
“An n! Lower Bound On Formula Size”

Micah Adler

Computer Science Dept.
UMass, Amherst, USA

http://www.cs.umass.edu/∼micah

Neil Immerman∗

Computer Science Dept.
UMass, Amherst, USA

http://www.cs.umass.edu/∼immerman

Abstract

We introduce a new Ehrenfeucht-Fraı̈ssé game for prov-
ing lower bounds on the size of first-order formulas. Up
until now such games have only been used to prove bounds
on the operator depth of formulas, not their size. We
use this game to prove that the CTL+ formula Occurn ≡
E[Fp1 ∧ Fp2 ∧ · · · ∧ Fpn] which says that there is a path
along which the predicates p1 through pn occur in some or-
der, requires size n! to express in CTL. Our lower bound is
optimal. It follows that the succinctness of CTL+ with re-
spect to CTL is exactly Θ(n)!. Wilke had shown that the
succinctness was at least exponential [Wil99].

We also use our games to prove an optimal Ω(n) lower
bound on the number of boolean variables needed for
a weak reachability logic (RLw) to polynomially embed
the language LTL. The number of booleans needed for
full reachability logic RL and the transitive closure logic
FO2(TC) remain open [IV97, AI00].

1 Introduction

We introduce a new Ehrenfeucht-Fraı̈ssé game for prov-
ing lower bounds on the size of first-order formulas. Previ-
ous such games only proved lower bounds on the quantifier
depth of formulas.

We use this game to prove that the CTL+ formula,

Occurn ≡ E[Fp1 ∧ Fp2 ∧ · · · ∧ Fpn] (1.1)

requires size n! to express in CTL. The formula Occurn says
that there exists a path such that each of the predicates pi

occurs somewhere along this path. (E is the existential path
quantifier: there exists a maximal path starting from the cur-
rent point. F is the modal quantifier: somewhere now or in
the future along the current path.)

This offers a quite different proof and improves the expo-
nential lower bound on the succinctness of CTL compared

∗Research supported by NSF grant CCR-9877078.

with CTL+ [Wil99]. We thus prove that the succinctness of
CTL+ with respect to CTL is exactly Θ(n)!.

We prove that the parse tree of any CTL formula express-
ing Occurn has at least n! leaves. This bound is exactly op-
timal because the following formula expresses Occurn and
has n! leaves in its parse tree. Here we use [n] to denote
{1, 2, . . . , n}.

ϕn ≡
∨

i1∈[n]

EF
(

pi1 ∧
∨

i2∈[n]−{i1}

EF
(

pi2 ∧

∨

i3∈[n]−{i1,i2}

EF
(

· · · ∧ EFpin

)

· · ·
)

)

The main contribution of these results is not so much
the introduction of the new formula-size games, as their
effective use proving a new and optimal result. Standard
Ehrenfeucht-Fraı̈ssé games are played on a single pair of
structures A, B. They are used to prove lower bounds on
the quantifier depth of a formula ϕ needed to distinguish A
from B. Our new game works on a whole set of structures
A,B where all of A satisfies ϕ and all of B satisfies ¬ϕ. In
a standard game, the pair of structures A and B may differ
on a disjunction: ϕ ≡ α∨β. In this case they differ on α or
they differ on β and the “or” may be discarded. However,
in the formula- size game, the set of structures A must be
split into two portions: A1 satisfying α andA2 satisfying β.
All of B satisfies ¬α and ¬β. Thus the game on (A,B) is
shifted to a pair of games, (A1, B) and (A2, B).

There are extensive connections between the computa-
tional complexity of a problem and its descriptive complex-
ity, i.e., how complex a formula is needed to describe the
problem. Descriptive complexity is measured via the size,
number of variables, operator depth, etc. of the requisite
formulas as a function of the size of the input structures be-
ing described [Imm99].

The formula-size games introduced here generalize stan-
dard EF games. They are also related to the communica-
tion complexity games that Karchmer and Wigderson used

to prove lower bounds on the depth of monotone circuits
[Kar89]1. In the past, EF games have been useful in prov-
ing bounds on operator depth and number of variables, but
they have not been used to prove lower bounds on the size
of formulas. This has been a crucial lack, which the present
paper takes a step in correcting.

The added complication of formula-size games means
that we must build up considerable machinery to use them
to prove lower bounds. Such lower bounds were heretofore
unattainable for general first-order formulas. We believe
that this game and the corresponding methods will have
many applications.

In another application of formula-size games we show
that Θ(n) booleans are needed to translate an LTL formula
of size n to a polynomial-size formula of the reachability
logic, RLw.

This paper is organized as follows: In §2 we provide the
necessary background in logic including the introduction of
transitive closure logic (FO(TC)) which provides the gen-
eral setting for the games that we present. In §3 we review
Ehrenfeucht-Fraı̈ssé games and present the new formula-
size games for FO(TC). In §4 we present the formula-size
game for CTL. In §5 we define the graphsGn over which we
prove our lower bound. In §6 we prove our main result, the
optimal n! lower bound on the succinctness of CTL+ with
respect to CTL. In §7 we prove an Ω(n) lower bound on the
number of boolean variables needed for RLw to express
Occurn in polynomial size. In Appendix A we describe the
language CTL and in Appendix B we describe reachability
logic (RL).

2 Background

In this section we review some basic definitions con-
cerning finite model theory and transitive closure logic
[Imm99].

The language L consists of first-order logic with unary
relation symbols {pn : n ∈ N}, and binary relation symbol,
R. By the size of a formula, we mean the number of nodes
in its parse tree, i.e., the number of occurrences of logical
connectives, quantifiers, operators, and atomic symbols.

For our purposes, a Kripke structure is a finite labeled
graph:

K = 〈S; pKn : n ∈ N;RK〉 (2.1)

1Karchmer and Wigderson gave general games for proving lower
bounds on circuit depth; but they proved lower bounds only using a mono-
tone version of their games. They cast their games as a communication
game in which two sets of structures differ on some property. Through
successive bits of communication, each of which divides one of the sets of
structures in half, eventually the sets are reduced to a collection of pairs
where each pair differs on a particular bit. This is analogous to the closed
nodes of our formula size game, in which each pair differs on a particular
atomic formula.

where S is the set of states (vertices), each pKn ⊆ S is a
unary relation on S, and RK ⊆ S2 is the edge relation.

