integer lattice points.

We are interested in the problem of given a linkage £, find the minimum e
such that £ can be e—embedded on an integer lattice in two dimensions. We
will allow links to lie upon one another and to cross. In the usual way, the
size of the problem is the size of the input, X logl;. We make the following
observation:

Theorem 2.1 A linkage L with links of length l1,lo,. .., 1, can be e-embedded
on a two dimensional integer grid only if for each i = 1,...,n, there is an
integer n; such that \/n; € [l —€,1; + €] and n; is expressible as the sum of
two squares.

Proof Obvious. O

In the remainder of this section we limit ourselves to a simpler problem:
we consider the problem of embedding with ¢ = 0. We begin with the

following well-known characterization of which integers can be written as
the sum of two squares.

Theorem 2.2 ([5/, pg. 299) A number n is the sum of two squares if and
only if all prime factors of n of the form 4m + 3 have even exponents in the
prime factorization of n.

We will let the symbol p; denote a prime congruent to 1 mod 4, and g;
denote a prime congruent to 3 mod 4. Let r2(n) be the number of distinct
representations of n as the sum of two squares; we count two representations

(a,b) and (c,d) as distinct iff (a,b) # (¢,d). Then we have:

Theorem 2.3 ([5/, pg. 242) Suppose n = 2°‘Hp:iﬂq;j. Then ro(n) =
4I1(r; + 1) if each of the s; is even, and 0 otherwise.

The following is well-known information about the size of r(n):

Theorem 2.4 ([5], pg. 270) r2(n) = O((logn)?) is false for every constant
A.

Theorem 2.5 ([5/, pg. 270) The mazimum order of magnitude for ro(n) =
logn
0(2 2log log n)

For simplification, we will use the approximation that ro(n) < n® for
every constant A > 0.

The possible number of embeddings implied by Theorem 2.4 might lead
one to suspect that from a computational viewpoint, the problem of embed-
ding a linkage in an integer lattice is hard, and indeed, it is. We study a
simple linkage first.

The simplest kind of linkage is one whose underlying graph structure is
a tree; by abuse of notation, we call such a linkage a tree. Then we have:

Lemma 2.6 A linkage T that is a tree can be embedded if and only if each
of its links can be embedded.

An embedding is a function from the vertices to lattice points. Consider
two embeddings of the linkages that map the root vertex to the origin; we
say these are distinct if they are not equal as maps. Then we have:

Theorem 2.7 Suppose the tree T with edges t1,...,t, can be embedded on
the integer lattice, and suppose t% = 2aiij:;j Hkqis,é’“ with s, even for all
ik. The number of distinct embeddings of T that map the root to the origin
equals 4"T1; j(ri; + 1).

Proof We begin by embedding the root #; at the origin. Having decided
the location of ¢;, there are 4II(r; + 1) places to locate di. The embedding
of each d; is dependent only on the location of ¢; and the length of the link.
Thus the number of possible embeddings of ¢; is 4II(r;; + 1). The result
follows immediately. O

This result means that checking whether a tree can be embedded can be
done in time O(XR(¢;)), where R(t;) is the time needed to compute whether
t; can be written as the sum of squares. At present, the fastest algorithm to
check whether an integer can be written as a sum of squares is exponential
time.

Indeed that problem is likely to be computationally hard. In the ap-
pendix, we show that if a positive integer n has a bounded number of prime
factors of the form 4k + 1 and no prime factors of the form 4k + 3, the
problem of enumerating the representations of n as the sum of two squares
is polynomial-time equivalent to factoring n. There are no known subexpo-
nential algorithms for factoring general integers n. But embedding a linkage
is computationally expensive not only for number-theoretic reasons.

Our proof that the problem is N'P—complete shows that the problem
is strongly N'’P—complete. This leads us to suspect that the embedding
problem is hard computationally because of the complexity of the interaction
of cycles of the linkage.

