
An n! Lower Bound on Formula Size

MICAH ADLER and NEIL IMMERMAN
UMass

We introduce a new Ehrenfeucht–Fraı̈ssé game for proving lower bounds on the size of first-order
formulas. Up until now, such games have only been used to prove bounds on the operator depth
of formulas, not their size. We use this game to prove that the CTL+ formula, Occurn ≡ E[Fp1 ∧
Fp2∧· · ·∧Fpn], which says that there is a path along which the predicates p1 through pn all occur,
requires size n! to express in CTL. Our lower bound is optimal. It follows that the succinctness of
CTL+ with respect to CTL is exactly 2(n)!. Wilke had shown that the succinctness was at least
exponential [Wilke 1999].

We also use our games to prove an optimalÄ(n) lower bound on the number of boolean variables
needed for forward reachability logic (RL f) to polynomially embed the language CTL+. The number
of booleans needed for full reachability logic RL and the transitive closure logic FO2(TC) remain
open [Immerman and Vardi 1997; Alechina and Immerman 2000].

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity
Measures and Classes—relations among complexity classes; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical logic—temporal logic

General Terms: Theory

Additional Key Words and Phrases: Descriptive complexity, temporal logic, lower bounds

1. INTRODUCTION

We introduce a new Ehrenfeucht–Fraı̈ssé game for proving lower bounds on
the size of first-order formulas. Previous such games only proved lower bounds
on the quantifier depth of formulas.

We use this game to prove that the CTL+ formula,
Occurn ≡ E[Fp1 ∧ Fp2 ∧ · · · ∧ Fpn] (1.1)

requires size n! to express in CTL. The formula Occurn says that there exists
a path such that each of the predicates pi occurs somewhere along this path.

The research of M. Adler was supported by National Science Foundation (NSF) Faulty Early Career
Development Award CCR-0133664.
The research of N. Immerman was supported by National Science Foundation (NSF) grants CCR-
9877078 and CCR-0207373.
Authors’ address: Computer Science Department, Room 374, 140 Governor’s Drive, University of
Massachusetts, Amherst, MA 01003-9264; emails: {Adler,Immerman}@cs.mass.edu, URLs: http:
www.cs.umass.edu/{∼micah,∼immerman}.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 1529-3785/03/0700-0296 $5.00

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003, Pages 296–314.

An n! Lower Bound on Formula Size • 297

(E is the existential path quantifier: there exists a maximal path starting from
the current point. F is the modal quantifier: somewhere now or in the future
along the current path.)

This offers a quite different proof and improves the exponential lower bound
on the succinctness of CTL compared with CTL+ [Wilke 1999]. We thus prove
that the succinctness of CTL+ with respect to CTL is exactly 2(n)!.

We prove that the parse tree of any CTL formula expressing Occurn has at
least n! leaves. This bound is exactly optimal because the following formula
expresses Occurn and has n! leaves in its parse tree. Here we use [n] to denote
{1, 2, . . . , n}.

ϕn ≡
∨

i1∈[n]

EF

(
pi1 ∧

∨
i2∈[n]−{i1}

EF

(
pi2 ∧

∨
i3∈[n]−{i1,i2}

EF
(

pi3 ∧ · · · ∧EFpin

)· · ·))

The main contributions of this article are the introduction of the new formula-
size games, and their effective use proving a new and optimal result. Standard
Ehrenfeucht–Fraı̈ssé games are played on a single pair of structures A, B.
They are used to prove lower bounds on the quantifier depth of a formula
ϕ needed to distinguish A from B. Our new game works on a whole set of
structures A, B where all of A satisfies ϕ and all of B satisfies ¬ϕ. In a stan-
dard game, the pair of structuresA and Bmay differ on a disjunction: ϕ ≡ α∨β.
In this case, they differ on α or they differ on β and the “or” may be dis-
carded. However, in the formula-size game, the set of structures A must be
split into two portions: A1 satisfying α and A2 satisfying β. All of B satisfies
¬α and ¬β. Thus, the game on (A, B) is shifted to a pair of games, (A1, B) and
(A2, B).

There are extensive connections between the computational complexity of
a problem and its descriptive complexity, that is, how complex a formula is
needed to describe the problem. Descriptive complexity is measured via the
size, number of variables, operator depth, etc. of the requisite formulas as
a function of the size of the input structures being described [Immerman
1999].

The formula-size games introduced here generalize standard EF games.
They are also related to the communication complexity games that Karchmer
and Wigderson used to prove lower bounds on the depth of monotone circuits
[Karchmer 1989].1 In the past, EF games have been useful in proving bounds
on operator depth and number of variables, but they have not been used to
prove lower bounds on the size of formulas. This has been a crucial lack, which
the present article takes a step in correcting.

1Karchmer and Wigderson gave general games for proving lower bounds on circuit depth; but they
proved lower bounds only using a monotone version of their games. They cast their games as a
communication game in which two sets of structures differ on some property. Through successive
bits of communication, each of which divides one of the sets of structures in half, eventually the sets
are reduced to a collection of pairs where each pair differs on a particular bit. This is analogous
to the closed nodes of our formula size game, in which each pair differs on a particular atomic
formula.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

298 • M. Adler and N. Immerman

Fig. 1. A Kripke structure.

The added complication of formula-size games means that we must build up
considerable machinery to use them to prove lower bounds. Such lower bounds
were heretofore unattainable for general first-order formulas. We believe that
this game and the corresponding methods will have many applications.

In another application of formula-size games we show the optimal result that
Ä(n) Booleans are needed to translate an LTL formula of size n to a polynomial-
size formula of the reachability logic, RL f .

This article is organized as follows: In Section 2, we provide the neces-
sary background in logic including the introduction of transitive closure logic
(FO(TC)) which provides the general setting for the games that we present. In
Section 3, we review Ehrenfeucht–Fraı̈ssé games and present the new formula-
size games for FO(TC). In Section 4, we present the formula-size game for CTL.
In Section 5, we define the graphs Gn over which we prove our lower bound. In
Section 6, we prove our main result, the optimal n! lower bound on the succinct-
ness of CTL+ with respect to CTL. In Section 7, we prove an n− O(log n) lower
bound on the number of Boolean variables needed for RL f to express Occurn
in polynomial size.

2. BACKGROUND

In this section we review some basic definitions concerning finite model theory
and transitive closure logic [Immerman 1999].

The language L consists of first-order logic with unary relation symbols,
{pn : n ∈ N}, and binary relation symbol, R. By the size of a formula, we mean
the number of nodes in its parse tree, that is, the number of occurrences of
logical connectives, quantifiers, operators, and atomic symbols.