First-order logic L does not suffice to express such sim-
ple formulas as,

“There is a path from where we are (x)
to a vertex where p17 holds.”

(2.2)

For this reason we add a transitive closure operator to
first-order logic to allow us to express reachability [Imm87].

Let the formula ϕ(x1, . . . xk, y1, . . . yk) represent a bi-
nary relation on k-tuples. We express the reflexive, transi-
tive closure of this relation using the transitive-closure op-
erator (TC), as follows: TCx,yϕ. Let FO(TC) be the clo-
sure of first-order logic under the transitive-closure opera-
tor. For example, the following formula expresses Equation
2.2: (∃y)[(TCx,yR(x, y))(x, y) ∧ p17(y)].

3 Ehrenfeucht-Fraı̈ssé Games

We assume that the reader is somewhat familiar with
classical Ehrenfeucht-Fraı̈ssé (EF) games [Ehr61, Fra54,
Imm99]. Typically there is a pair of structures A,B and
two players. Samson chooses vertices, trying to point out a
difference between the two structures, and Delilah replies,
trying to keep them looking the same. Typical games have
a certain number of pebbles corresponding to variables, and
rounds corresponding to the depth of nesting of quantifiers
and other operators such as TC.

The typical fundamental theorem of EF games is that De-
lilah has a winning strategy for the k-pebble,m-move game
onA,B iffA andB agree on all k-variable, depth-m formu-
las. EF games are used to show nonexpressivity of a prop-
erty Φ as follows: Delilah chooses a pair of structures A,B
that disagree on Φ but such that she has a winning strategy
for the m-move, k-pebble game. It then follows that Φ is
not expressible via a k-variable, depth-m formula.

We now present new games for proving lower bounds on
formula size rather than depth. We first define the formula-
size game for the language FO2(TC) — first-order logic
with 2 variables and the transitive closure operator. We
chose this logic because it is simple, expressive, and quite
general. It is easy to see how to generalize the game and
its corresponding fundamental theorem to most reasonable
logics by adding more variables and other operators. In the
sequel we will specialize the FO2(TC) game to a less gen-
eral language, CTL, where we will prove our main results.

Definition 3.1 (FO2(TC) Formula-Size Game) In the
formula-size game, Delilah starts by picking two finite sets
of structures: A0, B0. The root of the game tree is labeled
A0, B0. (The intuitive idea is that there is some property Φ
such that every structure in A0 satisfies Φ (A0 |= Φ) and no
structure in B0 satisfies Φ (B0 |= ¬Φ).)

At each move, Samson may play on any of the open
leaves of the current game tree. (One of Samson’s possi-
ble moves will be to close a leaf.) Suppose that the leaf that
Samson chooses to play on is labeled with the pair of sets
A,B.

“not” move: Samson switches the two sets letting the cur-
rent leaf have a unique child labeled B,A.

“or” move: Samson splits A into two sets: A = A′ ∪ A′′.
He lets the current leaf have two children labeledA′, B
and A′′, B.

∃ move: Samson chooses a variable v ∈ {x, y}. He then
assigns a value for v to every structure A ∈ A. De-
lilah then answers by assigning a value for v to every
structure B ∈ B. Let A′, B′ be the two sets of struc-
tures with the new assignments for v. The current leaf
is then given a child labeled A′, B′.

TC move: Samson chooses a pair of previously assigned
variables v, v′ ∈ {x, y}. For every structure A ∈ A,
Samson then chooses a sequence of vertices from A:
vA = a0, a1, a2, . . . , at = v′A. Delilah then answers
by choosing for every structure B ∈ B a similar se-
quence, vB = b0, b1, b2, . . . , at′ = v′B. Samson then
chooses a single consecutive pair bi, bi+1 for each B
and assigns x to bi and y to bi+1. The current leaf is
then given a child labeledA′, B′ whereB′ is the result
of these new assignments for each structure in B. A′

consists of multiple copies of each structure A ∈ A,
one for each consecutive pair aj , aj+1 in the sequence
forA chosen by Samson and with x assigned to aj and
y assigned to aj+1.

The idea behind this move is that Samson is assert-
ing that every structure in A satisfies TCx,y(δ)(v, v′)
and no structure in B does. He thus presents what he
claims is a δ-path from v to v′ for each structure A in
A. Delilah answers with a supposed δ path from v to
v′ for every B in B. Samson must then challenge one
pair bi, bi+1 in each of Delilah’s supposed δ paths. He
is in effect saying “¬δ(bi, bi+1)”. At the end of this
move, every structure in A′ should satisfy δ(x, y) and
no structure in B′ should.

atomic move: Samson chooses v, v′ ∈ {x, y} and an
atomic formula α(v, v′). (α can be v = v′, R(v, v′)
or pi(v).) Samson can only make this move if every
structure in A satisfies α(v, v′) and no structure in B
does. In this case, the current leaf is closed.

The object of the game for Samson is to close the whole
game tree while keeping it as small as possible. Delilah on
the other hand wants to make the tree as large as possible.

Delilah may make multiple copies of the structures in B
before any of her moves. For this reason, there is an obvious
strategy for Delilah that is optimal, namely do everything:
in answer to an existential move, make a copy of B for each
vertex in B and reply with that vertex. Similarly, in answer
to a TC-move, Delilah can make enough copies of B and
answer with all possible sequences without repetitions from
v to v′. 2

The reason that Delilah is allowed to make multiple
copies in the size game is that otherwise Samson need not
play relevant parts of the minimal formula separatingA and
B. For example, suppose that A = {A} and B = {B}
each consist of a single structure. Suppose that the smallest
formula true of A but not B is,

∃x∃y(p1(x) ↔ p1(y) ∧ p2(x) ↔ p2(y) ∧

· · · ∧ pn(x) ↔ pn(y)),

i.e., A has two points agreeing on all n predicate symbols,
but B does not. If Delilah could not make duplicates, then
Samson could just choose the relevant x and y in A and
Delilah would have to answer with a single pair from B.
Then either the x’s or the y’s would differ on some predicate
symbol pi and Samson could close a game tree of size 3,
rather than n.