We show N'P—completeness by doing a reduction from 3 — SAT. Given
a formula ¢ in 3-CN'F, we build a linkage that can be embedded with its
vertices on integer lattice points if and only if ¢ is satisfiable. The intuition
underlying the following three lemmas is that we are building a linkage
gadget that will check the truth value of a clause; we will then join the
gadgets together to model the 3 — CN'F formula. We conclude this section
by showing that the problem is N"P—complete.

Let ¢ be a 3—CN F formula ¢ = C{A ...AC, where each C; = [;1Vi;2Vli;3,
and the [;;’s are literals.

We begin by building a gadget G; for each clause C; = [;1 V ljo V ;3.
The gadget G; consists of two parts. The first part, drawn on the left in
Figure 2, consists of three connected diamonds. The line from ;9 to y;g

Figure 2: Gadget G;, on the right, consists of the combination of the two
gadgets on the left, where points with the same label are co-incident.

is a straight line of length 6. The second part of the gadget is a linkage
connecting [;; with [;5. The length of the diagonals of the diamonds is
2. The linkage connecting [;; and [;5 consists of four line segments of unit
length. Its midpoint is labelled M;. Without loss of generality, the linkage
can be arranged so that the vertices y;; are on the y—axis. A useful intuition
is that placing /;; on the line x = 1 is assigning /;; the value “true,” while
placing /;; on the line z = —1 is assigning /;; the value “false.”

This link can be folded in various ways. The gadget is constructed so
that if G; is placed with vertices y;; on the y—axis, then the vertex M; can
be on the line = 1 if and only if [;; or l;» lies on the line z = 1.

Thus G; is almost an or gate in that its “output” M; can lie on the line
x = 1 iff at least one of I;; or [;» lies on the line x = 1. It is convenient to
force the output of this “or” gate to have a fixed y—coordinate. We do this
by extending G; to H; whose output P; has the same x coordinate as M;
but whose y—coordinate is fixed.

The gadget H; is a combination of G; with a “ladder.” The ladder
connects the vertices y;; with the vertex M; and a new vertex FP;. The sides
of the ladder are 1, the diagonals are length v/2. If H; is placed with the
y;j vertices on the y—axis, then M; and P; are connected in such a way as
to ensure that they have a common x—value. Thus P; is on the line x = 1

Figure 3: Gadget H; consists of the above combined with Gadget G;, where
points with the same label coincide.

Figure 4: Gadget K;, consisting of the above combined with Gadget H;,
where points with the same label coincide.

if and only if I;; or [;» have their z—value equal to 1.

H; is a true or gate. We combine this with a similar construction to
build a three-way or-gate. For completeness we show this entire three-way
or-gate, K;, in Figure 4. Note that its output); has its y—coordinate fixed
level with y;5 and that Q; can be placed on the line z = 1 iff at least one of
li1,1i0 or l;3 lies on the line x=1.

The gadget K;, is a combination of H; with another ladder and another
straight piece (similar to the one used in G;). The straight piece adds another
special vertex N;, which connects P; and l;3. Again we are assuming that
the gadget is arranged so that the y;; are on the y—axis. Then N; can be
placed on the line = 1 if and only if P; or [;3 are. Since P; is on the line
x =1 if and only if [;; or [;» are, N; has x—value equal to 1 if C; evaluates
to “true.” The ladder in K; ensures that (); has the same z—value as NV;.

The completed gadget K; works as follows: without loss of generality, we
can assume that Kj; is aligned on the integer lattice so that the y;; vertices
lie on the y—axis. Then @; lies on the line = 1 if and only if /;; has x =1
or l;o hasx =1 or l;3 has x = 1.

We now are ready to build the linkage L£(p). Each clause C; of ¢ has
a corresponding gadget K;, built as described above. We line up all the
gadgets K; one underneath the other, the top of K;, connecting with the
bottom of K;. We need to ensure that all appearances of a literals have
the same truth value. This is done by connecting appearances of the same
variable with a link as follows: if the literal /;; is the same as the literal /;;,
and either the literal [;5 or the literal [;; is not already connected to other
literals, then we connect the two instances, l;,,[;;, with a link of length of
|6(j — %) +4(t — s)|. This length ensures the literals /;; and I;; will have the
same z—value. (Note that if we want to keep all our lines short, we may
replace this line by a system of |[6(j — i) + 4(¢f — s)| connected, unit-length
links.)