For our purposes, a Kripke structure (Figure 1) is a finite labeled graph:

K = 〈
S; pKn : n ∈ N; RK

〉
(2.1)

where S is the set of states (vertices), each pKn ⊆ S is a unary relation on S, and
RK ⊆ S2 is the edge relation. We assume that there is at least one edge from
each vertex. (This is achieved by adding a self-loop to each vertex that has no
other outgoing edges.)

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

An n! Lower Bound on Formula Size • 299

First-order logic L does not suffice to express such simple formulas as,

“There is a path from where we are (x) to a vertex where p17 holds.” (2.2)

For this reason we add a transitive closure operator to first-order logic to
allow us to express reachability [Immerman 1987].

Let the formula ϕ(x1, . . . xk , y1, . . . yk) represent a binary relation on k-tuples.
We express the reflexive, transitive closure of this relation using the transitive-
closure operator (TC), as follows: TCx, yϕ. Let FO(TC) be the closure of first-order
logic under the transitive-closure operator. For example, the following formula
expresses Eq. (2.2): (∃ y)[(TCx, y R(x, y))(x, y) ∧ p17(y)].

3. EHRENFEUCHT–FRAÏSSÉ GAMES

We assume that the reader is somewhat familiar with classical Ehrenfeucht–
Fraı̈ssé (EF) games [Ehrenfeucht 1961; Fraisse 1954; Immerman 1999]. Typi-
cally, there is a pair of structuresA, B and two players. Samson chooses vertices,
trying to point out a difference between the two structures, and Delilah replies,
trying to keep them looking the same. Typical games have a certain number of
pebbles corresponding to variables, and rounds corresponding to the depth of
nesting of quantifiers and other operators such as TC.

The typical fundamental theorem of EF games is that Delilah has a winning
strategy for the k-pebble, m-move game on A, B iff A and B agree on all k-
variable, depth-m formulas. EF games are used to show nonexpressivity of a
property 8 as follows: Delilah chooses a pair of structures A, B that disagree
on 8 but such that she has a winning strategy for the m-move, k-pebble game.
It then follows that 8 is not expressible via a k-variable, depth-m formula.

We now present new games for proving lower bounds on formula size rather
than depth. We first define the formula-size game for the language FO2(TC)—
first-order logic with two variables and the transitive closure operator. We chose
this logic because it is simple, expressive, and quite general. The language
FO(TC) captures the complexity class NSPACE[log n]. It is discussed in detail
in Immerman [1999]. In Immerman and Vardi [1997], a linear-time algorithm
is given that translates any formula from CTL into an equivalent expression
in FO2(TC).

It is easy to see how to generalize the game and its corresponding funda-
mental theorem to most reasonable logics by adding more variables and other
operators. In the sequel we will specialize the FO2(TC) game to a less general
language, CTL, where we will prove our main results.

Throughout this article, we consider formula-size games as two-person
games. As we will point out, these games all have an obvious (although some-
what wasteful) optimal strategy for one of the players (Delilah). Nonetheless,
we feel that it is more intuitive to discuss and to play these games as two-player
games, rather than as solitaire.

Definition 3.1 (FO2(TC) Formula-Size Game). In the formula-size game,
Delilah starts by picking two finite sets of structures: A0, B0. The root of the
game tree is labeled A0, B0. There is some fixed subset S ⊆ {x, y} for which
each structure in A0 and B0 interprets exactly the variables in S.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

300 • M. Adler and N. Immerman

(The intuitive idea is that there is some property8 such that every structure
in A0 satisfies 8 (A0 |= 8) and no structure in B0 satisfies 8 (B0 |= ¬8). 8 may
include free variables from S.)

At each move, Samson may play on any of the open leaves of the current
game tree. (One of Samson’s possible moves will be to close a leaf.) Suppose
that the leaf that Samson chooses to play on is labeled with the pair of sets
A, B.

—“not” move. Samson switches the two sets letting the current leaf have a
unique child labeled B, A.

—“or” move. Samson splits A into two sets: A = A′ ∪ A′′. He lets the current
leaf have two children labeled A′, B and A′′, B.

—∃move. Samson chooses a variable v ∈ {x, y}. He then assigns a value for v
to every structure A ∈ A. Delilah then answers by assigning a value for v to
every structure B ∈ B. Let A′, B′ be the two sets of structures with the new
assignments for v. The current leaf is then given a child labeled A′, B′.

—TC move. Samson chooses a pair of previously assigned variables v, v′ ∈
{x, y}. For every structure A ∈ A, Samson then chooses a sequence of ver-
tices from A: vA = a0, a1, a2, . . . , at = v′A. Delilah then answers by choosing
for every structure B ∈ B a similar sequence, vB = b0, b1, b2, . . . , at ′ = v′B.
Samson then chooses a single consecutive pair bi, bi+1 for each B and assigns
x to bi and y to bi+1. The current leaf is then given a child labeled A′, B′

where B′ is the result of these new assignments for each structure in B. A′

consists of multiple copies of each structure A ∈ A, one for each consecutive
pair aj , aj+1 in the sequence for A chosen by Samson and with x assigned to
aj and y assigned to aj+1.

The idea behind this move is that Samson is asserting that every structure
in A satisfies TCx, y (δ)(v, v′) and no structure in B does. He thus presents
what he claims is a δ-path from v to v′ for each structure A in A. Delilah
answers with a supposed δ path from v to v′ for every B in B. Samson must
then challenge one pair bi, bi+1 in each of Delilah’s supposed δ paths. He is
in effect saying “¬δ(bi, bi+1)”. At the end of this move, every structure in A′

should satisfy δ(x, y) and no structure in B′ should.
—Atomic move. Samson chooses v, v′ ∈ {x, y} and an atomic formula α(v, v′).

(α can be v = v′, R(v, v′) or pi(v).) Samson can only make this move if every
structure in A satisfies α(v, v′) and no structure in B does. In this case, the
current leaf is closed.

The object of the game for Samson is to close the whole game tree while
keeping it as small as possible. Delilah on the other hand wants to make the
tree as large as possible.

Delilah may make multiple copies of the structures in B before any of her
moves, that is, before any TC move or ∃ move. Delilah is not involved in the
other moves.

In the formula-size game, Delilah has an obvious optimal strategy, namely do
everything: in answer to an existential move, make a copy of B for each vertex

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

An n! Lower Bound on Formula Size • 301

in B and reply with that vertex. Similarly, in answer to a TC-move, Delilah
can make enough copies of B and answer with all possible sequences without
repetitions from v to v′.