The fundamental theorem of the formula-size game is:

Theorem 3.2 Samson can close the game started atA0, B0

in a tree of size s iff there is a formula ϕ ∈ FO2(TC) of size
at most s such that every structure in A0 satisfies ϕ and no
structure in B0 does.

Proof: Suppose that ϕ of size s separates A0 and B0. Then
Samson can “play ϕ” and a closed game tree of size s will
result. Playing ϕmeans the following. Suppose thatA |= ϕ
and B |= ¬ϕ.

ϕ = ¬ψ: Samson plays the “not” move. In the resulting
leaf A′ |= ψ and B′ |= ¬ψ.

ϕ = ψ ∨ ρ: Samson plays the “or” move letting A′ be the
subset of A satisfying ψ, and A′′ the subset satisfying
ρ. Thus one child differs on ψ and the other differs on
ρ.

ϕ = (∃v)ψ: Samson plays the ∃ move assigning v to a
witness for ψ in every structure of A. Thus, whatever
Delilah answers we have that A′ |= ψ and B′ |= ¬ψ.

ϕ = TCx,y(δ)(v, v
′): Samson plays the TC move and

as argued in the discussion after the definition of this
move,A′ |= δ and B′ |= ¬δ.

ϕ is atomic: Samson plays the atomic move, using ϕ and
succeeds in closing this leaf.

Conversely, suppose that Samson has succeeded in clos-
ing the game in size s and that Delilah has played optimally.
It follows that the resulting game tree is a size s formula sat-
isfied by all of A0 and none of B0.

This can be seen inductively from the leaves of the closed
game tree. For closed leaf, (A,B), A |= α and B |= ¬α,
where α is an atomic formula, i.e., has size one.

Inductively, assume that (A,B) has children (Ai, Bi)
each differing on a formula ψi of size si where i = 1 for
“not”, ∃ and TC moves and i = 1, 2 for the “or” move. Here
si is the size of the subtree rooted at (Ai, Bi).

“not” move: A |= ¬ψ1, B |= ψ1 and thus they differ on a
formula of size s1 + 1.

“or” move: A |= ψ1 ∨ ψ2, B |= ¬(ψ1 ∨ ψ2) and thus they
differ on a formula of size s1 + s2 + 1.

∃ move: A |= (∃v)α1, B |= ¬(∃v)α1, and thus they differ
on a formula of size s1 + 1. Note that since Delilah
plays optimally, if it were the case that some B ∈ B
satisfies (∃v)α1, then Delilah would have chosen the
appropriate witness for this B and it would not have
been the case that B1 |= ¬α1.

TC move: A |= TCx,y(α1)(v, v
′), B |=

¬TCx,y(α1)(v, v
′), and thus they differ on a for-

mula of size s1 + 1. By the definition of the TC move,
since A1 |= α1, we know that for every A ∈ A, there
is an α1-path from vA to v′A. Furthermore, if there
were an α1-path from vB to v′B, for some B ∈ B, then
Delilah would have played it for one of her copies of
B. Therefore, no matter which consecutive pair in this
path Samson challenged, it would satisfy α1.

Thus A0 and B0 differ on a formula of size s. 2

4 Definition of the CTL Game

For a definition of CTL see the appendix or [CGP99].
We now define the CTL formula-size game2. This is a re-
striction of the FO2(TC) formula-size game (Definition 3.1)
as follows.

• There is only a single pebble name: x.

• The “not” and “or” moves are unchanged.

• The atomic move is unchanged except that it is played
only using atomic formulas pi.

2It is easy to generalize this also to the CTL? formula-size game, but
we leave this to the reader.

• The ∃ and TC moves are replaced by the following,
played on a leaf, `, labeled with the pair of sets A,B,

EX move: For each A ∈ A, Samson reassigns x to a
child of the current x. Delilah answers by first making
as many copies of each B ∈ B as she wishes. For each
copy B ∈ B she assigns x to a child of the current
x. The resulting node labeledA′, B′ becomes the only
child of `.

EU move: For each A ∈ A, Samson chooses a path
of length zero or more: xA = a0, a1, . . . , ar. Delilah
answers as above with a path xB = b0, b1, . . . , bs for
each copy she makes of each B ∈ B. Samson is trying
to assert that (A, x) |= E(αUβ), i.e., that (A, ai) |= α
for i < r, and (A, ar) |= β. Presumably this holds for
all of Samson’s chosen paths and none of Delilah’s.

In the second half of the move, Samson divides the
paths chosen by Delilah into two sets. For the first
set he assigns x to some bi with i < s and puts these
structures intoB1. For the second set he assigns x to bs
and puts these structures into B2. Delilah answers by
making enough copies so that she can assign x to each
possible point in Samson’s paths. When she assigns x
to the final point br in a path, she puts that structure
in A2. When she assigns x to a non-final point she
puts that structure into A1. The node ` now has two
children labeled A1, B1 and A2, B2 respectively.

Intuitively what has happened in the second half of this
move is that for those paths chosen by Delilah whose
final points do not satisfy β, Samson chooses this point
and puts the structure into B2. For those paths one
of whose non-final points does not satisfy α, Samson
chooses this point and puts the structure into B1. At
the end of the move we have that A1 |= α, B1 |=
¬α, A2 |= β, and B2 |= ¬β. If the set B1 or B2

should happen to be empty then that node is considered
closed.