Next we add a linkage consisting of r links of length 6, connecting vertices
Q1,-..,Q,. This assures that all the clauses are true simultaneously.

It is clear that a satisfying assignment of the variables leads to an em-
bedding of the linkage. It is also clear that any embedding of the linkage
can be transformed to one that places the y;; on the y—axis and the (); on
the line x = —1 or = 1. If the Q; are all on the line z = 1, then the /;; on
the line x = 1 are assigned to “true,” and we have a satisfying assignment.
If the Q; are all on the line z = —1, assign the literals on the line z = —1
the value “true,” and again we have a satisfying assignment. Furthermore,
the reduction we have presented is in polynomial time. More formally,

Lemma 2.8 For each C; = l;1 V l;2 V l;3, where the l;;’s are literals, the
gadget G; with the vertices y;; on the y-azis can have the vertex M; on the
line x =1 if and only if l;1 or l;5 is on the line x = 1.

Lemma 2.9 With conditions as above, the gadget H; can be embedded on
the integer lattice. P; can be on the line x = 1 if and only if [;1 or ;o is on
the line x = 1.

Proof The first statement is clear. The second statement follows from the
fact that of necessity P; and M; have the same z value. O

Lemma 2.10 The gadget K; can be embedded on the integer lattice. The
point Q; can be on the line x = 1 if and only if C; evaluates to true (where
the literals in C; are assigned true iff they lie on the line x =1).

Let Linkages be the problem of whether a linkage can be embedded on
the integer lattice. We have shown:

Theorem 2.11 Linkages is strongly N'P-complete.

It is interesting to compare this result with an earlier theorem of Hopcroft,
Joseph and Whitesides [7]. Their result shows the ruler problem — the
question of whether a carpenter’s ruler consisting of a sequence of n links
of integer lengths, [y, ...,[,, hinged together at the endpoints, and allowed
to fold so that angles of either 0° or 180° are formed, can be aligned so
that its length is & — is N’P—complete. The proof is via a reduction from
the Partition problem. The reduction does not show the ruler problem to
be strongly N’P—complete. In fact, it is not. In [7], there is a dynamic
programming solution to the problem that gives a polynomial-time solution
if the lengths in the ruler problem are polynomially-bounded.

The reduction we have used to prove the strong NP—completeness of
Linkages shows that the problem remains N7P-complete even when the
lengths of all the links are bounded by a fixed constant. The complexity
arises instead from the interactions of the polygons. There are two useful
restrictions that simplify the problem computationally but still include the
class of problems we are interested in in practice. In the next section we
consider these.

3 Embedding Linkages with Restrictions

The first restriction is to require that the linkage be of bounded size, that is,
the linkage must lie within an m x m integer grid. (Obviously this implies
that all of the lengths /; must be small.) The second restriction is com-
binatorial: it is that there are only a bounded number of closed figures —
“polygons” — in the linkage. For many applications that is a very reason-
able assumption. With these restrictions, determining whether the linkage
can be embedded with its vertices on integer lattice points can be done in
polynomial time.

We define a subgraph, P = [y, ... [,, of a linkage to be a polygon if the set
of vertices in P plus its induced set of edges form a cycle with ¢; = d,,. There

are potentially exponentially many embeddings, but the yes-no question of
whether a polygon can be embedded on an m x m grid can be answered in
polynomial time.

Theorem 3.1 For any A > 0, we can check if the polygon l1,... 1, can be
embedded in an m x m grid in time O(nm*+2). We can compute whether

this polygon can be embedded starting at a given initial point (k,l) in time
O(nm?+4).

Proof Let A\ denote the empty string. In the algorithm below we compute
the following set of matrices, for i =0, ...,n for all initial points (k,1):

1 if linkage I ...[; can be embedded
Ml’i’.l“li(s, t) = starting at(k,!) and ending at(s,t)
0 otherwise

Algorithm 3.1:
Input: polygon P =1y,...,[,, integer m
Output: 1 iff P can be embedded in the m x m grid.

