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Abstract
Given the complexity of planning, it is often beneficial to cre-
ate plans that work for a wide class of problems. This fa-
cilitates reuse of existing plans for different instances drawn
from the same problem or from an infinite family of similar
problems. We define a class of such planning problems called
generalized planning problems and present a novel approach
for transforming classical plans into generalized plans. These
algorithm-like plans include loops and work for problem in-
stances having varying numbers of objects that must be ma-
nipulated to reach the goal. Our approach takes as input a
classical plan for a certain problem instance. It outputs a
generalized plan along with a classification of the problem
instances where it is guaranteed to work. We illustrate the
utility of our approach through results of a working imple-
mentation on various practical examples.

Introduction
In many real word problems, it is beneficial to find solu-
tions that are parametric in the numbers of objects involved,
rather than searching for independent solutions for different
instances. For example, in the blocks world, a single plan
or algorithm that un-stacks a tower of blocks of any height
is better than having a planner that can solve the problem
for each height independently. This issue generalizes all
the way to programming situations that typically require the
ability to deal with unknown or variable quantities in the in-
put (e.g. reversing a linked list of unknown length; sorting a
linked list with data). We present a unified framework which
can be used to express such general problems, to general-
ize sample classical plans for solving them, and also to find
generalized plans directly through search in an abstract state
space. We focus on the learning capabilities in this paper.

Typically, it is difficult to identify when an example plan
(or a plan being generated) includes loop un-rollings be-
cause it is difficult to characterize what makes successive
states similar. This makes it difficult to conclude that a con-
dition, or a loop invariant holds after every few action steps.
We use a state-abstraction technique from static analysis of
programs (Sagiv, Reps, & Wilhelm 2002) to make the iden-
tification of loop un-rollings very easy. Using this technique
we present a novel algorithm for generalizing a given classi-
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Figure 1: Example problem domains

cal plan which works for some instance of the problem. We
also characterize a class of problem domains where we can
compute the set of problem instances for which our learned
generalized plan will be guaranteed to work. In our expe-
rience this usually covers large portions of the problem in-
stances, leaving out only a few of the infinitely many. Our
expression for the general problem also makes it easy to find
the right kind of examples needed for generalization.

Our contributions include: a system for representing gen-
eralized planning problems; a unified framework for solving
these problems through search and by generalizing exam-
ple plans; an approach for learning generalized plans, with
a prototype implementation and results; we also provide an
analysis of our techniques and a class of domains where we
can provide preconditions for our generalized plans.

Generalized Planning Problems
We define a generalized planning problem as follows. Given
a goal condition and a class of initial states, the objective
is to find a plan that works for a subset of the solvable in-
stances. Typically the input class has states with varying
numbers of elements, which necessitates that the general-
ized plan be parametric in these numbers. More precisely, if
states are described as structures of First-Order logic, then
the generalized problem consists of the vocabulary, the ac-
tion operators and first-order formulas representing the ini-
tial and goal conditions. An instance of this problem would
be an extension of the vocabulary with any number of con-
stant symbols for each class or unary predicate, and a model
satisfying the initial state formula.

For example, consider a problem from the transport do-
main (Fig. 1(b)). We have two source locations L1 and L2,
which have a variable number of monitors and servers re-
spectively. There are two types of transport, a van at L1 and
a truck at L2 with capacities 1 and 2 respectively. For sim-



plicity, in this example we have exactly one vehicle of each
kind. The generalized planning problem is to deliver all –
regardless of the actual numbers – items to L4, but only in
pairs with one item of each kind. This abstracts an assem-
bly and transport domain, where the two objects have to be
combined before delivery. We consider generalizations of
the plan in which the van moves a monitor from L1 to L3
and returns to L1; the truck then takes a server from L2 to
L4, while picking up the monitor at L3 on the way. Such a
plan for 10 pairs of items consists of 110 actions. Together
with the range of instantiated actions, results discussed later
show that the depth of search involved makes a direct plan-
search impractical as the number of objects (or locations,
see Delivery example discussed later) increases. Given an
example plan for six pairs of objects, our algorithm discov-
ers the loop and returns a generalized plan that works for
infinitely many instances (its precondition is that we have at
least 3 items of each kind, with matching counts). This ex-
ample can be extended to include variable truck capacities,
delivery locations, a more complicated graph structure, etc.
Although such problems are common enough in real life, we
believe they haven’t received sufficient study or even char-
acterization. There is also no “database” of such problems,
familiar to the community and readily available for compar-
ison.