The reason that Delilah is allowed to make copies is easiest to understand
for an existential move. For example, suppose that A = {A} and B = {B} each
consist of a single structure. Suppose that the smallest formula true of A but
not B is,

∃x(p1(x) ∧ p2(x) ∧ · · · ∧ pn(x)),

that is,Ahas a point satisfying all n predicate symbols, butB does not. If Delilah
could not make duplicates, then Samson would just choose the relevant a in A
and Delilah would have to answer with a single b from B. Then, it must be the
case that for some i, A, a/x |= pi(x) and B, b/x |= ¬pi(x). Thus, Samson could
close a game tree of size 2. However, if Delilah could make copies, she would
make n copies of B, Bi, i = 1, . . . , n. She would choose bi from Bi that satisfies
all predicates except pi. Then, Samson would have to split B into n pieces in
order the close the game tree. A game tree with n leaves is thus unavoidable.

Similar examples can be constructed for a TC move. The above intuitive idea
is formalized in the discussion of the “∃” move and the “TC” move in the proof
of the fundamental theorem of the FO2(TC) formula-size game:

THEOREM 3.2. Samson can close the game started at A0, B0 in a tree of size
s iff there is a formula ϕ ∈ FO2(TC) of size at most s such that every structure
in A0 satisfies ϕ and no structure in B0 does.

PROOF. Suppose that ϕ of size s separates A0 and B0. Then Samson can “play
ϕ” and a closed game tree of size s will result. Playing ϕ means the following:
Suppose that A |= ϕ and B |= ¬ϕ.

—ϕ = ¬ψ . Samson plays the “not” move. In the resulting leaf, A′ |= ψ and
B′ |= ¬ψ .

—ϕ = ψ∨ρ. Samson plays the “or” move letting A′ be the subset of A satisfying
ψ , and A′′ the subset satisfying ρ. Thus, one child differs on ψ and the other
differs on ρ.

—ϕ = (∃v)ψ . Samson plays the ∃move assigning v to a witness for ψ in every
structure of A. Thus, whatever Delilah answers we have that A′ |= ψ and
B′ |= ¬ψ .

—ϕ = TCx, y (δ)(v, v′). Samson plays the TC move and as argued in the discus-
sion after the definition of this move, A′ |= δ and B′ |= ¬δ.

—ϕ is atomic. Samson plays the atomic move, using ϕ and succeeds in closing
this leaf.

Conversely, suppose that Samson has succeeded in closing the game with a
tree T of size s and that Delilah has played optimally. It follows that T is also
the parse tree of a formula satisfied by all of A0 and none of B0.

This can be seen inductively from the leaves of the closed game tree. For
closed leaf, (A, B), A |= α and B |= ¬α, where α is an atomic formula, that is,
has size one.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

302 • M. Adler and N. Immerman

Inductively, assume that (A, B) has children (Ai, Bi) each differing on a for-
mula ψi of size si where i = 1 for “not”, ∃ and TC moves and i = 1, 2 for the “or”
move. Here, si is the size of the subtree rooted at (Ai, Bi), and ψi is the formula
encoded by that subtree.

—“not” move. Inductively, we know that A1 |= ψ1 and B1 |= ¬ψ1, where ψ1
has size s1. The “not” move simply switches A and B. Thus, A |= ¬ψ1 and
B |= ψ1, and thus A and B differ on the formula “¬ψ1” of size s1 + 1.

—“or” move. Inductively, we know that A1 |= ψ1, A2 |= ψ2, and A = A1 ∪ A2.
Thus, A |= ψ1 ∨ψ2. Furthermore, B = B1 = B2 and B |= ¬ψ1 ∧¬ψ2. Thus, A
and B differ on “ψ1 ∨ ψ2” which has size s1 + s2 + 1.

—∃move. Inductively, we know that A1 |= ψ1 and B1 |= ¬ψ1. Thus, A |= ∃v(ψ1)
where v ∈ {x, y} is the variable that this ∃ move was played on. Note that
since Delilah plays optimally, if it were the case that some B ∈ B satisfies
(∃v)ψ1, then Delilah would have chosen the appropriate witness for thisB and
it would not have been the case that B1 |= ¬ψ1. Thus, as desired, A |= (∃v)ψ1,
B |= ¬(∃v)ψ1, and thus they differ on a formula of size s1 + 1.

—TC move. Inductively, we know that A1 |= ψ1 and B1 |= ¬ψ1. By the def-
inition of the TC move, since A1 |= ψ1, we know that for every A ∈ A,
there is a ψ1-path from vA to v′A. Furthermore, if there were a ψ1-path
from vB to v′B, for some B ∈ B, then Delilah would have played it for one
of her copies of B. Therefore, no matter which consecutive pair in this path
Samson challenged, it would satisfy ψ1. Therefore, A |= TCx, y (ψ1)(v, v′) and
B |= ¬TCx, y (ψ1)(v, v′). Thus, they differ on a formula of size s1 + 1.

Thus, A0 and B0 differ on the formula of size s that is expressed by the game
tree, T .

4. DEFINITION OF THE CTL GAME

We assume that the reader is somewhat familiar with the languages CTL and
CTL? [Emerson 1991; Clarke et al. 1999]. Recall that CTL is the restriction
of CTL? so that path quantifiers (E, A) and temporal operators (X, U) are al-
ways paired. That is, the allowable operators are EU, AU, EX.2 The importance
of CTL is that unlike CTL? it admits linear-time model checking [Clarke and
Emerson 1981]. The language CTL+ allows boolean combinations of the tempo-
ral operators to be paired with the path quantifiers. CTL+ is no more expressive
than CTL but it is more succinct [Wilke 1999]. Our main result shows exactly
how succinct.

We now define the CTL formula-size game.3 Since CTL is embedable in
FO2(TC) [Immerman and Vardi 1997], it is natural to define the CTL game
as a modification of the FO2(TC) formula-size game (Definition 3) as follows.

—There is only one variable: x. This corresponds to the current state.
—The “not” and “or” moves are unchanged.

2We do not need AX because it is equivalent to ¬EX¬
3It is easy to generalize this also to the CTL? formula-size game, but we leave this to the reader.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

An n! Lower Bound on Formula Size • 303

—The atomic move is unchanged except that it is played only using atomic
formulas pi.