1. ans :=0
2. for all (k,l,s,t) € {1,...,m} do in parallel {

1 (k1) = (s,1)

bl B
3 My (s, 1) _{ 0 otherwise

4. fori=1,...,n do:

1 if 3(u,v) reachable from (s,t) via [;
5. Ml’i’.lnli(s,t) = such that Mll?.l..li,l(“v“) =1

0 otherwise

6. if Ml]?.l.. (k,1) =1 then ans := 1}

ln

7. return(ans)

It is easy to show by induction on 7 that Algorithm 3.1 correctly computes
the matrices Mz]:llz Thus the algorithm produces the correct answer.

The running time is nm?* times the time to compute step 5 for a fixed
k,l,s,t, and i. Point (s,t) is reachable from at most r2(I?) points (u,v) via
link /;. Thus the time for this step is bounded by O(ry(1?)).

10

We know from Theorem 2.5 that for sufficiently large I;, 75 (12) < (12)2/3.
Also note that [? < (v/2m)? = 2m?. Thus for sufficiently large m,
A/3

ro(l7) < ((ﬁm)Z) < mA

Once and for all for each I;, we need to factor /; and compute all the
ro(I?) possible placements of [; starting at the origin. This adds a cost of
less than O(nm) to the total running time. Thus the total running time is
O(nm**2) as desired. O

Note: There are symmetries that one can use to speed up this computa-
tion (e.g., one need only try one-quarter of the grid for a possible starting
point). Furthermore, the linkage can be embedded in an m x m grid only
if the linkage can be embedded in a 2m x 2m grid starting at the point
(m,m). One can check whether the polygon is embeddable in a 2m x 2m
grid in O(nm?2*T2) steps, by using the point (m,m) as a starting point.

In Algorithm 3.1 we determine whether the polygon P = [y,...,l, can
be embedded by starting at some point (k,[) and seeing if we can embed the
whole polygon, ending again at (k,[). It is convenient to then back around
the whole polygon computing the lattice points at which each vertex of P
may be embedded.

To determine where the vertex c; beginning link /; can be embedded
we simply take the conjunction of the matrices Ml]ill and M;;L’,llr s

T el
where [means the reversal of link /;. Define the matrix fo to be this
conjunction,

GH(s,t) = M

liyenlioa

i—1

(s,t) and Ml’;’flz i (5,1) (3.2)

]
It follows from the proof of Theorem 3.1 that

Corollary 3.3 Given polygon P = l1,...,l,, integer m, and lattice point
(k,1) we can compute all the boolean matrices Glgll in total time O(nm?+5).
GEl(s,t) =1 iff ¢; can be placed on lattice point (s,t) when cP is embedded
in the m x m lattice with ci placed at (k,I).

We also observe that the bounds of Theorem 3.1 and Corollary 3.3 remain

true when we are given additional information restricting the location of
certain vertices.

11

Corollary 3.4 Suppose that we are given a polygon as in Theorem 3.1 but
suppose now that we are also given additional boolean matrices A, for some
of the wvertices in the polygon. Here Ay(x,y) = 0 means that vertexr v may
not be placed on lattice point (x,y). Then the computations of Theorem 3.1
and Corollary 3.3 can be completed in the same asymptotic running time.

Proof Everything is as before, but whenever we compute Ml]i’.lnli(s,t) we
must conjoin this with Ay, (s,t). Recall that d; is the end of link /;. 0

We now consider the more complex problem of embedding a linkage
that has a bounded number of polygons. It is useful to view the linkage
as a graph, although normally graphs have straight edges between a pair
of vertices, and in our case, the linkage may have an edge with an internal
vertex, as the following example demonstrates:

Figure 5: A Linkage with Eight Links and Seven Vertices.

The edge v1,vs includes the vertex vo; all three vertices must lie on a straight
line. This will not present us with a serious difficulty, but we will postpone
discussion of this issue until after we have shown how to handle embedding
a linkage in an m x m lattice.

