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Abstract

We show that for most complexity classes of interest� all sets complete under �rst�
order projections �fops� are isomorphic under �rst�order isomorphisms� That is� a very
restricted version of the Berman�Hartmanis Conjecture holds� Since �natural� com�
plete problems seem to stay complete via fops� this indicates that up to �rst�order
isomorphism there is only one �natural� complete problem for each �nice� complexity
class�

� Introduction

In ���� Berman and Hartmanis noticed that all NP complete sets that they knew of were
polynomial�time isomorphic� �BH���� They made their now�famous isomorphism conjecture�

namely that all NP complete sets are polynomial�time isomorphic� This conjecture has
engendered a large amount of work 	cf� �KMR�
� You� for surveys��

The isomorphism conjecture was made using the notion of NP completeness via polynomial�

time� many�one reductions because that was the standard de�nition at the time� In �Coo��

�A preliminary version of this work appeared in Proc� ��th Symposium on Theoretical Aspects of
Computer Science� ����� Lecture Notes in Computer Science ���� pp� �����	
�
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Cook proved that the Boolean satis�ability problem 	SAT� is NP complete via polynomial�
time Turing reductions� Over the years SAT has been shown complete via weaker and
weaker reductions� e�g� polynomial�time many�one �Kar�� logspace many�one �Jon�� one�way
logspace many�one �HIM�� and �rst�order projections 	fops� �Dah�� These last reductions�

de�ned in Section � are provably weaker than logspace reductions� It has been observed
that natural complete problems for various complexity classes including NC�� L� NL� P� NP�
and PSPACE remain complete via fops� cf� �I��� IL� SV� Ste� MI��

On the other hand� Joseph and Young� �JY� have pointed out that polynomial�time� many�
one reductions may be so powerful as to allow unnatural NP�complete sets� Most researchers
now believe that the isomorphism conjecture as originally stated by Berman and Hartmanis
is false��

We feel that the choice of polynomial�time� many�one reductions in the statement of the
IsomorphismConjecture was made in part for historical rather than purely scienti�c reasons�

To elaborate on this claim� note that the class NP arises naturally in the study of logic and
can be de�ned entirely in terms of logic� without any mention of computation �Fa�� Thus
it is natural to have a notion of NP�completeness that is formulated entirely in terms of
logic� On another front� Valiant �Val� noticed that reducibility can be formulated in algebra

using the natural notion of a projection� again with no mention of computation� The sets

that are complete under fops are complete in all of these di�erent ways of formulating the
notion of NP�completeness�

Since natural complete problems turn out to be complete via very low�level reductions such
as fops� it is natural to modify the isomorphism conjecture to consider NP�complete re�
ductions via fops� Motivating this in another way� one could propose as a slightly more
general form of the isomorphism conjecture the question� is completeness a su�cient struc�

tural condition for isomorphism� Our work answers this question by presenting a notion of
completeness for which the answer is yes� Namely for every nice complexity class including
P� NP� etc� any two sets complete via fops are not only polynomial�time isomorphic� they

are �rst�order isomorphic�

There are additional reasons to be interested in �rst�order computation� It was shown
in �BIS� that �rst�order computation corresponds exactly to computation by uniform AC�

circuits under a natural notion of uniformity� Although it is known that AC� is properly
contained in NP� knowing that a set A is complete for NP under polynomial�time 	or
logspace� reductions does not currently allow us to conclude that A is not in AC�� however�
knowing that A is complete for NP under �rst�order reductions does allow us to make that

conclusion�

First�order reducibility is a uniform version of the constant�depth reducibility studied in
�FSS� CSV�� sometimes this uniformity is important� For a concrete example where �rst�

order reducibility is used to provide a circuit lower bound� see �AG����

Preliminary results and background on isomorphisms follow in Section �� De�nitions and
background on descriptive complexity are found in Section � The main result is stated and

proved in Section �� and then we conclude with some related results and remarks about the

structure of NP under �rst�order reducibilities�

�One way of quantifying this observation is that since Joseph and Young produced their unnatural NP�
complete sets� Hartmanis has been referring to the isomorphism conjecture as the �Berman� conjecture�
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� Short History of the Isomorphism Conjecture