—The ∃ and TC moves are replaced by the following, played on a leaf, `, labeled
with the pair of sets A, B,
EX move. For each A ∈ A, Samson reassigns x to a child of the current x.
Delilah answers by first making as many copies of each B ∈ B as she wishes.
For each copy B ∈ B she assigns x to a child of the current x. The resulting
node labeled A′, B′ becomes the only child of `.
EU move. For each A ∈ A, Samson chooses a path of length zero or more:
xA = a0, a1, . . . , ar . Delilah answers as above with a path xB = b0, b1, . . . , bs
for each copy she makes of each B ∈ B. Samson is trying to assert that
(A, x) |= E(αUβ), that is, that (A, ai) |= α for i < r, and (A, ar) |= β. Presum-
ably, this holds for all of Samson’s chosen paths and none of Delilah’s.

In the second half of the move, Samson divides the paths chosen by Delilah
into two sets. For the first set, he assigns x to some bi with i < s and puts
these structures into B1. For the second set, he assigns x to bs and puts these
structures into B2. Delilah answers by making enough copies so that she can
assign x to each possible point in Samson’s paths. When she assigns x to the
final point br in a path, she puts that structure in A2. When she assigns x
to a nonfinal point she puts that structure into A1. The node ` now has two
children labeled A1, B1 and A2, B2, respectively.

Intuitively, what has happened in the second half of this move is that for
those paths chosen by Delilah whose final points do not satisfy β, Samson
chooses this point and puts the structure into B2. For those paths having a
nonfinal point that does not satisfy α, Samson chooses this point and puts
the structure into B1. At the end of the move we have that A1 |= α, B1 |= ¬α,
A2 |= β, and B2 |= ¬β. If the set B1 or B2 should happen to be empty, then
that node is considered closed.
AU move. This is similar to the EU move except that the first half of
the move now has two parts: (a) Samson chooses a maximal path for each
structure in B, and Delilah makes copies and chooses a maximal path for
each copy of each structure in A; (b) Samson chooses a finite initial seg-
ment of each path chosen by Delilah and then Delilah chooses a finite ini-
tial segment of each path chosen by Samson. Delilah may make copies of
the paths chosen by Samson in order to choose more than one initial seg-
ment from each path. The second half of the move is the same as for the EU
move.

It is not surprising that:

THEOREM 4.1. Samson can close the CTL formula-size game started at
A0, B0 in a tree of size s iff there is a formula ϕ ∈ CTL of size at most s such that
every structure in A0 satisfies ϕ and no structure in B0 does.

PROOF. This is very similar to the proof of Theorem 3.2. Suppose that ϕ ∈
CTL of size s separates A0 and B0. Then, Samson can “play ϕ” and a closed
game tree of size s will result. Playing ϕ means the following: Suppose that

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

304 • M. Adler and N. Immerman

A |= ϕ and B |= ¬ϕ. We just consider the cases new to the CTL game:

—ϕ = EXψ . Samson plays the EX move. For each A ∈ A, he assigns the new
x to a child of the old x that satisfies ψ . Since B |= ¬ϕ, whatever Delilah
answers, we have that A′ |= ψ and B′ |= ¬ψ .

—ϕ = E(αUβ). Samson plays the EU move. For eachA ∈ A, he chooses a path
xA = a0, a1, . . . , ar , such that A, ar |= β and A, ai |= α for all i < r. For any
path chosen by Delilah, xB = b0, b1, . . . , bs, it must be that either B, bs |= ¬β,
or B, bi |= ¬α for some i < s. In the former case, Samson places B, bs in B2. In
the latter case, Samson places B, bi in B1. Thus, as desired, A1 |= α; B1 |= ¬α;
A2 |= β; B2 |= ¬β.

—ϕ = A(αUβ). Samson plays the AU move. In the first phase of the move, for
each B ∈ B, he chooses a maximal path, pB such that B, pB |= ¬(αUβ).
For all the paths pA chosen by Delilah, A, pA |= αUβ. Then, the move
continues as above, that is, for each A, pA, Samson chooses a finite path,
xA = a0, a1, . . . , ar , along pA such that A, ar |= β and A, ai |= α for all
i < r. Whatever finite paths Delilah chooses along pB will not have this
property.

Conversely, suppose that Samson has succeeded in closing the game with a
tree T of size s and that Delilah has played optimally. It follows that T is also
the parse tree of a formula satisfied by all of A0 and none of B0.

This can be seen inductively from the leaves of the closed game tree. We
only consider the cases in the CTL game not considered in the FO2(TC) game.
Inductively, assume that (A, B) has children (Ai, Bi) each differing on a formula
ψi of size si where i = 1 for the “EX” moves and i = 1, 2 for “EU” and “AU”
moves. Here, si is the size of the subtree rooted at (Ai, Bi), and ψi is the formula
encoded by that subtree.

—EX move. Inductively, we know that A1 |= ψ1 and B1 |= ¬ψ1. Thus A |=
EXψ1. Since Delilah played optimally, if it were the case that some B ∈ B
satisfies EXψ1, then Delilah would have chosen the appropriate child of xB for
this B and it would not have been the case that B1 |= ¬ψ1. Thus, B |= ¬EXψ1,
and A and B differ on a formula of size s1 + 1.

—EU move. Inductively, we know that Ai |= ψi and Bi |= ¬ψi, for i = 1, 2.
Recall that, in the EU move, Samson chose a path for every structure A ∈ A,
and for each such path Delilah placed all the nonfinal points in A1, and the
final points in A2. Thus, A |= E(ψ1Uψ2), Since Delilah plays optimally, if it
were the case that some B ∈ B satisfies E(ψ1Uψ2), then Delilah would have
chosen the appropriate path from xB and thus Samson must have placed
B, bi |= ψ1 in B1 or B, bs |= ψ2 in B2. Thus, B |= ¬E(ψ1Uψ2) and so A and B
differ on a formula of size s1 + s2 + 1.

—AU move. Inductively, we know that Ai |= ψi and Bi |= ¬ψi, for i = 1, 2.
Since Delilah played optimally, if any A ∈ A had a maximal path not sat-
isfying ψ1Uψ2, then she would have chosen it. Similarly if some B satisfied
A(ψ1Uψ2), then no matter what maximal path pB Samson chose, Delilah
would have chosen a path witnessing ψ1Uψ2, and thus it would not be

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

An n! Lower Bound on Formula Size • 305

the case that both B1 |= ¬ψ1 and B2 |= ¬ψ2. Thus, A |= A(ψ1Uψ2) and
B |= ¬A(ψ1Uψ2), so they differ on a formula of size s1 + s2 + 1.