As Theorem 2.11 demonstrated, a linkage is computationally complex
precisely because several polygons may share a vertex, or set of vertices; the
question is how to place them on the grid so that all the polygons can be
simultaneously embedded.

We now show how to embed biconnected components on an m X m grid.
We assume the reader is familiar with the depth-first search algorithm for
biconnected components [1]:

Theorem 3.5 Let B = [q,...,l, be a linkage which, viewed as a graph, is
biconnected. Suppose we are given a depth-first search tree of B that has e

12

back edges. Determining whether B can be embedded in an m X m integer
grid can be done in O(bm*T2¢t2) steps for any A > 0. If we must start the
embedding at a specific lattice point then the running time is O(bm?et2)

Proof Start by building the depth-first search tree for B. Let ¢; be the end
point of the first backedge that we encounter. Thus, the path from ¢; back
to itself is the first polygon that we have encountered, call it P;. Let (k,I)
be a candidate placement for vertex c;. By Corollary 3.3 we can compute
the matrices GE! for all vertices ¢; from P;. These tell us the possible
placements of P; when it is started at (k,[).

Now the situation grows more complicated. We need to check if the poly-
gons for which we have computed embeddings can be compatibly embedded
with the other polygons of the biconnected component. We can compute the
matrices G; for each of the other polygons; the question is how to combine
them to determine if there is a simultaneously compatible embedding for
the linkage as a whole. We make several observations:

e Each new polygon can be uniquely identified by its back edge in the
depth first traversal.

e This back edge closes the section of the tree into a polygon.

e There are at most m? lattice points on which the endpoint of the back
edge may to lie.

To check if a new polygon, P;, has a compatible embedding with the
linkage, we consider all possible positions of the end point of its backedge c;,
and check whether any lead to an embedding. (In practice, we simply record
the current position of ¢; and backtrack to check that there is a consistent
positioning of the endpoints of all lower-numbered backedges. The vast
majority of the m2(€=1) conceivable placements of all these endpoints will
be eliminated without backtracking very deeply. Thus the m2(~1) factor in
the worst case upper bound is a significant over-estimate of the true running
time.)

Thus what we do is travel the dfs tree, computing all possible embeddings
of each of the associated back-edge endpoints. There are e of them. Hence
we have a running time of O(bm?2¢+2) steps. O

We now finish the algorithm to decide whether a general linkage, L, is
embeddable. We traverse a depth-first search tree of £ in postorder fashion,

13

computing the possible embeddings of each biconnected component as we
go. The general linkage algorithm follows from Theorem 3.5.

Theorem 3.6 Suppose a linkage L has n links and each biconnected compo-
nent has at most e back edges in the depth-first search tree of L. The problem
of embedding L on an m x m integer lattice is computable in O(nm2e+2+53)
steps, for any A > 0.

Proof This is now straightforward using Theorem 3.5.

First, compute the depth-first search tree of £ including its biconnected
components. Second, we traverse the tree from leaves to root, computing
the matrix

Ay (i,) = 1 if the tree rooted at v may be embedded at position (3, j)
DI =N 0 otherwise

When the matrices A, for all the vertices v below a biconnected compo-
nent C' have been computed, we compute the possible positions for the root
of C using Theorem 3.5. In this way, we proceed up the tree. The required
time is O(bm2¢+2+2) for each biconnected component of size b. Thus the
total is O(nm?¢*t2+2) as claimed. 0

Up to now we have ignored the issue of links that contain vertices in their
interior. A slight modification of the above algorithms handles this problem.
Let /; be a link with endpoints ¢ and d and internal points a1,...,a;. When
we travel from ¢ to a1 along the depth-first search tree, we would normally
establish the array G, indicating possible placements of the vertex a; with
respect to G.. Instead we want to establish G,,,...,G,,, Gy, indicating
possible placements of the entire link. This amounts to finding possible
points for d and also checking that the a;’s land on allowable lattice points.
This modification does not affect the running time of the algorithm.

These results can be extended to higher dimensions, noting that:

Theorem 3.7 ([5], pp. 310-311) An integer n can be written as the sum
of three squares if and only if n # 4*(8m + 7).