The Isomorphism Conjecture is analogous to Myhill�s Theorem that all r�e� complete sets are

recursively isomorphic� �Myh�� In this section we summarize some of the relevant background
material� In the following FP is the set of functions computable in polynomial time�

De�nition ��� For A�B � ��� we say that A and B are p�isomorphic 	A
p
�� B� i� there

exists a bijection f � FP with inverse f�� � FP such that A is many�one reducible to B
	A �m B� via f 	and therefore B �m A via f���� �

Observation ��� ��BH���� All the NP complete sets in �GJ� are p�isomorphic�

How did Berman and Hartmanis make their observation� They did it by proving a polynomial�
time version of the Schr�oder�Bernstein Theorem� Recall�

Theorem ��	 ��Kel
 Th� ���� Let A and B be any two sets� Suppose that there are ���

maps from A to B and from B to A� Then there is a ��� and onto map from A to B�

Proof Let f � A � B and g � B � A be the given ��� maps� For simplicity assume that
A and B are disjoint� For a� c � A � B� we say that c is an ancestor of a i� we can reach
a from c by a �nite 	non�zero� number of applications of the functions f and�or g� Now
we can de�ne a bijection h � A � B which applies either f or g�� according as whether a

point has an odd number of ancestors or not�

h	a� �

�
g��	a� if a has an odd number of ancestors

f	a� if a has an even or in�nite number of ancestors

�

The feasible version of the Schr�oder�Bernstein theorem is as follows�

Theorem ��� ��BH���� Let f � A �m B and g � B �m A� where f and g are ���� length�
increasing functions� Assume that f� f��� g� g�� � FP where f��� g�� are inverses of f� g�

Then A
p
�� B�

Proof Let the ancestor chain of a string w be the path from w to w�s parent� to w�s
grandparent� and so on� Ancestor chains are at most linear in length because f and g
are length�increasing� Thus they can be computed in polynomial time� The theorem now

follows as in the proof of Theorem ��� �

Consider the following de�nition�

De�nition �� 	�BH���� We say that the language A � �� has p�time padding functions

i� there exist e� d � FP such that

�� For all w� x � ��� w � A � e	w� x� � A





�� For all w� x � ��� d	e	w� x�� � x

� For all w� x � ��� je	w� x�j � jwj� jxj

�

As a simple example� the following is a padding function for SAT�

e	w� x� � 	w� � c� � c� � 	 	 	 � cjxj

where ci is 	y
 �y� if the ith bit of x is � and 	�y
y� otherwise� where y is a Boolean variable

numbered higher than all the Boolean variables occurring in w�

Then the following theorem follows from Theorem ����

Theorem ��� ��BH���� If A and B are NP complete and have p�time padding functions�

then A
p
�� B�

Finally� Observation ��� now follows from the following�

Observation ��� ��BH���� All the NP complete problems in �GJ� have p�time padding
functions�

Hartmanis also extended the above work as follows� Say that A has logspace�padding func�
tions if there are logspace computable functions as in De�nition ����

Theorem ��� ��Har�� If A and B are NP complete via logspace reductions and have
logspace padding functions� then A and B are logspace isomorphic�

Proof Since A and B have logspace padding functions� we can create functions f and g
as in Theorem ��� that are length squaring and computable in logspace� Then� the whole
ancestor chain can be computed in logspace because each successive iteration requires half
of the previous space� �

Here� we show that sets complete under a very restrictive notion of reducibility are isomor�
phic under a very restricted class of isomorphisms� This result is incomparable to a recent

result of �AB�� showing that all sets complete under one�way logspace reductions 	��L re�
ductions� are isomorphic under polynomial�time computable isomorphisms� 	This work of
�AB� improves an earlier result of �A����� Note that it is easy to prove that the class of
��L reductions is incomparable with the class of �rst�order projections� Other interesting

results concerning ��L reductions may be found in �BH�
� HH��
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� Descriptive Complexity