Prior Approaches Attempts at producing plans for more
than a single problem instance started with (Fikes, Hart,
& Nilsson 1972). Their framework parametrized and in-
dexed subsequences of existing plans for use as macro oper-
ations or alternatives to failed actions. However, this ap-
proach turned out to be quite limited and prone to over-
generalization. More recent approaches addressing such
problems have included using prior domain knowledge of
the looping constructs that may be encountered (Shavlik
1990), searching for patterns in iteratively generated plans
(Levesque 2005), and using plan annotations for recogniz-
ing repeated applications followed by a compilation the re-
sults into domain-specific planners (Winner & Veloso 2003).
Levesque addresses problems that involve a unique planning
parameter. Our approach allows a more general notion of
counters. Also, unlike his approach, we find provably cor-
rect plans. However, our approach does not fully accommo-
date numeric fluents, which are handled in his approach. The
approach presented by Winner & Veloso is limited to plan
learning and is directed towards solving all problems in a
domain. It also does not guarantee correctness. Fern, Yoon,
& Givan (2006) developed an approach for generating poli-
cies for solving all problems of a domain. Their approach
requires extensive initial training spanning several hours. It
also used a relatively restrictive goal description language.

In contrast to these approaches, our work is focused on
solving well-defined classes of problem instances. As we
demonstrate later in the paper, the generalized problems we
work with can capture several interesting practical problem-
classes where classical planners do not scale well. Our ap-
proach can also be applied directly to some program synthe-
sis problems which up to now have needed expensive deduc-
tion based approaches. Most of the approaches discussed

above do not provide a clear characterization of what con-
stitutes a general problem, how to express it, and more im-
portantly, when the learned plans or policies work. Lack of
problem characterization makes it difficult to select the right
training examples for these approaches. Absence of classi-
fications of solved instances makes generalizations difficult
to use as re-planning could be required at any time during
plan execution.

Overview Our approach for generalizing example plans is
as follows. We first use an abstraction technique based on
unary predicates to collapse similar concrete states together.
This allows us to construct a finite abstract state space for
efficiently modeling states from infinitely many instances of
the general problem. This process, together with our state
representation and action mechanisms is described in the
next section. Next, we trace out an example plan’s effects
in the abstract state space. Due to abstraction, similar states
become apparent and we are able to detect loops. This is
described in the section on “Algorithm for Generalizing an
Example Plan”. Finally, if the given domain is what we call
an extended-LL domain (all examples in this paper qualify),
we compute the preconditions for our generalized plan. This
is presented together with our analysis and categorization of
extended-LL domains in the “Finding Preconditions” sec-
tion. We present the results of our prototype implementation
on various problems in the last section.

Framework
We assume that actions are deterministic and that their re-
sults are observable.

Representation
States of a domain are represented by two-valued structures
in first-order logic with transitive closure (FO[TC]), consist-
ing of a universe of constant elements or objects and defini-
tions for all the predicates in a domain-specific vocabulary.
We use JϕKS to denote the truth value of a closed formula
ϕ in the structure S. State transitions are carried out using
action operators described as a set of formulas in FO[TC],
defining new values of every predicate in terms of the old
ones. We represent abstract states using structures in three-
valued logic (“abstract structures”). While the terms “struc-
ture” and “state” are interchangeable in our setting, we will
use the former when dealing with a logic-based mechanism.
Example 1 An example structure, S, for the transport prob-
lem discussed above can be described as: the universe,
|S| = {i1, i2, t1, t2}, monitorS = {i1}, serverS = {i2},
V anS = {t1}, TruckS = {t2}, atLS1 = {i1, t1}, atLS2 =
{i2, t2}, inV anS = inTruckS = ∅. Unlike the delivery
problem discussed later, a non-relational encoding was pos-
sible here because the number of locations is fixed.
The action operator for an action (e.g., a(x̄)) consists of
a set of preconditions and a set of formulas defining the
new value p′ of each predicate p. Action arguments are se-
lected in pre-action steps. For instance, for the Load ac-
tion, the pre-action steps set up predicates identifying the
vehicle to be loaded and the object to load. These predi-
cates are used to bind the variables obj1 and obj2 to the



vehicle to be loaded and the object to load respectively.
Using this notation, the preconditions for Load can be
{∨i≥1(atLi(obj1)∧atLi(obj2))}. Vehicle capacities would
also be modeled here. We use the action operator without
operands (e.g., a) to represent an instantiated action.

Let ∆+
i (∆−i ) be formulas representing the conditions un-

der which the predicate pi(x̄) will be changed to true (false)
by a certain action. The formula for p′i, the new value of pi,
is written in terms of the old values of all the relations:

p′i(x̄) = (¬pi(x̄) ∧∆+
i ) ∨ (pi(x̄) ∧ ¬∆−i ) (1)

The RHS of this equation consists of two conjunctions, the
first of which holds for arguments on which pi is changed to
true by the action; the second clause holds for arguments on
which pi was already true, and remains so after the action.
These update formulas resemble successor state axioms in
situation calculus. However, we use query evaluation on
possibly abstract structures rather than theorem proving to
derive the effect of an action.