Theorem 3.8 (/5], pg. 369.) Every integer can be written as the sum of
four squares.

14

4 What is the Minimal €7

We begin with trees in two dimensions. By Theorem 2.1 and Lemma 2.6,
a tree T is embeddable whenever each of its links is the square root of an
integer that can be written as the sum of two squares. Clearly each link is
no more than 1/2 away from an integer, i.e., the square root of a perfect
square. Can it be as much as 1/2 away from the square root of an integer
that can be written as sum of two squares? Can it be the case that there is
an integer m such that there are no integers between m? and (m + 1)? that
can be written as the sum of two squares?

Theorem 4.1 (Bambah and Chowla, [2]) Let s; be the it" integer which can
1/4)

be expressed as the sum of two squares. Then spi1 — $p = O(s
This theorem will answer the case for embedding trees.

Theorem 4.2 Let T=1ty...t, be a tree. Then the minimal € such that T
can be e-embedded in the integer lattice can be determined in O((t;)3/* +
o+ (t)34) steps.

Proof By Theorem 2.1, it suffices to consider each link separately. Suppose
link ¢ cannot be embedded. This means t? cannot be expressed as the sum
of two squares.

Let ¢ be the integer closest to #2; we have |t' — 2| < 1/2. By Theorem
4.1, there is an integer r such that |r — | < O((#')'/*) such that r can be
expressed as the sum of two squares. It takes time O(t'/?) to determinis-
tically test if ¢’ can be embedded (that is the time it takes to factor (¢')).
Thus it takes O(3/*) time to find the closest integer to ¢ which can be ex-
pressed as the sum of two squares. The minimal € is the maximum of these
closest distances. The time to compute the minimal € for the entire tree is

O((t1)>* + ...+ (ta)?). O

The problem of embedding a linkage is N'P-complete, thus the best we
can realistically hope for is an exponential-time algorithm for the problem.
The obvious algorithm of trying all possibilities is single exponential, so we
have no more to say about the problem of embedding arbitrary linkages.
However, there is a nice solution to linkages with a bounded number of
cycles limited to an m x m grid. There are two cases to consider, one where
an upper bound € is given, the other not. They are handled similarly, with
the latter treated first.

15

We begin with a theorem of Edmund Landau, then follow with a gener-
alization of Theorem 3.1.

Let Ny(n) be the number of ways to represent the integers z < n as the
sum of two squares.

Theorem 4.3 (E. Landau, [4], pg. 22) Nao(z) =b
b= %qui% (mod 4)(1 - q72)1/2 ~ 0.764....

T z
v logx T 0(\/logx)’ where

Theorem 4.4 Suppose a linkage L is a cycle P=ly ...l,. Let L =maz;l?.
Determining the minimal € for which L can be e-embedded can be determined
in O(nm?®logm) steps.

Proof We will do the same algorithm as we did for Theorem 3.1, but we
will do it many more times.

Without loss of generality, we can assume we are interested in computing
an € < e¢m for some constant 0 < ¢ < V2.

We do binary search to find the minimal € such that £ can be e-embedded.
Clearly L can be embedded with ¢ = V2m. We check if £ can be embedded
with € = @ In this way, in O(logm) rounds, we will find the minimal e
by which the polynomial can be embedded, if there is one less than v/2m.

Suppose we are checking whether the polygon can be ¢;-embedded. We
create the array M*! just as we did in the proof of Theorem 3.1, except that
we mark all the grid points reached by a linkage of length in the interval
[l; — €,1l; + €;]. How many grid points are marked?

By Theorem 4.3, No(l; +¢;) — No(l; — ;) = 0(\/1(5;51) — \/hf;(_fi_e)) <
O(ﬁ) < O(m) since ¢; < v/2m.

How long does this procedure take? At each step of the algorithm, the
marking algorithm now has the upper bound of O(m?) per array. We may
have to run the entire algorithm as much as O(logm) times for each of the
m? starting points. Thus we get the running time of O(nm?’ logm) steps.