In this section we recall the notation of Descriptive Complexity which we will need to state
and prove our main results� See �I��� for a survey and �IL� for an extensive discussion of

the reductions we use here including �rst�order projections�

We will code all inputs as �nite logical structures� The most basic example is a binary
string w of length n � jwj� We will represent w as a logical structure�

A	w� � hf
� �� � � � � n��g� Ri

where the unary relation R	x� holds in A	w� 	in symbols� A	w� j� R	x�� just if bit x of w
is a �� As is customary� the notation jAj will be used to denote the universe f
� �� � � � � n��g
of the structure A� We will write jjAjj to denote n� the cardinality of jAj�

A vocabulary � � hRa�
� � � � Rar

r � c�� � � � � csi is a tuple of input relation and constant symbols�
We call the Ri�s �input relations� because they correspond to the input bits to a boolean
circuit� In the case of binary strings� the input relation tells us which bits are 
 and which

are �� In the case of graphs� the input relation E tells us which edges are present�

Let STRUC�� � denote the set of all �nite structures of vocabulary � � We de�ne a complexity
theoretic problem to be any subset of STRUC�� � for some � �

For any vocabulary � there is a corresponding �rst�order language L	�� built up from the
symbols of � and the numeric relation symbols and constant symbols�� ����BIT� 
�m�
using logical connectives� ��
��� variables� x� y� z� ���� and quanti�ers� ���

First�Order Interpretations and Projections

In �Val�� Valiant de�ned the projection� an extremely low�level many�one reduction�

De�nition 	�� Let S� T � f
� �g�� A k�ary projection from S to T is a sequence of maps
fpng� n � �� �� � � �� that satisfy the following properties� First� for all n and for all binary

strings s of length n� pn	s� is a binary string of length nk and�

s � S � pn	s� � T �

Second� let s � s�s� � � � sn��� Then each map pn is de�ned by a sequence of nk literals�
hl�� l�� � � � � lnk��i where

li � f
� �g � fsj � �sj j 
 � j � n��g �

Thus as s ranges over strings of length n� each bit of pn	s� depends on at most one bit of s�

pn	s���i�� � li	s� �

�

�Here � refers to the usual ordering on f�� � � � � n � �g� �BIT�i� j�� means that the ith bit of the binary
representation of j is �� and � and m refer to � and n � �� respectively� For simplicity we will assume
throughout that n � � and thus � �� m� These relations are called �numeric� as opposed to the input
relations because� for example� �BIT�i� j�� and �i � j� depend only on the numeric values of i and j and
do not refer to the input�
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Projections were originally de�ned as a non�uniform sequence of reductions � one for each
value of n� That is� a projection can be viewed as a many�one reduction produced by a
family fCng of circuits of depth one� The circuits consist entirely of wires connecting input
bits or negated input bits to outputs� If the circuit family fCng is su�ciently uniform� we

arrive at the class of �rst�order projections� 	Recall that �rst�order corresponds to uniform
AC� �BIS��� We �nd it useful to work in the framework of �rst�order logic rather than in
the circuit model� The rest of this section presents the necessary de�nitions of �rst�order

reductions�

The idea of the de�nition is that the choice of the literals hl�� l�� � � � � lnk��i in De�nition ��
is given by a �rst�order formula in which no input relation occurs� Thus the formula can
only talk about bit positions� and not bit values� The choice of literals depends only on n�
In order to make this de�nition� we must �rst de�ne �rst�order interpretations� These are

a standard notion from logic for translating one theory into another� cf� �End�� modi�ed
so that the transformation is also a many�one reduction� �I���� 	For readers familiar with

databases� a �rst�order interpretation is exactly a many�one reduction that is de�nable as

a �rst�order query��

De�nition 	�� 	First�Order Interpretations� Let � and � be two vocabularies� with � �
hRa�

� � � � � � Rar
r � c�� � � � � csi� Let S � STRUC���� T � STRUC�� � be two problems� Let k be

a positive integer� Suppose we are given an r�tuple of formulas �i � L	��� i � �� � � � � r�

where the free variables of �i are a subset of fx�� � � � � xk�aig� Finally� suppose we are given
an s�tuple of constant symbols� t�� � � � � ts from L	��� Let I � �x� ���xdh��� � � � � �r� t�� � � � � tsi
be a tuple of these formulas and constants� 	Here d � maxi	kai���

Then I induces a mapping also called I from STRUC��� to STRUC�� � as follows� Let

A � STRUC��� be any structure of vocabulary �� and let n � jjAjj� Then the structure
I	A� is de�ned to be�

I	A� � hf
� � � � � nk � �g� R�� � � � � Rr� t�� � � � � tsi

where the relation Ri is determined by the formula �i� for i � �� � � � � r as follows� Let the

function h	� 	 	 	 � 	i � jAjk � jI	A�j be given by

hu�� u�� � � � � uki � uk � uk��n� 	 	 	� u�n
k��

Then�

Ri � f	hu�� � � � � uki� � � � � hu��k�ai���� � � � � ukaii� j A j� �i	u�� � � � ukai�g

If the structure A interprets some variables �u then these may appear freely in the the �i�s
and tj�s of I� and the de�nition of I	A� still makes sense�

Suppose that I is a many�one reduction from S to T � i�e� for all A in STRUC����

A � S � I	A� � T

Then we say that I is a k�ary �rst�order interpretation of S to T � �

�More generally� we could use closed terms which are expressions involving constants and function
symbols� An even more general way to interpret constants and functions is via a formula � such that
� ���x����y����x� y�� However� in this paper the simpler de�nition involving constant symbols su�ces�

 



We are now ready to de�ne �rst�order projections� a syntactic restriction of �rst�order
interpretations� If each formula in the �rst�order interpretation I satis�es this syntactic
condition then it follows that I is also a projection in the sense of Valiant� In this case we
call I a �rst�order projection�

De�nition 	�	 �First�Order Projections� Let I � h��� � � � � �r� t�� � � � � tsi� be a k�ary �rst�
order interpretation from S to T as in De�nition ��� Suppose further that the �i�s all
satisfy the following projection condition�

�i � �� 
 	�� � ��� 
 	 	 	 
 	�e � �e� 	���
where the �j�s are mutually exclusive formulas in which no input relations occur� and each
�j is a literal� i�e� an atomic formula P 	xj�� � � � xja� or its negation�

In this case the predicate Ri	hu�� � � � � uki� � � � � h� � � � ukaii� holds in I	A� if ��	�u� is true� or
if �j	�u� is true for some � � j � e and the corresponding literal �j	�u� holds in A� Thus
each bit in the binary representation of I	A� is determined by at most one bit in the binary

representation of A� We say that I is a �rst�order projection 	fop�� Write S �fop T to mean
that S is reducible to T via a �rst�order projection� �

Example 	� To help the reader grasp an intuition of the way an fop reduction behaves�
let us describe an example� We present here the reduction from �SAT� satis�ability of
CNF Boolean expressions with exactly three literals per clause� to �COL� the problem of
coloring the vertices of a graph with  colors under the constraint that the endpoints of

all edges get di�erent colors� We use the same reduction as described in section ������ of
�Man�� so that the reader in need of additional help can consult it there�

The respective vocabularies for the input and output structures are as follows� To describe

instances of �SAT� clauses and Boolean variables are each numbered from 
 through n �
�� There are six predicates� Pi	x� c�� Ni	x� c�� i������ indicating that variable x occurs
positively or negatively in the ith position of the clause c� The vocabulary for the output

structures is simply a binary predicate E standing for the Boolean adjacency matrix of the
output graph� Thus E	u� v� is true exactly when the edge 	u� v� is present in the output
graph�

The output graph consists of  vertices per clause and two vertices per Boolean variable�
plus three additional vertices usually named T � F � and R 	standing for true� false� and red��

Let an arbitrary CNF formula be coded by an input structure�

A � hf
� �� � � � � n� �g� P�� P�� P�� N�� N�� N�i

The output structure will be a graph with �n �  relevant vertices� The easiest way for

us to code this is to use an fop of arity �� We will assume for simplicity that n is always
greater than or equal to ��

I	A� � hfha� bi � 
 � a� b � ng� Ei � hf
� � � � n� � �g� Ei

where� E � f	hx�� x�i� hy�� y�i� j A j� �	x�� x�� y�� y��g

It remains to write down the �rst�order projection� �� To do this� we need some nitty gritty
coding� We will let the vertices T� F � and R be the elements h
� 
i� h�� 
i� and h�� 
i of I	A�
respectively� The formula � will have three pieces�

�	x�� x�� y�� y�� � �	x�� x�� y�� y�� 
 �	x�� x�� y�� y�� 
 �	y�� y�� x�� x��


�



		x�� x�� y�� y�� 
 		y�� y�� x�� x��

Where � says that there are edges between T� F � and R� � says that vertices hx� �i and hx� �i
representing variable x and its negation are connected to each other and to R� and� 	 says
that for clause C � 	a
 b
d�� vertices hC�  i� hC� �i� hC� �i are connected to each other� and
the following edges exist� 	hC� i� hC�  i�� 	hC� �i� hC� �i�� 	hC� �i� hC� �i�� as well as the edges

	a� hC� i�� 	T� hC� i��
	b� hC� �i�� 	T� hC� �i�� and 	d� hC� �i�� 	T� hC� �i��

In case anyone really wants to see them� here are the formulas written out�

�	x�� x�� y�� y�� � 	x� � y� � 
� � 	x� �� y�� � 	x� � �� � 	y� � ��

�	x�� x�� y�� y�� � 	x� � � � y� � � � x� � y�� 
 	x� � � � x� � 
 � 	� � y� � ���

		x�� x�� y�� y�� � 	x� � x� � 
 � 	 � y� � �� � 	 � y� � ��


 	x� � y� � 	 � x� � �� � 	y� � x� � ��


 �	x� � � � y� � � � P�	x�� y��� 
 �	x� � � � y� � � �N�	x�� y���


 �	x� � � � y� � �� � P�	x�� y��� 
 �	x� � � � y� � �� �N�	x�� y���


 �	x� � � � y� � �� � P�	x�� y��� 
 �	x� � � � y� � �� �N�	x�� y��� 


	x� � y� � x� �� y� � 	 � x� � �� � 	 � y� � ���

�

� Main Theorem and Proof

Theorem ��� Let C be a nice complexity class� e�g�� L� NL� P� NP� etc� Let S and T be
complete for C via �rst�order projections� Then S and T are isomorphic via a �rst�order
isomorphism�

To prove Theorem ��� we begin with the following lemma� Note the similarity between

Lemma ��� and the proofs of Theorems ��� and ���� For simplicity in this lemma we are
assuming that I is a single fop that maps STRUC��� to itself� The proof for the case with
two fops and two vocabularies as in Lemma ��� is similar�

Lemma ��� Let I be an fop that is ��� and of arity greater than or equal to two �i�e�
it at least squares the size	� Then the following two predicates are �rst�order expressible
concerning a structure A�

a� IE	A�� meaning that I��	A� exists�

b� 
Ancestors	A� r�� meaning that the length of A�s maximal ancestor chain is r�

Proof Let I � �x� ���xdh��� � � � � �r� t�� � � � � tsi� where each �i is in the form of Equation
��� To prove 	a� just observe that each bit of the relation Ri of A either 	�� depends on
exactly one bit of some pre�image B 	speci�ed by an occurrence of a literal �ij in �i�� or 	��

�



it doesn�t depend on any bit of a pre�image� In case 	�� a given bit of A is either �right�
or �wrong�� Thus� A has an inverse i� no bit of A is wrong� and no pair of bits from A
are determined by the same bit of A�s preimage in con!icting ways� We can check this in a
�rst�order way by checking that for all pairs of bits from A� Ri	�a� and Ri�	�b�� either they do

not depend on the same bit from B� or the same value of that bit gives the correct answer
for Ri	�a� and Ri�	�b�� Furthermore� the preimage B if it exists can be described uniquely by
a �rst�order formula that chooses the correct bits determined by entries of A� N�B� Since

we have assumed that I is ��� every bit of I��	A� is determined by some bit of A�

	b� To express "Ancestors	A� r�� we want to describe the existence of an Ancestor Chain�

Ar
I
� Ar��

I
� 	 	 	

I
� A�

I
� A� � A 	���

We will then assert that this is the maximal length such chain� i�e��

�IE	Ar� � 	k � r�IE	Ak� 	����

Equation ��� expresses the existence of the ancestor chain �� inductively in the following
sense� Once we know thatAk exists� we can ascertain the valueAk��pk�� of the bit at position
pk of Ak� by exhibiting a certi�cate�

C	k� pk� � h	Ak��pk��� pk�� 	Ak����pk����� pk���� � � � � 	A���p���� p��i

We can say in a �rst�order sentence that C	k� pk� is internally consistent� That is� for all

i with k 
 i � 
� bit pi�� of Ai�� is determined correctly via I by bit pi of Ai�
� Note

that because each structure Ai�� is of size at most the square root of the size of Ai� the
certi�cate requires only O	logn� bits� i�e�� a constant number of variables� to express�

Thus� in Equation ���� we refer to bit pk of the structure Ak by existentially quantifying
an internally consistent certi�cate C	k� pk�� We know inductively� that since IE	Ak���� the

bit value determined by C	k� pk� is unique and correct� �

Lemma �� If S and T are interreducible via ��� fops I and J each of arity at least two�

then S and T are isomorphic via �rst�order isomorphisms�

Proof Let A be a structure in the vocabulary of S� and� as in the proof of Theorem ��
de�ne the length of the ancestor chain of A to be the length of the longest sequence of
the form J��	A�� I��	J��	A��� J��	I��	J��	A���� � � � The argument given in Lemma ���
shows that there is a formula "Ancestors	A� r� that evaluates to true i� A�s ancestor chain

has length r� Lemma ��� also shows that there is a formula computing J��� The desired
isomorphism is now the function b such that the i�th bit of b	A� is one i� the following
�rst�order formula is true�

	�r�	"Ancestors	A� r� � 	BIT	
� r� � I	i��
 	�BIT	
� r� � J��	i���

�The reader who is more familiar with bit hacking on Turing machines than with �rst�order formulas�
could instead convince herself that this can be done by an alternating Turing machine running in logarithmic
time and making O��� alternations� �rst�order expressibility follows by �BIS��

�



	Note that this �rst�order isomorphism b is not� strictly speaking� a �rst�order interpre�
tation� since it maps some inputs to strictly shorter outputs� which is impossible for an
interpretation�� �

It now remains to show�

Lemma ��� Suppose that a problem S is complete via fops for a nice complexity class� C�
Then S is complete for C via fops that are ��� and of arity at least two�

Proof Of course it remains to de�ne �nice�� but here is the proof� Every nice complexity
class has a universal complete problem�

UC � fM#w"r j M	w� � using resources fC	r�g 	����

Here fC	r� de�nes the appropriate complexity measure� e�g� r nondeterministic steps for
NP� deterministic space log r� for L� space �r for EXPSPACE� etc�

We claim that UC is complete for C via fops that are ��� and of arity at least two � In
order to make this claim� we need to agree on an encoding of inputs to UC that allows us to
interpret them as structures over some vocabulary� Since all of our structures are encoded

in binary� we will encode # and " by �
 and �� respectively� and the binary bits 
 and �
constituting M and w will be encoded by 

 and 
� respectively� Now� as in� for example�
�I���� we consider a binary string of length n to be a structure with a single unary predicate

over a universe of size n� Now for any given problem T � C accepted by machine M � we
show that T is reducible to UC via a fop that is ��� and of arity at least two� The fop simply
maps input w to the string M#w"r� for an appropriate r which we can always take to be at
least jwj�� The fop checks that if i � �jM j then the odd�numbered bits are 
 and if i is even�

then the ith bit is � i� the i���th bit of M is �� Similarly� if �jM j�� � i � �	jM j� jwj���
then the odd�numbered bits are 
 and the even numbered bits are the corresponding bit of
w� etc�

To complete the proof of the lemma� let T be any problem in C and let S be as above� Then
we reduce T to S via a ���� length squaring fop as follows� First reduce T to UC as above�
Next reduce UC to S via the fop promised in the statement of the lemma�

It is easy to verify that� using the encoding we have chosen for UC � it holds that for every
length n� for all i � n� there are two strings x and y of length n� di�ering only in position
i� such that x � UC and y �� UC �

Thus the fop from UC cannot possibly ignore any of the bits in its input� But an fop cannot
process several bits into one� it can only either ignore a bit or copy it� or negate it� and this
choice is made independently of the values of any of the bits�

It follows that the composition of these two fops is the ��� length squaring fop that we
desire� 	Note that an fop by de�nition must have arity at least one and thus cannot be
length decreasing on Boolean strings�� �

From the above three lemmas we have a �rst�order version of Theorem �� and thus Theorem
��� follows�

�




We can inspect the proof of Lemma �� to get a de�nition of �nice�� A complexity class
is �nice� if it has a universal complete problem via fops as in Equation ���� It is easy to
check that the following complexity classes� among many others� are nice and thus meet the
conditions of Theorem ����

Proposition ��� The following complexity classes are nice� NC�� L� NL� LOG	CFL��
NC�� P� NP� PSPACE� EXPTIME� EXPSPACE�

Proof This is immediate for the Turing machine based classes� L� NL� P� NP� PSPACE�
EXPTIME� EXPSPACE� It similarly follows for the other three classes using the de�nitions�
NCi � ASPACE�log n��TIME�	log n�i�� and LOG	CFL� � ASPACE�log n��TIME�log n��
�

� More on the Relationship between Isomorphisms and

Projections

There are several questions about isomorphisms among complete sets that can be answered
in the setting of �rst�order computation but are open for general polynomial�time compu�

tation� It is not known whether one�way functions exist since their existence would imply
that P �� NP� However� if one�way functions exist 	i�e�� if P �� UP� then there exists a
one�way function f such that f	SAT� is polynomial�time isomorphic to SAT �Ga��

Here we can be more de�nitive� the bijection f	x� � x 	 mod �jxj� was shown in �BL� to
be one�way for �rst�order computation� in the sense that f is �rst�order expressible� but
f�� is not� 	See also �H$as� for other examples�� However� it is not too hard to show that

for this choice of f � f	SAT � is complete for NP under �rst�order projections� and thus it is
�rst�order isomorphic to SAT�

The next result shows that the class of sets complete under �rst�order projections is not
closed under �rst�order isomorphisms� 	This also seems to be the �rst construction of a set

that is complete for NP under �rst�order 	or even poly�time� many�one reductions� that is

not complete under �rst�order projections��

Theorem �� There is a set �rst�order isomorphic to SAT that is not complete for NP
under �rst�order projections�

Proof Let g	x� be a string of jxj� bits� with bit xi�j representing the logical AND of bits
i and j of x� Let A � fhx� g	x�i � x � SATg� By an extension of the techniques used in
proving Theorem ���� it can be shown that A is �rst�order isomorphic to SAT� However a

direct argument shows that there cannot be any projection 	even a nonuniform projection�
from SAT to A� 	Sketch� For all n� one can �nd bit positions i and j that are independent of
each other and are independent of every other bit position� in the sense that for any setting
b of bit j there are two words that di�er only in bit i� having b in position j� such that one

of the words is in SAT and one is not� No projection reducing SAT to another language
can �ignore� either i or j� But since i and j are independent of all other bit positions� no

projection can encode the AND of bits i and j�� �

��



A natural question that remains open is the question of whether every set complete for NP
under �rst�order many�one reductions is �rst�order isomorphic to SAT� A related question
is whether one can construct a set complete for NP under poly�time many�one reductions
that is not �rst�order isomorphic to SAT� Since so many tools are available for proving

the limitations of �rst�order computation� we are optimistic that this and related questions
about sets complete under �rst�order reductions should be tractable�� Furthermore� we hope
that insights gleaned in answering these questions will be useful in guiding investigations

of the polynomial�time degrees�
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