We use a to denote a complete action operator including
the precondition test and the action update (more compo-
nents will be added to deal with abstract structures); τa de-
notes just the predicate update part of a. This separation is
helpful while dealing with abstract structures. We use τa(Γ)
to denote application of τa to a set of states, Γ.
Example 2 The Assembly and Transport domain
has the following actions: ∪i=1...4{moveToLi} ∪
{Load, Unload}. Update formulas for the Load action are
as follows:

inV an(x) = inV an(x) ∨ (obj2 = x ∧ V an(obj1))
inTruck(x) = inTruck(x) ∨ (obj2 = x ∧ Truck(obj1))

The goal condition is represented as a formula in FO[TC].
For example, ∀x(monitor(x)∨ server(x)) =⇒ atL4(x).
We define domain-schemas as follows:
Definition 1 A domain-schema is a tuple D = (V,A, ϕg)
where V is a vocabulary,A a set of action operators, and ϕg ,
a formula in FO[TC] representing the goal condition.

Given a domain-schema, some special unary predicates
are classified as abstraction predicates. The special status of
these predicates arises from the fact that they are preserved
in the abstraction. We define the role an element plays as the
set of abstraction predicates it satisfies:
Definition 2 A role is a conjunction of literals consisting of
every abstraction predicate or its negation.

Example 3 In all our examples, we let the set of abstraction
predicates be all the unary predicates used for the problem
representation. In the transport domain, the role representing
objects of type monitor at L1 that are not in any vehicle is:
monitor(x)∧ atL1(x)∧∧i>1(¬atLi(x))∧¬inV an(x)∧
¬inTruck(x). For simplicity, we will omit the negative lit-
erals and the free variable when expressing a role. The role
above then becomes monitor ∧ atL1.

Abstraction Using 3-valued Logic
We perform state abstraction using canonical abstraction, a
technique originally developed for TVLA, which is a tool for
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Figure 2: Abstraction in the delivery domain

static analysis of programs (Sagiv, Reps, & Wilhelm 2002).
This technique abstracts a structure by merging all objects
of a role into a summary object of that role. The result-
ing abstract structure is used to represent concrete structures
having a positive number of objects for every summary ob-
ject’s role. Since the number of roles for a domain is finite,
the total number of abstract structures for a domain-schema
is finite; we can tune the choice of abstraction predicates so
that the resulting abstract structures effectively model some
interesting general planning problems and yet the size and
number of abstract structures remains manageable. For gen-
eralizing plans however, we do not need a full state-space
search and all the unary predicates can be treated as abstrac-
tion predicates.

The imprecision that must result when objects are merged
together is modeled using three-value logic. In a three-
valued structure the possible truth values are 0, 1

2 , 1, where 1
2

means “don’t know”. If we order these values as 0 < 1
2 < 1,

then conjunction evaluates to minimum, and disjunction
evaluates to maximum.

Example 4 Consider a delivery problem where some crates
(satisfying the predicate Crate) need to be delivered to vari-
ous retail locations (satisfying the predicate Location) from
a dock. The functional relation dest(cratei, locj) represents
the destination of each object. Fig. 2 shows the result of ab-
straction on this relation when only Crate and Location
are used as abstraction predicates. The dotted edge repre-
sents the 1

2 truth value, and the encapsulated nodes denote
summary objects.

In order to define canonical abstraction more precisely,
we first define embeddings (Sagiv, Reps, & Wilhelm 2002).
Define the information order on the set of truth values as 0 ≺
1
2 , 1 ≺

1
2 , so lower values are more precise. Intuitively, S1 is

embeddable in S2 if S2 is a correct but perhaps less precise
representation of S1. In the embedding, several elements of
S1 may be mapped to a single summary element in S2.

Definition 3 Let S1 and S2 be two structures and f :
|S1| → |S2| be a surjective function. f is an embedding
from S1 to S2 (S1 vf S2) iff for all relation symbols p of ar-
ity k and elements, u1, . . . , uk ∈ |S1|, Jp(u1, . . . , uk)KS1 �
Jp(f(u1), . . . , f(uk))KS2 .

The universe of the canonical abstraction, S′, of structure
S, is the set of nonempty roles of S. The truth values in
canonical abstractions are as precise as possible: if all em-
bedded elements have the same truth value then this truth
value is preserved, otherwise we must use 1

2 .
In order to merge all elements that have the same role,

we use the subscript {p ∈ A|Jp(x)KS,u/x = 1}, {p ∈
A|Jp(x)KS,u/x = 0} in the following definition to denote
elements in the abstracted domain.
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Definition 4 The embedding of S into its canonical ab-
straction wrt the set A of abstraction predicates is the map:

c(u) = e{p∈A|Jp(x)KS,u/x=1},{p∈A|Jp(x)KS,u/x=0}

Further, for any relation r, we have Jr(e1, . . . , ek)KS
′

=
l.u.b�{Jr(u1, . . . , uk)KS |c(u1) = e1, . . . , c(uk) = ek}.