Thus, A0 and B0 differ on the formula of size s that is expressed by the game
tree, T .

5. SETTING UP THE PLAYING FIELD

In this section, we describe the graphs on which we will play the CTL game
to prove our main lower bound, Theorem 6.1. For each n > 1, we build two
sets of graphs A0, B0 such that A0 |= Occurn and B0 |= ¬Occurn. For each of
the n! possible paths that might satisfy Occurn, A0 will include one graph that
contains this path. Furthermore, we give each graph in A0 and B0 copies of all
permutations of length n − 1. This will help make A0 and B0 very difficult to
distinguish.

For any fixed n > 1 consider the following directed graph, Gn = (Vn, En). Let
5[n] be the set of all permutations π on any nonempty subset of [n] and let 5n
be the set of permutations on the full set [n]. The vertices of Gn consist of the
union of two sets, Vn = Tn ∪ Fn,

Tn =
{

tπ
∣∣π ∈ 5[n]

}
; Fn =

{
fπ
∣∣π ∈ 5[n]

}
We represent the permutation π ∈ 5[n] as a 1:1 map,

π : [|rng(π)|]→ rng(π) ⊆ [n] .

For any such permutation π on at least two elements, define its tail, tail(π) :
[|rng(π)|−1]→ rng(π)−{π (1)} where tail(π)(i) = π (i+1). For ease of notation,
let π2 = tail(π), and in general, πk+1 = tailk(π), that is, the permutation π

starting from item k + 1.
For all π ∈ 5[n], the relation pπ (1) holds of vertex tπ . Also, if π is a permutation

on at least two elements, then pπ (1) holds of vertex fπ .
The node fπ has edges to the following successors nodes:

—tσ ∈ Tn where rng(σ) ⊆ rng(π)− { j }, for some j ∈ rng(π), j 6= π (1)
— fσ ∈ Fn where rng(σ) ⊆ rng(π)− { j }, for some j ∈ rng(π)

The node tπ has edges to all the successors of fπ together with the additional
successor tπ2 . Furthermore, every vertex in Vn has an edge back to itself.

Consider the following sets of vertices and structures,

Yn = {tπ ∈ Tn |π ∈ 5n}
Nn = { fπ ∈ Fn |π ∈ 5n}
A0 = {(Gn, tπ) | tπ ∈ Yn}
B0 = {(Gn, fπ) | fπ ∈ Nn}.

The idea behind Gn is that for each π ∈ 5n, tπ and fπ are very difficult to
distinguish. However, observe the following:

LEMMA 5.1. For any π ∈ 5n,

(Gn, tπ) |= Occurn; but (Gn, fπ) |= ¬Occurn.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

306 • M. Adler and N. Immerman

6. PLAYING THE CTL GAME

In this section, we prove the following,

THEOREM 6.1. The formula Occurn (Eq. (1.1)) cannot be expressed in a CTL
formula of size less than n!. Thus, there is a CTL+ formula of size O(n) whose
smallest equivalent CTL formula has size n!.

Emerson and Halpern [1985] proved that any CTL+ formula of size n may be
translated to an equivalent, size-2(n)! CTL formula. Theorem 6.1 shows that
the Emerson and Halpern bound is optimal.

COROLLARY 6.2. CTL+ has succinctness exactly 2(n)! with respect to CTL.

By Lemma 5.1, we have that A0 |= Occurn and B0 |= ¬Occurn. To prove
Theorem 6.1, it suffices to show the following:

LEMMA 6.3. Samson cannot close the CTL-game on (A0, B0) in a game tree
with fewer than n! leaves.

We prove Lemma 6.3 through a series of additional lemmas. Since there is
only one structure, namely Gn, on which we are playing and the only thing that
matters is where x is assigned, we abbreviate the structure A for which xA = a
by the point a. Thus, a tree node will be labeled A, B with A and B both sets of
vertices from Gn.

We say that a pair 〈a, b〉 occurs at a node v of a game tree if v is labeled (A, B)
and a ∈ A, b ∈ B. The following lemma is obvious but useful:

LEMMA 6.4. If a pair 〈a, a〉 occurs anywhere in a game tree, then that tree
can never be closed.

Let T be a closed game tree whose root is labeled (Yn, Nn) and on which
Delilah and Samson have both played perfectly. We argue that T has at least
n! leaves.

LEMMA 6.5. Let π ∈ 5n. Then there is a branch in T from root to leaf along
which the following pairs occur (in this order):

〈tπ , fπ 〉, 〈tπ2 , fπ2〉, 〈tπ3 , fπ3〉, . . . , 〈tπn , fπn〉.
PROOF. By definition of Yn, Nn, 〈tπ , fπ 〉 occurs at the root. Suppose induc-

tively that 〈tπk , fπk 〉 occurs at node vk (and is preceded by 〈tπ j , fπ j 〉 for all j < k);
and vk is the lowest node at which 〈tπk , fπk 〉 occurs. If k = n, then the lemma is
proved. Suppose that k < n. In this case, vk is an open node since tπk and fπk

both satisfy the same predicate symbol, pπ (k).
From now on, let us assume that there are no “not” moves, but that instead

Samson may play on the left (A) or on the right (B). This may slightly decrease
the size of T by removing “not” moves, but the number of leaves is unchanged.
Note that an “or” move on the right is really an “and” move, and an E move on
the right is really an A move.

Observe that if Samson plays an “or” move at vk , then the pair 〈tπk , fπk 〉would
still occur at one of vk ’s children. Thus, Samson must play one of the following
moves: EX, EU, AU.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

An n! Lower Bound on Formula Size • 307

Fig. 2. Proof of Lemma 6.5.

Recall that every path from fπ is also a path from tπ . Thus, if Samson plays
on the right, stepping off fπ to some descendant d , then tπ has the identical
descendant d which Delilah will play. It follows from Lemma 6.4 that Samson
must play on the left at vk .

If Samson plays EX, then he must move from tπk to one of its successors.
The only successor of tπk that is not a successor of fπk is tπk+1 . Thus, Samson
must move to tπk+1 and Delilah will move to all successors of fπk , including fπk+1 .
Thus, 〈tπk+1 , fπk+1〉 occurs in the child of vk as desired.

Suppose that Samson plays AU. Samson starts by choosing a maximal path
for each structure on the left. Delilah answers by choosing the infinite loop on
the current vertex for each structure on the right. Recall that Gn has a self-
loop at each vertex. Now, Samson chooses an initial segment of each infinite
self-loop. Delilah responds by choosing the initial segments of length zero from
Samson’s paths. The right child of vk is thus labeled exactly the same as vk .
This contradicts the assumption that vk is the lowest node at which 〈tπk , fπk 〉
occurs. Thus it is not useful for Samson to play AU.