AU move: This is similar to the EU move except
that the first half of the move now has two parts: (a)
Samson chooses a maximal path for each structure in
B, and Delilah makes copies and chooses a maximal
path for each copy of each structure in A; (b) Samson
chooses a finite initial segment of each path chosen by
Delilah and then Delilah chooses a finite initial seg-
ment of each path chosen by Samson. Delilah may
make copies of the paths chosen by Samson in order to
choose more than one initial segment from each path.
The second half of the move is the same as for the EU
move.

It should be clear from the above definition and the proof
of Theorem 3.2 that the following theorem holds:

Theorem 4.1 Samson can close the CTL formula-size
game started at A0, B0 in a tree of size s iff there is a for-
mula ϕ ∈ CTL of size at most s such that every structure in
A0 satisfies ϕ and no structure in B0 does.

5 Setting Up the Playing Field

In this section we describe the graphs on which we will
play the CTL game to prove our main lower bound, Theo-
rem 6.1. For each n > 1, we will build two sets of graphs
A0, B0 such that A0 |= Occurn and B0 |= ¬Occurn. For
each of the n! possible paths that might satisfy Occurn, A0

will include one graph that contains this path. Furthermore,
we give each graph in A0 and B0 copies of all permuta-
tions of length n− 1. This will help make A0 and B0 very
difficult to distinguish.

For any fixed n > 1 consider the following directed
graph, Gn = (Vn, En). Let Π[n] be the set of all permu-
tations π on any nonempty subset of [n] and let Πn be the
set of permutations on the full set [n]. The vertices of Gn

consist of the union of two sets, Vn = Tn ∪ Fn,

Tn =
{

tπ
∣

∣ π ∈ Π[n]

}

; Fn =
{

fπ

∣

∣ π ∈ Π[n]

}

We represent the permutation π ∈ Π[n] as a 1:1 map,

π : [|rng(π)|] → rng(π) ⊆ [n] .

For any such permutation π on at least two elements, define
its tail, tail(π) : [|rng(π)| − 1] → rng(π) − {π(1)} where
tail(π)(i) = π(i+1). For ease of notation, let π2 = tail(π),
and in general, πk+1 = tailk(π), i.e., the permutation π
starting from item k + 1.

For all π ∈ Π[n], the relation pπ(1) holds of vertex tπ.
Also, if π is a permutation on at least two elements then
pπ(1) holds of vertex fπ.

The node fπ has edges to the following successors
nodes:

• tσ ∈ Tn where rng(σ) ⊆ rng(π) − {j}, for some j ∈
rng(π), j 6= π(1)

• fσ ∈ Fn where rng(σ) ⊆ rng(π)− {j}, for some j ∈
rng(π)

The node tπ has edges to all the successors of fπ together
with the additional successor tπ2 . Furthermore, every ver-
tex in Vn has an edge back to itself.

Consider the following sets of vertices and structures,

Yn =
{

tπ ∈ Tn

∣

∣ π ∈ Πn

}

Nn =
{

fπ ∈ Fn

∣

∣ π ∈ Πn

}

A0 =
{

(Gn, tπ)
∣

∣ tπ ∈ Yn

}

B0 =
{

(Gn, fπ)
∣

∣ fπ ∈ Nn

}

The idea behind Gn is that for each π ∈ Πn, tπ and fπ

are very difficult to distinguish. However, observe that,

Lemma 5.1 For any π ∈ Πn,

(Gn, tπ) |= Occurn; but (Gn, fπ) |= ¬Occurn

6 Playing the CTL Game

In this section we prove the following,

Theorem 6.1 The formula Occurn (Equation 1.1) cannot
be expressed in a CTL formula of size less than n!. Thus,
there is a CTL+ formula of sizeO(n) whose smallest equiv-
alent CTL formula has size n!.

Corollary 6.2 The succinctness of CTL+ with respect to
CTL is exactly Θ(n)!.3

By Lemma 5.1 we have that A0 |= Occurn and B0 |=
¬Occurn. To prove Theorem 6.1 it suffices to show the fol-
lowing,

Lemma 6.3 Samson cannot close the CTL-game on
(A0, B0) in a game tree with fewer than n! leaves.

We will prove Lemma 6.3 through a series of additional
lemmas. Since there is only one structure namely Gn on
which we are playing and the only thing that matters is
where x is assigned, we will abbreviate the structure A for
which xA = a by the point a. Thus a tree node will be
labeled A,B with A and B boths sets of vertices from Gn.

We say that a pair 〈a, b〉 occurs at a node v of a game
tree if v is labeled (A,B) and a ∈ A, b ∈ B. The following
lemma is obvious but useful:

Lemma 6.4 If a pair 〈a, a〉 occurs anywhere in a game
tree, then that tree can never be closed.

Let T be a closed game tree whose root is labeled
(Yn, Nn) and on which Delilah and Samson have both
played perfectly. We will argue that T has at least n! leaves.

Lemma 6.5 Let π ∈ Πn. Then there is a branch in T from
root to leaf along which the following pairs occur (in this
order),

〈tπ, fπ〉, 〈tπ2 , fπ2〉, 〈tπ3 , fπ3〉, . . . , 〈tπn , fπn〉

Proof: By definition of Yn, Nn, 〈tπ, fπ〉 occurs at the root.
Suppose inductively that 〈tπk , fπk〉 occurs at node vk (and
is preceded by 〈tπj , fπj 〉 for all j < k); and vk is the low-
est node at which 〈tπk , fπk〉 occurs. If k = n, then the
lemma is proved. Suppose that k < n. In this case, vk is an

3See Emerson and Halpern [EH85] for the upper bound.

open node since tπk and fπk both satisfy the same predicate
symbol, pπ(k).

From now on, let us assume that there are no “not”
moves, but that instead Samson may play on the left or
on the right. This may slightly decrease the size of T by
removing “not” moves, but the number of leaves is un-
changed. Note that an “or” move on the right is really an
“and” move, and an E move on the right is really an A move.

Observe that if Samson plays an “or” move at vk, then
the pair 〈tπk , fπk〉 would still occur at one of vk’s children.
Furthermore, Samson cannot close vk. Thus, Samson must
play one of the following moves: EX, EU, AU.