O

Theorem 3.5 also generalizes easily.
Theorem 4.5 Suppose a linkage L=1; ...1l,. Suppose L has at most e back
edges per biconnected component of the dfs tree. Determining the minimal

€ for which L can be e-embedded in an m X m integer grid can be done in
O(nm?t3logm) steps.

16

Proof The proof is a natural combination of the ideas of Theorems 3.5 and
4.4. O

We observe that since sp11 — s, = 0(3711/4), the case with relative error

can be handled in a similar way.

Acknowledgements This problem was posed by Maharaj Mukherjee at
the Stony Brook Computational Geometry Workshop. Thanks to Hendrik
W. Lenstra, Jr. for pointing out an error in an earlier version of this paper.

References

[1] A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Com-
puter Algorithms, Addison Wesley, 1974.

[2] R.P. Bambah and S. Chowla, On Numbers which can be Expressed as
the Sum of Two Squares, Proc. Nat. Inst. Sci. India (1947), pp. 101-103.

[3] W. Bosma and M.P.M. van der Hulst, Primality proving with cyclo-
tomy, Proefschrift, Universiteit van Amsterdam, Amsterdam 1990.

[4] E. Grosswald, Representations of Integers as the Sums of Squares,
Springer-Verlag, 1985.

[5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers, Oxford University Press, 1971.

[6] J. Hopcroft, D. Joseph, and S. Whitesides, “Movement Problems for 2-
Dimensional Linkages”, pp. 282-303, in Planning, Geometry and Com-
plexity,” by J. Schwartz, M. Sharir and J. Hopcroft, Ablex, 1987.

[7] J. Hopcroft, D. Joseph, and S. Whitesides, “On the Movement of Robot
Arms in 2-Dimensional Bounded Regions,” pp. 304-329, in Planning,
Geometry and Complexity,” by J. Schwartz, M. Sharir and J. Hopcroft,
Ablex, 1987.

[8] M. Mukherjee and G. Nagy, Collinearity Constraints on Spatial Subdi-
vision Algorithms with Finite Precision Arithmetic, Proceedings Fifth
International Symposium on Spatial Data Handling, pp. 425-431.

[9] R. Schoof, Elliptic Curves over Finite Fields and Computation of Square
Roots Mod P, Math. Comp. 44 (1985), pp. 483-494.

17

A Appendix
In this section, we show that:

Theorem A.1 Let n be a positive integer with a bounded number of prime
factors of the form 4k 4+ 1, and no prime factors of the form 4k + 3. Then
the following problems are polynomial-time equivalent:

1. Enumerating the representations of n as the sum of two squares.

2. Factoring n.

Proof We first observe that if n has a bounded number of prime factors of
the form 4k + 1 and no prime factors of the form 4k + 3, then the number
of representations of n as the sum of squares is polynomial in logn. This is
because if

n= QaHgZIp;;ia

then
Ny (n) = 4I1%_, (r; + 1) < 4((max ;) + 1)4.

But the maximum r; is less than or equal to logr, thus
Ny(n) < 4(logn + 1),

Since d is bounded, the number of representations of n as a sum of squares
is polynomial in logn.

Now we prove that (1) is polynomial time reducible to 2. Since we can
factor, the only issue is how to find a representation of each 4k + 1 prime p
as a sum of two squares, p = =2 + y?. This way is easy due to a result of
Schoof [9], who gave a polynomial time algorithm for finding square roots
mod p. Thus one can quickly find an = such that 22 +1 = 0 (mod p),
and therefore 2 + 1 = mp for some integer m. But then ged(z + 4,p) in
Z[i] gives an a + bi, where p = a® + b?. Hence, (1) can be reduced to (2) in
polynomial time.

As for (2) is polynomial-time reducible to (1), we say two representations
of n as the sum of two squares, a? + b = ¢ + d? = n are inequivalent, if
a # +c,+d, b # +d, +c, with ged(a, b) = ged(e, d) = 1. Euler was the first to
observe that two inequivalent representations of n as the sum of two squares
leads to a factorization of n. A more modern treatment is in Bosma’s thesis
[3]. Using the language of complexity, Bosma shows that the reduction can
be done in polynomial time. a

18