Finally, suppose that Samson plays EU. He chooses a path from tπk to some
descendant d . Note that if d 6= tπk+1 then d is also a descendant of fπk . Thus,
Delilah will answer with the path consisting of a single step from fπk to d . If
Samson challenges fπk , then we have made no progress. If Samson challenges
d , then the right child of vk contains the pair 〈d , d 〉 and thus Delilah wins.
Thus, Samson must play the path from tπk to tπk+1 . Delilah will answer among
others with the path from fπk to fπk+1 and 〈tπk+1 , fπk+1〉 occurs at a child of vk as
desired. (See Figure 2.)

Lemma 6.5 guarantees that the path of permutation π occurs along at least
one branch of T , but it may in fact occur along several branches. For each per-
mutation π , we would like to choose a particular branch as the representative

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

308 • M. Adler and N. Immerman

branch of π . If 〈tπk , fπk 〉 occurs at v along this branch, and 〈tπk , fπk 〉 still occurs
at one of v’s children, then we follow this child, that is, we take a branch that
avoids making progress if possible. If both steps make progress, or neither do,
we follow the left child.

Let π, σ be distinct elements of 5n. In the next lemma, we prove that the
branches of π and σ must diverge at some point in T . By this, we mean that the
branches start together at the root, but eventually separate and end at distinct
leaves. It will then follow that there are at least as many leaves of T as elements
of Yn and Lemma 6.3 and Theorem 6.1 thus follow.

LEMMA 6.6. Let π, σ be distinct elements of 5n. Then the branches of π and
σ diverge.

PROOF. Let us assume for the sake of a contradiction that the branches of π
and σ coincide. Let k be the first place that π and σ differ, that is, π (i) = σ (i)
for i < k and π (k) 6= σ (k). We know that 〈tπ , fπ 〉 and 〈tσ , fσ 〉 both occur at the
root.

The branches for π and σ may be moving down in lock step, that is, 〈tπ i , fπ i 〉
occurs at the same node as 〈tσ i , fσ i 〉 or one may be ahead of the other, for exam-
ple, 〈tπ i+1 , fπ i+1〉 occurs at the same node as 〈tσ i , fσ i 〉. Let us assume that they
are in lock step, or π is ahead of σ when 〈tσ k+1 , fσ k+1〉 first occurs. Let vk be the
lowest node on the branch at which 〈tσ k , fσ k 〉 occurs. Since 〈tσ k , fσ k 〉 does not
occur as a child of vk , Samson must play either EX or EU at the node vk . There
are two cases.

Case 1. 〈tπk , fπk 〉 also occurs at vk . Thus Samson must step from tπk to tπk+1

and from tσ k to tσ k+1 at this step. Since π (k) 6= σ (k), tπk+1 is a descendant of fσ k

(and tσ k+1 is a descendant of fπk). If Samson played EX, then Delilah will answer
with fσ k stepping to tπk+1 . Thus, tπk+1 would be on both sides and Delilah would
win.

Thus, Samson must have stepped to tπk+1 and tσ k+1 using an EU move, and
Delilah will step from fσ k to tπk+1 and from fπk to tσ k+1 in response.

If Samson challenges either of these descendants, then we have the same
point on both sides of a node in T and Delilah wins. If Samson challenges
neither, then 〈tσ k , fσ k 〉 occurs at a proper descendent of vk , contradicting our
assumption.

Case 2. 〈tπ j , fπ j 〉 occurs at vk for j > k. Samson must step from tσ k to tσ k+1

and either leave tπ j fixed, or step from tπ j to tπ j+1 . Let d be the not-necessarily-
proper descendant of tπ j that Samson steps to. Delilah answers with the path
from fσ k to d . Since we have assumed that progress on σ is made at this node,
Samson cannot challenge fσ k . Thus, he must challenge d and the pair 〈d , d 〉
occurs at the left child of vk . This contradicts our assumption that T is closed.

Thus, we have proved that the branches of π and σ cannot remain together
after the second one has moved past level k.

7. LOWER BOUND ON BOOLEANS IN REACHABILITY LOGIC

In this section, we give an application of formula-size games to characterize
the number of Boolean variables needed in a reachability logic. In Immerman

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

An n! Lower Bound on Formula Size • 309

and Vardi [1997], it is shown that CTL? is linearly embedable in the transitive
closure logic FO2(TC). Furthermore, in Alechina and Immerman [2000], a sub-
language of FO2(TC) called reachability logic (RL) is described. CTL? remains
linearly embedable inRL. The complexity of checking whether a Kripke struc-
ture, K, satisfies an RL formula, ϕ, is O(|K||ϕ|2nb) where nb is the number of
Boolean variables occurring in ϕ. Both RL and FO2(TC) may contain Boolean-
valued variables in addition to their two domain variables. Since the time to
model check is linear in the size of the formula and the size of the structure, but
exponential in the number of Booleans, information about how many Booleans
are needed is important.

The Boolean variables are not needed to embed CTL; however, in the linear
embeddings of CTL? in RL and FO2(TC) at most a linear number of Boolean
variables are used. It was left open in Immerman and Vardi [1997] whether any
such Booleans are actually needed. It was shown in Alechina and Immerman
[2000] that at least one Boolean is needed to embed CTL? at all in FO2(TC) or
RL. Whether more than one such Boolean variable is needed remains open.

In this section, we use a size game for a slightly weakened version of RL,
which we call RL f . The main result of this section is that for the formulas
Occurn to be translated to polynomial-size formulas inRL f , n−O(log n) Boolean
variables are needed. The weakness of RL f is that we require adjacency for-
mulas to imply R(x, y) as opposed to R(x, y)∨ R(y , x)∨ x = y . Thus,RL f can
only discuss forward paths. It still holds that CTL? ⊆ RL f .

7.1 Background on RL
Here we give the definition of Reachability Logic (RL) [Alechina and Immerman
2000].

Definition 7.1. An adjacency formula (with Booleans) is a disjunction of
conjunctions where each conjunct contains at least one of x = y , Ra(x, y) or
Ra(y , x) for some edge label a; in addition, the conjuncts may contain expres-
sions of the form (¬)(b1 = b2), (b1 = 0), (b1 = 1) and p(x), where b1 and b2 are
Boolean variables.