Recall that every path from fπ is also a path from tπ.
Thus if Samson plays on the right, stepping off fπ to some
descendant d, then tπ has the identical descendant d which
Delilah will play. It follows from Lemma 6.4 that, Samson
must play on the left at vk.

If Samson plays EX then he must move from tπk to one
of its successors. The only successor of tπk that is not a suc-
cessor of fπk is tπk+1 . Thus, Samson must move to tπk+1

and Delilah will move to all successors of fπk , including
fπk+1 . Thus 〈tπk+1 , fπk+1〉 occurs in the child of vk as de-
sired.

Suppose that Samson plays AU. Samson starts by choos-
ing a maximal path for each structure on the left. Delilah an-
swers by choosing the infinite loop on the current vertex for
each structure on the right. Recall that Gn has a self-loop
at each vertex. Now, Samson chooses an initial segment of
each infinite self-loop. Delilah responds by choosing the
initial segments of length zero from Samson’s paths. The
right child of vk is thus labeled exactly the same as vk. Thus
it is not useful for Samson to play AU.

Finally, suppose that Samson plays EU. He chooses a
path from tπk to some descendant d. Note that if d 6= tπk+1

then d is also a descendant of fπk . Thus Delilah will answer
with the path consisting of a single step from fπk to d. If
Samson challenges fπk then we have made no progress. If
Samson challenges d, then the right child of vk contains
the pair 〈d, d〉 and thus Delilah wins. Thus, Samson must
play the path from tπk to tπk+1 . Delilah will answer among
others with the path from fπk to fπk+1 and 〈tπk+1 , fπk+1〉
occurs at a child of vk as desired. 2

The path of permutation π which is guaranteed by
Lemma 6.5 to occur along at least one branch of T may
in fact occur along several branches. For each permutation
π we would like to choose a particular branch as the repre-
sentative branch of π. If 〈tπk , fπk〉 occurs at v along this
branch, and 〈tπk , fπk〉 still occurs at one of v’s children,
then we follow this child, i.e., we take a branch that avoids
making progress if possible. If both steps make progress, or
neither do, we follow the left child.

Let π, σ be distinct elements of Πn. In the next lemma
we prove that the branches of π and σ must diverge at some

point in T . By this we mean that the branches start together
at the root, but eventually separate and end at distinct leaves.
It will then follow that there are at least as many leaves of
T as elements of Yn and Lemma 6.3 and Theorem 6.1 thus
follow.

Lemma 6.6 Let π, σ be distinct elements of Πn. Then the
branches of π and σ diverge.

Proof: Let us assume for the sake of a contradiction that the
branches of π and σ coincide. Let k be the first place that π
and σ differ, i.e., π(i) = σ(i) for i < k and π(k) 6= σ(k).
We know that 〈tπ, fπ〉 and 〈tσ , fσ〉 both occur at the root.

The branches for π and σ may be moving down in lock
step, i.e., 〈tπi , fπi〉 occurs at the same node as 〈tσi , fσi〉 or
one may be ahead of the other, e.g., 〈tπi+1 , fπi+1〉 occurs
at the same node as 〈tσi , fσi〉. Let us assume that they are
in lock step, or π is ahead of σ when 〈tσk+1 , fσk+1〉 first
occurs. Let vk be the lowest node on the branch at which
〈tσk , fσk 〉 occurs. Since 〈tσk , fσk〉 does not occur as a child
of vk, Sampson must play either EX or EU at the node vk.
There are two cases.

Case 1: 〈tπk , fπk〉 also occurs at vk. Thus Samson must
step from tπk to tπk+1 and from tσk to tσk+1 at this step.
Since π(k) 6= σ(k), tπk+1 is a descendant of fσk (and tσk+1

is a descendant of fπk). If Samson challenges either of these
descendants, then we have the same point on both sides of
a node in T and Delilah wins. If Samson challenges nei-
ther, then 〈tσk , fσk〉 occurs at a proper descendent of vk,
contradicting our assumption.

Case 2: 〈tπj , fπj 〉 occurs at vk for j > k. Samson must
step from tσk to tσk+1 and either leave tπj fixed, or step
from tπj to tπj+1 . Let d be the not-necessarily-proper de-
scendant of tπj that Samson steps to. Delilah answers with
the path from fσk to d. Since we have assumed that progress
on σ is made at this node, Samson cannot challenge fσk .
Thus he must challenge d and the pair 〈d, d〉 occurs at the
left child of vk. This contradicts our assumption that T is
closed.

Thus we have proved that the branches of π and σ cannot
remain together after the second one has moved past level
k. 2

7 Lower Bound on Booleans in Reachability
Logic

In this section we give an interesting application of
formula-size games to characterize the number of boolean
variables needed in a reachability logic. In [IV97] it is
shown that CTL? is linearly embedable in the transitive clo-
sure logic FO2(TC). Furthermore in [AI00] a sublanguage
of FO2(TC) called reachability logic (RL) is described.

CTL? remains linearly embedable in RL. The complex-
ity of checking whether a Kripke structure, K, satisfies an
RL formula, ϕ, is O(|K||ϕ|2nb) where nb is the number of
boolean variables occurring inRL. BothRL and FO2(TC)
may contain boolean-valued variables in addition to their
two domain variables. Since the time to model check is
linear in the size of the formula and the size of the struc-
ture, but exponential in the number of booleans, information
about how many booleans are needed is important.

The boolean variables are not needed to embed CTL;
however in the linear embeddings of CTL? in RL and
FO2(TC) at most a linear number of boolean variables may
be used. It was left open in [IV97] whether any such
booleans are actually needed. It was shown in [AI00] that
at least one boolean is needed to embed CTL? at all in
FO2(TC) or RL. Whether more than one such boolean
variable is needed remains open.