Definition 7.2. RL is the smallest fragment of FO2(TC) that satisfies the
following:

(1) If p is a unary relation symbol then p ∈ RL; also >,⊥ ∈ RL.
(2) If ϕ, ψ ∈ RL, then ¬ϕ ∈ RL and ϕ ∨ ψ ∈ RL.
(3) If ϕ ∈ RL and b is a Boolean variable, then ∃bϕ ∈ RL.
(4) If ϕ, ψ ∈ RL and q is a new unary predicate symbol, then (let q = ϕ in ψ)

is in RL.
(5) If ϕ ∈ RL and δ(x, b, y , b′) is an adjacency formula (a binary relation be-

tween two n-tuples 〈x, b1, . . . , bn−1〉 and 〈 y , b′1, . . . , b′n−1〉), then the following
formulas are in RL:
(a) REACH(δ)ϕ
(b) CYCLE(δ)

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

310 • M. Adler and N. Immerman

Semantics of RL. The semantics of RL is defined as follows. In each case
below, assume that δ(x, b, y , b′) is an adjacency formula.

p ≡ p(x)
(letq = ϕ in ψ) ≡ ψ[ϕ/q]

REACH(δ)ϕ ≡ ∃ y(TC δ)(x, 0, y , 1) ∧ ϕ[y/x])
CYCLE(δ) ≡ (TC δ)(x, 0, x, 1).

Here are some examples of formulas in RL:

—REACH(δ)p where δ(x, b1, b2, y , b′1, b′2) is (Ra(x, y)∧b1b2 = 00∧b′1b′2 = 01) ∨
(Rb(x, y) ∧ b1b2 = 01 ∧ b′1b′2 = 11) (this is 〈a; b〉p of PDL).

—ϕ1 = REACH(R)p (EFp of CTL?);
—ϕ2 = REACH(δ)CYCLE(δ), where δ is R(x, y) ∧ q(x) (EGq of CTL?);
—(let q = ϕ1 in ϕ2) (EGEFp of CTL?).

RL is a logical language and it is a fragment of FO2(TC). However, because of
the “let” construct, when we talk about size in the representation ofRL, we are
really talking about circuits. Thus, the size of anRL-circuit may be logarithmic
in the size of the smallest equivalent FO2(TC) formula. This allows the linear
size embedding of CTL∗, which presumably does not hold for FO2(TC) (without
a circuit representation or an extra domain variable, cf. Immerman and Vardi
[1997]).

Definition 7.3 (RL f). A forward adjacency formula δ(x, b, y , b′) is the con-
junction of R(x, y) with a Boolean combination of the Booleans b, b′ and the
unary relations pi(x), pi(y). Define RL f to be the sublanguage of RL all of
whose adjacency formulas are forward adjacency formulas. That is, RL f is
that part of RL that does not look back. Let RL f

k be the sublanguage of RL f

that has at most k pairs of Booleans: b1, . . . , bk , b′1, . . . , b′k .

As an example, we translate Occurn toRL f as follows: Occurn ≡ REACH(δn)
true where δn(x, b, y , b′) ≡ R(x, y) ∧∧n

i=1(b′i → (bi ∨ pi(x))).
The idea is that Boolean variable bi keeps track of whether predicate pi has

ever been satisfied in the current path. We can reach a point where all the
Booleans are one iff Occurn holds.

Definition 7.4 (RL f
k formula-size game). The RL f

k formula-size game is
very similar to the CTL formula-size game. The main differences are that in
addition to the position variable x, each structure may assign at most k Boolean
variables: b1, . . . , bk . Instead of the EX, EU, and AU moves in the CTL game,
we have the following:

—REACH move. Intuitively, Samson wants to assert that REACH(δ)ϕ holds
for all A ∈ A. For each A, he produces a path:

(xA = v0, b0), (v1, b1), . . . , (vr , br)
where b0 = 0, br = 1, and R(vi, vi+1) holds for all i < r. Delilah answers with
a similar path,

(xB = w0, 0), (w1, c1), . . . , (ws, 1),

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

An n! Lower Bound on Formula Size • 311

for as many copies as she wishes of each w0 ∈ B. For each of Delilah’s paths,
Samson either challenges the final point, ws, and puts it in B2, or he chal-
lenges some pair 〈(wi, ci), (wi+1, ci+1)〉 and puts it in B1. Then, Delilah lets A2
contain all the vr ’s and A1 contains all pairs, 〈(vi, bi), (vi+1, bi+1)〉. If originally
A and B differed on REACH(δ)ϕ, then after the move, A1 and B1 differ on δ
and A2 and B2 differ on ϕ.

Note that δ is a forward adjacency formula. On pair nodes such as A2, B2,
Samson may only play “or” and “not” moves. He may also choose the first half
of all the pairs, or the second half of all the pairs, that is, x is assigned to that
point in the pair and the corresponding Booleans are assigned. This is the way
that a pair node may become a full-fledged node again.

(In the game, we consider below Delilah will only play pairs that correspond
to pairs played by Samson, so Samson will never challenge a pair, but rather
the endpoint of each of Delilah’s paths.)

—CYCLE Move. This is very similar to the Reach move. The only difference
is that all paths chosen by Samson and Delilah must be cycles, that is, start
and end at the same vertex. Since the graphs we will play on below have
no cycles except self-loops, it will not be useful for Samson to play the Cycle
move.

—let move. Samson may take any two open leaves of the game tree labeled
A, B and A′, B′, and merge them into a single node labeled (A∪ A′), (B∪ B′).
In this way, we are replacing game trees with game DAG’s.

—∃ Boolean move. Samson may assign Boolean bi in each A ∈ A. Delilah
answers by making as many copies of any B ∈ B as she chooses and assigning
the Boolean bi in B.

—Atomic move. Samson chooses an atomic formula α. (α may be any of pi(x),
bi = bj , b1 = 0, or bi = 1) Samson can only make this move if every structure
in A satisfies α and no structure in B does. In this case, the current leaf is
closed.

Very similar to the proofs of Theorems 3.2 and 4.1, we have the following:

THEOREM 7.5. Samson can close the RL f
k formula-size game started at

A0, B0 in a DAG of size s iff there is a formula ϕ ∈ RL of size at most s, having at
most k pairs of boolean variables, and such that every structure in A0 satisfies
ϕ and no structure in B0 does.

We next define the graph Hn on which we will play the RL f game. This is
simpler than Gn from Section 5 because we only need an exponential lower
bound, not an n! lower bound. Thus, we only need consider all subsets of the n
propositional variables, not all possible paths through them.