In this section we use a size game for a weakened ver-
sion of RL which we call RLw. The main result of this
section is that for the formulas Occurn to be translated to
polynomial-size formulas in RLw, Θ(n) boolean variables
are needed. The main weakness of RLw is that we do not
allow new unary relations to be defined. We also require
weak adjacency formulas to imply R(x, y) as opposed to
R(x, y) ∨R(y, x) ∨ x = y, but this is just for convenience.
It can be shown that LTL ⊆ RLw but CTL 6⊆ RLw. Due
to lack of space we do not give a full explanation of RL,
directing the reader instead to [AI00]. (We do provide the
definition of RL and a few examples in Appendix B.)

Our original motivation in trying to prove lower bounds
on the formula Occurn was to characterize how many bool-
ean variables are needed in the translations of CTL? to
FO2(TC) and RL. In this section we are only able to prove
a good lower bound for translations to the weaker language
RLw. We believe that even this partial result is of interest,
and we suspect this approach will lead to a similar lower
bound for the full RL.

Definition 7.1 A weak adjacency formula δ(x, b, y, b′) is
the conjunction of R(x, y) with a boolean combination of
the booleans b, b′ and the unary relations pi(x), pi(y). De-
fine RLw to be the smallest fragment of FO2(TC) that sat-
isfies the following:

1. If p is a unary relation symbol then p ∈ RLw.

2. If ϕ, ψ ∈ RLw, then ¬ϕ ∈ RLw and ϕ ∧ ψ ∈ RLw.

3. If ϕ ∈ RLw and δ(x, b, y, b′) is a weak adjacency for-
mula then the following formulas are in RLw:

(a) REACH(δ)ϕ

(b) CYCLE(δ)

Semantics of RLw :

p ≡ p(x)

REACH(δ)ϕ ≡ ∃y(TC δ)(x, 0, y, 1) ∧ ϕ[y/x])

CYCLE(δ) ≡ (TC δ)(x, 0, x, 1)

2

As an example, we translate Occurn to RLw as fol-
lows: Occurn ≡ REACH(δn)true where δn(x, b, y, b′) ≡
R(x, y) ∧

∧n

i=1(b
′
i → (bi ∨ pi(x))).

The idea is that boolean variable bi keeps track of
whether predicate pi has ever been satisfied in the current
path. We can reach a point where all the booleans are one
iff Occurn holds.

The RLw formula-size game is very similar to the CTL
formula-size game. In the Reach move, Samson asserts that
REACH(δ)ϕ holds for all the vertices v0 ∈ A. For each
such v0 he produces a path:

(v0, b0), (v1, b1), . . . , (vr , br)

where b0 = 0, br = 1, and R(vi, vi+1) holds for all i < r.
Delilah answers with a similar path,

(w0, 0), (w1, c1), . . . , (ws, 1),

for as many copies as she wishes of each w0 ∈ B. For
each of Delilah’s paths, Samson either challenges the fi-
nal point, ws, and puts it in B2, or he challenges some
pair 〈(wi, ci), (wi+1, ci+1)〉 and puts it in B1. Then Deli-
lah lets A2 contain all the vr’s and A1 contains all pairs,
〈(vi, bi), (vi+1, bi+1)〉. If originally A and B differed on
REACH(δ)ϕ then after the move, A1 and B1 differ on δ
andA2 andB2 differ on ϕ. Note that δ is quantifier free and
only concerns the booleans together with the unary predi-
cates true at the two points of each pair. In the game we
consider below Delilah will only play pairs that correspond
to pairs played by Samson, so Samson will never challenge
a pair, but rather the endpoint of each of Delilah’s paths.

The Cycle move is similar to the Reach move. Since
the graphs we will play on below are acyclic, it will not be
useful for Samson to play the Cycle move. Let the RLw

k

game be the RLw game in which the tuples of booleans are
of size at most k.

We next define the graph Hn on which we will play the
RLw game. These are simpler than the Gn from Section 5
because we only need an exponential lower bound, not an
n! lower bound. Thus we only need consider all subsets of
the n propositional variables, not all possible paths through
them.

Let Xn be the set of all proper subsets of the n pred-
icates. For any element e of Xn, let S(e) be a path that
visits every predicate of e exactly once, and then visits a
blank vertex. Let F (e) be a path that visits every predicate

of e exactly once. The order of the predicates in F (e) and
S(e) does not matter.
Hn contains 2n − 1 “true” vertices, te, one for each e ∈

Xn. Node te starts with the path S(e), and then from the
last (blank) vertex — call it be — there is an edge to each
first vertex of F (f), for any f ∈ Xn such that e ∪ f 6= [n]
and also to F (e) where e = [n]− e.
Hn also contains 2n−1 “false” vertices, fe, one for each

e ∈ Xn. Node fe starts with the path S(e), and then from
the last (blank) vertex — call it b′e — there is an edge to each
first vertex of F (f), for any f ∈ Xn such that e ∪ f 6= [n].

Let Tn =
{

te
∣

∣ e ∈ Xn

}

; Fn =
{

fe

∣

∣ e ∈ Xn

}

.
Clearly Tn |= Occurn and Fn |= ¬Occurn.

Lemma 7.2 Samson cannot close the RLw
k game on

(Tn, Fn) in a game tree with fewer than 2n/2k nodes.

Proof: Note that the paths from te and fe are identical
through the blank vertices be, b′e at the bottom of their start-
ing paths, S(e), and the only difference after that is that be

has an edge to F (e). Thus, to close the game tree, Samson
must play a series of Reach moves from te to be, and then
into F (e) for each e ∈ Xn.

The key observation is that while we are standing on be,
all that we know is what node of the game tree we are in,
plus the current values of our k booleans. Indeed, we prove
that Samson cannot play a REACH move that includes a
path in which (be, c̄) is an intermediate node, and also in-
cludes a path in which (bg , c̄) is an intermediate node, for
distinct subsets e 6= g and the same k-tuple of booleans c̄. It
follows that Samson can move through at most 2k different
be’s at the same time. Our lower bound will then follow.

Suppose for the sake of a contradiction that for distinct
subsets e, g ∈ Xn, Samson plays a Reach move that in-
cludes a step from from be and from bg at the same node of
the game tree and that the booleans associated with be and
bg are identical.