Let X n be the set of all proper subsets of the n predicates. For any element e
of X n, let S(e) be a path that visits every predicate of e exactly once, and then
visits a blank vertex. Let F (e) be a path that visits every predicate of e exactly
once. The order of the predicates in F (e) and S(e) does not matter.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

312 • M. Adler and N. Immerman

Fig. 3. Paths S(e) and F (e) for e = {1, 3, 5} and n = 5.

Hn contains 2n−1 “true” vertices, te, one for each e ∈ X n. Node te starts with
the path S(e), and then from the last (blank) vertex—call it be—there is an edge
to each first vertex of F (f), for any f ∈ X n such that e ∪ f 6= [n] and also to
F (e) where e = [n]− e (See Figure 3).

Hn also contains 2n−1 “false” vertices, fe, one for each e ∈ X n. Node fe starts
with the path S(e), and then from the last (blank) vertex—call it b′e—there is
an edge to each first vertex of F (f), for any f ∈ X n such that e ∪ f 6= [n].

Let Tn = {te | e ∈ X n}; Fn = { fe | e ∈ X n}. Clearly, Tn |= Occurn and Fn |=
¬Occurn.

LEMMA 7.6. Samson cannot close the RL f
k game on (Tn, Fn) in a game tree

with fewer than 2n/2k nodes.

PROOF. Note that the paths from te and fe are identical through the blank
vertices be, b′e at the bottom of their starting paths, S(e), and the only difference
after that is that be has an edge to F (e). Thus, to close the game tree, Samson
must play a series of Reach moves from te to be, and then into F (e) for each
e ∈ X n.

The key observation is that while we are standing on be, all that we know is
what node of the game tree we are in, plus the current values of our k Booleans.
Indeed, we prove that Samson cannot play a REACH move that includes a path
in which (be, c̄) is an intermediate node, and also includes a path in which (bg , c̄)
is an intermediate node, for distinct subsets e 6= g and the same k-tuple of
Booleans c̄. It follows that Samson can move through at most 2k different be ’s
at the same time. Our lower bound will then follow.

Suppose for the sake of a contradiction that for distinct subsets e, g ∈ X n,
Samson plays a Reach move that includes a step from from be and from bg at
the same node of the game tree and that the Booleans associated with be and
bg are identical.

Since e 6= g we may assume that e∪ g 6= [n], otherwise, interchange e and g .
Delilah answers with a Reach path from fe to b′e that first copies the Booleans
on Samson’s path from te to be. Delilah continues this path to F (g) copying
Samson’s path from bg to F (g). Since each step in Delilah’s spliced path is
identical to a step in one of Samson’s paths, Samson cannot challenge any of
the steps. Thus, Samson must challenge the bottom of Delilah’s path. However,
this is identical to the bottom of Samson’s path from tg .

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

An n! Lower Bound on Formula Size • 313

Thus, our assumption was false, so at most 2k te ’s can move from their blank
vertices, be, at the same node of the game tree. Thus, there must be at least
(2n − 1)/2k intermediate nodes of the game tree. Since there are at least n
leaves, the total number of nodes is at least 2n/2k as claimed.

COROLLARY 7.7. n − O(log n) Booleans are required to express the CTL+

formula Occurn as a polynomial-size formula of RL f .

8. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we have introduced Ehrenfeucht–Fraı̈ssé games on the size of
formulas rather than their operator depth. We have used these games to prove a
new, optimal bound which exactly characterizes the succinctness of CTL+ with
respect to CTL. We have also used these games to prove an Ä(n) lower bound
on the number of Booleans needed to translate CTL+ to RL f .

The formula-size games introduced here offer promise in settling many con-
jectures in descriptive complexity. In particular, questions about true complex-
ity involve languages where an ordering relation on the universe is present.
In the presence of ordering, we can express complex properties using low op-
erator depth, with huge disjunctions over all possible input structures of a
given size. Thus, bounds on operator depth are not helpful here. Bounds on size
would be extremely helpful. The formulas involved must be large, assuming
well-believed complexity-theoretic conjectures. Although the size game is com-
binatorially complex, we expect that the methods introduced in this article will
help make progress towards lower bounds for languages with ordering.

We expect that the lower bounds from Section 7 can be extended to the full
reachability logic, RL. Another open problem was suggested by one of the
referees: Wilke showed his exponential lower bound for the alternation-free
µ-calculus which properly contains CTL [Wilke 1999]. Can our Theorem 6.1 be
similarly extended to the alternation-free µ-calculus?

ACKNOWLEDGMENTS

Thanks to Natasha Alechina and Thomas Wilke for many helpful comments
and suggestions.

REFERENCES

ALECHINA, N. AND IMMERMAN, N. 2000. Reachability logic: An efficient fragment of transitive clo-
sure logic. Logic J. IGPL 8, 3, 325–338.

CLARKE, E. M. AND EMERSON, E. A. 1981. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proceedings of the Workshop on Logic of Programs. 52–71.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. 1999. Model Checking. M.I.T. Press, Cambridge,
Mass.

EHRENFEUCHT, A. 1961. An application of games to the completeness problem for formalized the-
ories. Fund. Math 49, 129–141.

EMERSON, E. A. 1991. Temporal and modal logic. In Handbook of Theoretical Computer Science,
J. van Leeuwen, Ed. M.I.T. Press, Cambridge, Mass., 995–1072.

EMERSON, E. A. AND HALPERN, J. Y. 1985. Decision procedures and expressiveness in the temporal
logic of branching time. J. Comput. Syst. Sci. 30, 1, 1–24.

FRAISSE, R. 1954. Sur les classifications des systems de relations. Publ. Sci. Univ. Alger I.

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

314 • M. Adler and N. Immerman

IMMERMAN, N. 1987. Languages that capture complexity classes. SIAM J. Comput. 16, 4, 760–778.
IMMERMAN, N. 1999. Descriptive Complexity. Springer-Verlag, New York.
IMMERMAN, N. AND VARDI, M. Y. 1997. Model checking and transitive closure logic. In Proceedings

of the 9th International Conference on Computer-Aided Verification. Springer-Verlag, 291–302.
KARCHMER, M. 1989. Communication Complexity: A New Approach to Circuit Depth. M.I.T. Press,

Cambridge, Mass.
WILKE, T. 1999. CTL+ is exponentially more succinct than CTL. In Foundations of Software

Technology and Theoretical Computer Science: 19th Conference. 110–121.

Received March 2002; revised July 2002; accepted August 2002

ACM Transactions on Computational Logic, Vol. 4, No. 3, July 2003.