Since e 6= g we may assume that e ∪ g 6= [n], otherwise
interchange e and g. Delilah answers with a Reach path
from fe to b′e that first copies the booleans on Samson’s path
from te to be. Delilah continues this path to F (g) copying
Samson’s path from bg to F (g). Since each step in Delilah’s
spliced path is identical to a step in one of Samson’s paths,
Samson cannot challenge any of the steps. Thus, Samson
must challenge the bottom of Delilah’s path. However this
is identical to the bottom of Samson’s path from tg.

Thus our assumption was false, so at most 2k te’s can
move from their blank vertices, be, at the same node of the
game tree. Thus there must be at least (2n − 1)/2k inter-
mediate nodes of the game tree. Since there are at least
n leaves, the total number of nodes is at least 2n/2k as
claimed. 2

Corollary 7.3 Ω(n) booleans are required to express the
CTL+ and LTL formula Occurn as a polynomial-size for-
mula of RLw.

8 Conclusions and Future Directions

In this paper we have introduced Ehrenfeucht-Fraı̈ssé
games on the size of formulas rather than their operator
depth. We have used these games to prove a new, opti-
mal bound which exactly characterizes the succinctness of
CTL+ with respect to CTL. We have also used these games
to prove an Ω(n) lower bound on the number of booleans
needed to translate LTL to RLw.

The formula-size games introduced here offer promise in
settling many conjectures in descriptive complexity. In par-
ticular, questions about true complexity involve languages
where an ordering relation on the universe is present. In the
presence of ordering, we can express complex properties
using low operator depth, with huge disjunctions over all
possible input structures of a given size. Thus bounds on op-
erator depth are not helpful here. Bounds on size would be
extremely helpful. The formulas involved must be large, as-
suming well-believed complexity-theoretic conjectures. Al-
though the size game is combinatorially complex, we expect
that the methods introduced in this paper will help make
progress towards lower bounds for languages with ordering.

We expect that the lower bounds from Section 7 can
be extended to the full reachability logic, RL. Another
open problem was suggested by one of the referees: Wilke
showed his exponential lower bound for the alternation-free
µ-calculus which properly contains CTL [Wil99]. Can our
Theorem 6.1 be similarly extended to the alternation-free
µ-calculus?

Acknowledgments: Thanks to Natasha Alechina and
Thomas Wilke for many helpful comments and suggestions.

References

[AI00] N. Alechina and N. Immerman, “Reachability
Logic: An Efficient Fragment of Transitive Closure
Logic,” Logic Journal of the IGPL 8(3) (2000), 325-338.

[CE81] E.M. Clarke and E.A. Emerson, “Design and Syn-
thesis of Synchronization Skeletons Using Branching
Time Temporal Logic,” in Proc. Workshop on Logic of
Programs, LNCS 131, 1981, Springer-Verlag, 52–71.

[CGP99] E. Clarke, O. Grumberg and D. Peled, Model
Checking, 1999, M.I.T. press,

[Ehr61] A. Ehrenfeucht, “An Application of Games to the
Completeness Problem for Formalized Theories,” Fund.
Math. 49 (1961), 129-141.

[EH85] E.A. Emerson and J.Y. Halpern, “Decision Pro-
cedures and Expressiveness in the Temporal Logic of
Branching Time,” J. Comput. Sys. Sci. 30(1) (1985), 1–
24.

[EI95] K. Etessami and N. Immerman, “Tree Canonization
and Transitive Closure,” to appear in Information and
Computation . A preliminary version appeared in IEEE
Symp. Logic In Comput. Sci. (1995), 331-341.

[EW96] K. Etessami and T. Wilke, “An Until Hierarchy
for Temporal Logic,” IEEE Symp. Logic In Comput. Sci.
(1996).

[Fra54] R. Fraı̈ssé, “Sur les Classifications des Systems de
Relations,” Publ. Sci. Univ. Alger I (1954).

[Imm99] N. Immerman, Descriptive Complexity, 1999,
Springer Graduate Texts in Computer Science, New
York.

[Imm87] N. Immerman. Languages that capture complex-
ity classes. SIAM Journal of Computing, 16(4):760–778,
1987.

[IV97] N. Immerman and M.Y. Vardi. Model Checking
and Transitive Closure Logic. Proc. 9th Int’l Conf. on
Computer-Aided Verification (CAV’97), Lecture Notes
in Computer Science, Springer-Verlag 291 - 302, 1997.

[Kar89] M. Karchmer, Communication Complexity: A New
Approach to Circuit Depth, 1989, M.I.T. Press.

[SC85] A. P. Sistla and E. M. Clarke. The Complexity
of Propositional Linear Temporal Logics. JACM, 32(3),
733-749, 1985.

[Wil99] T. Wilke, “CTL+ is Exponentially More Succinct
than CTL”, Foundations of Software Technology and
Theoretical Computer Science: 19th Conference, (1999),
110–121.

A Background on CTL

A popular and quite expressive language for Model
Checking is computation tree logic CTL? [CGP99]. Here
we briefly describe CTL? together with some of its sublan-
guages: CTL ⊆ CTL+ ⊂ CTL? and LTL ⊂ CTL?. CTL
and CTL+ express the same set of formulas, but CTL+ is
more succinct. CTL and LTL are incomparable.

CTL? has two kinds of formulas: state formulas, which
are true or false at each state, and path formulas, which are
true or false with respect to a maximal path through some
Kripke structure, K. The following is an inductive defini-
tion of the state and path formulas of CTL?.

Definition A.1 (Syntax of CTL?) State formulas S and path
formulas P of CTL? are the smallest sets of formulas satis-
fying the following:
State Formulas, S:
the boolean constants true and false are elements of S;
for i ∈ N, pi ∈ S;
if ϕ ∈ P , then Eϕ ∈ S.

Intuitively, Eϕ means that there exists a maximal path
starting at the current state and satisfying ϕ.
Path Formulas, P:
if α ∈ S then α ∈ P ;
if ϕ, ψ ∈ P , then ¬ϕ, ϕ ∧ ψ, Xϕ, and ϕUψ are in P .

Intuitively, Xϕ means that ϕ holds at the next time and
ϕUψ means that at some time now or in the future, ψ holds,
and from now until then, ϕ holds. 2

Next, we formally define the semantics of the above op-
erators. In this paper all structures will be finite and acyclic
except perhaps for self-loops. Thus all paths will be finite,
except perhaps for an infinite loop on the final point. A max-
imal path ρ = ρ1, ρ2, . . . ρ` is a mapping from [`] to states
in K such that for all i < `, K |= R(ρi, ρi+1) and such
that ρ` either has no successors or it has a self-loop. We use
the notation ρi for the tail of ρ, with states ρ1, ρ2, . . . , ρi−1

removed.

Definition A.2 (Semantics of CTL?) The following are in-
ductive definitions of the meaning of CTL? formulas:
State Formulas:

(K, s) |= pi iff K |= pi(s)

(K, s) |= Eϕ iff (∃ path ρ s.t. ρ0 = s)(K, ρ) |= ϕ

Path Formulas:

(K, ρ) |= α iff (K, ρ0) |= α; for α ∈ S

(K, ρ) |= ϕ ∧ ψ iff (K, ρ) |= ϕ and (K, ρ) |= ψ

(K, ρ) |= ¬ϕ iff (K, ρ) 6|= ϕ

(K, ρ) |= Xϕ iff (K, ρ1) |= ϕ

(K, ρ) |= ϕUψ iff (∃i)(K, ρi) |= ψ ∧ (∀j < i)(K, ρj) |= ϕ

2

It is convenient to introduce a few other operators com-
monly used in CTL? all of which may be defined from the
above:

Aϕ ≡ ¬E¬ϕ for All paths
Fϕ ≡ trueUϕ some time in the Future
Gϕ ≡ ¬F¬ϕ Globally, i.e., for all times in the future

The language CTL is the restriction of CTL? so that path
quantifiers (E,A) and temporal operators (X,U) are always

paired. That is, the allowable operators are EU,AU,EX4.
The importance of CTL is that unlike CTL? it admits linear-
time model checking [CE81]. The language CTL+ allows
boolean combinations of the temporal operators to be paired
with the path quantifiers. CTL+ is no more expressive than
CTL but it is more succinct [Wil99]. Our main result shows
exactly how succinct. The language LTL (linear temporal
logic) consists of CTL? formulas that have exactly one path
quantifier E or A and that begin with this path quantifier.

B Background on RL

Here we give the definition of Reachability Logic (RL).
See [AI00] for proofs of the theorems and much more mo-
tivation and discussion.

Definition B.1 An adjacency formula (with booleans) is
a disjunction of conjunctions where each conjunct contains
at least one of x = y, Ra(x, y) or Ra(y, x) for some edge
label a; in addition, the conjuncts may contain expressions
of the form (¬)(b1 = b2), (b1 = 0), (b1 = 1) and p(x),
where b1 and b2 are boolean variables. 2

Definition B.2 RL is the smallest fragment of FO2(TC)
that satisfies the following:

1. If p is a unary relation symbol then p ∈ RL; also
>,⊥ ∈ RL.

2. If ϕ, ψ ∈ RL, then ¬ϕ ∈ RL and ϕ ∧ ψ ∈ RL.

3. If ϕ ∈ RL and b is a boolean variable, then ∃bϕ ∈
RL.

4. If ϕ, ψ ∈ RL and q is a new unary predicate symbol,
then (let q = ϕ in ψ) is in RL.

5. If ϕ ∈ RL and δ(x, b, y, b′) is an adjacency formula (a
binary relation between two n-tuples 〈x, b1, . . . , bn−1〉
and 〈y, b′1, . . . , b

′
n−1〉), then the following formulas are

in RL:

(a) REACH(δ)ϕ

(b) CYCLE(δ)

Semantics of RL : The semantics of RL is defined as
follows. In each case below assume that δ(x, b, y, b′) is an
adjacency formula.

p ≡ p(x)

(let q = ϕ in ψ) ≡ ψ[ϕ/q]

REACH(δ)ϕ ≡ ∃y(TC δ)(x, 0, y, 1) ∧ ϕ[y/x])

CYCLE(δ) ≡ (TCs δ)(x, 0, x, 1)

4We do not need AX because it is equivalent to ¬EX¬

2

Here are some examples of formulas in RL:

• REACH(δ)p where δ(x, b1, b2, y, b′1, b
′
2) is

(Ra(x, y) ∧ b1b2 = 00 ∧ b′1b
′
2 = 01) ∨ (Rb(x, y) ∧

b1b2 = 01 ∧ b′1b
′
2 = 11) (this is 〈a; b〉p of PDL).

• ϕ1 = REACH(R)p (EFp of CTL?);

• ϕ2 = REACH(δ)CYCLE(δ), where δ is R(x, y) ∧
q(x) (EGq of CTL?);

• (let q = ϕ1 in ϕ2) (EGEFp of CTL?).

RL is a logical language and it is a fragment of
FO2(TC). However, because of the ‘let’ construct, when
we talk about size in the representation of RL, we are re-
ally talking about circuits. Thus the size of an RL-circuit
may be logarithmic in the size of the smallest equivalent
FO2(TC) formula. This allows the linear size embedding of
CTL∗ which presumably does not hold for FO2(TC) (with-
out a circuit representation or an extra domain variable cf.
[IV97]).

Boolean variables however add extra complexity, which
is not surprising since model checking CTL∗ is PSPACE
complete [SC85].

Theorem B.3 There is an algorithm that given a graph G
and a formula ϕ(x) ∈ RL marks the vertices in G that
satisfy ϕ. This algorithm runs in time O(|G||ϕ|2nb) where
nb is the number of boolean variables occurring in ϕ.

Theorem B.4 There is a linear-time computable function
g that maps any CTL? formula ϕ to an equivalent formula
g(ϕ) ∈ RL. While g(ϕ) has only two domain variables, it
may have a linear number of boolean variables.