The set of concrete structures that can be embedded in an
abstract structure S is called the concretization of S: γ(S) =
{S′|∃f : S′ vf S}.
Focus With such an abstraction, the update formulas for
actions might evaluate to 1

2 . We therefore need an effective
method for applying action operators while not losing too
much precision. This is handled in TVLA using the focus
operation. The focus operation on a three-valued structure
S with respect to a formula ϕ produces a set of structures
which have definite truth values for every possible instanti-
ation of variables in ϕ, while collectively representing the
same set of concrete structures, γ(S). A focus operation
with a formula with one free variable is illustrated in Fig. 3:
if φ() evaluates to 1

2 on a summary element, e, then either
all of e satisfies φ, or part of it does and part of it doesn’t, or
none of it does. This process could produce structures that
are inherently infeasible. Such structures are either refined
or discarded during TVLA’s coerce operation using a set of
restricted first-order formulas called integrity constraints. In
Fig. 3 for instance, if integrity constraints restricted φ to be
unique and satisfiable, then structure S3 in Fig. 3 would be
discarded and the summary elements for which φ() holds in
S1 and S2 would be replaced by singletons. These two struc-
tures represent the cases where we have either exactly one,
or more than one object with e’s role. Using focus in this
manner allows us to model the “drawing-out” of individuals
from their summary elements prior to action update.

The focus operation wrt a set of formulas works by suc-
cessive focusing wrt each formula in turn. The result of
the focus operation on S wrt a set of formulas Φ is writ-
ten fΦ(S). We use ψa to denote the set of focus formulas
for action a.

Choosing Action Arguments
Since abstract structures collapse objects into roles, in the
pre-action steps we employ the focus operation to draw
out individual objects to be used as action arguments. For
example, if we had to choose a monitor to load for the
Load action, the pre-action step would focus on an aux-
iliary unary predicate choose obj2() that is constrained to
be single-valued and is initialized to 1

2 for objects satis-
fying monitor(x). In the implementation, we initialize
choose obj2() to 1

2 for all objects satisfying monitor(x) ∨
server(x), in order to allow all possible choices.

Action Application
Even with the action arguments drawn out from their roles
through the pre-action steps, predicate update formulas for
actions can evaluate to 1

2 due to imprecision in relations. For
our purposes, the most important updates are for (unary) ab-
straction predicates. Recall that the predicate update for-
mulas for an action operator take the form shown in equa-
tion 1. For unary predicate updates, the expressions for ∆+

i

and ∆−i are monadic (i.e. have only one free variable apart
from the action arguments which are bound by the pre-action
steps). Therefore, in order to obtain definite truth values for
these updates, we focus the given abstract structure using
∆±i as the focus formulas. The resulting focused structures
are tested against the preconditions, and action updates are
applied to those that qualify. The resulting structures are
then canonically abstracted (this is called “blur” in TVLA),
yielding the abstract result structures.

This completes the framework required to model a plan-
ning problem in the abstract domain.

Transitions
To summarize the discussion above, once the action argu-
ments have been chosen, there are three steps involved in
action application: action specific focus, action update, and
blur. The action operator a(x̄) collectively represents all of
these steps. We define transition relations a−→ to capture the
effect of action operators:

Definition 5 (Transition Relation) S1
a−→ S2 iff S1 and S2

are three-valued structures and there exists a focused struc-
ture S1

1 ∈ fψa(S1) s.t. S2 = blur(τa(S1
1)).

Sometimes we will need to study the exact path S1 took
in getting to S2. For this, the transition S1

a−→ S2 can be

decomposed into a set of transition sequences {(S1
fψa−−→

Si1
τa−→ Si2

b−→ S2)|Si1 ∈ fψa(S1) ∧ Si2 = τa(Si1) ∧ S2 =
blur(Si2)}.

Algorithm for Generalizing an Example Plan
In this section we present our approach for computing a gen-
eralized plan from a plan that works for a single problem
instance. The idea behind this technique is that if a given
concrete plan contains sufficient un-rollings of some loops,
then we can automatically identify them by tracing the ex-
ample plan in the abstract state space and looking for identi-
cal abstract state and action sequences. We can then enhance
this plan using the identified loops and use the techniques
discussed in the next section to find the set of problem in-
stances for which this new generalized plan will work. The
procedure is shown in Algorithm 1.

Suppose we are given a concrete example plan π =
(a1, a2, . . . , an) for a concrete state S#

0 . Let S#
i =

ai(S
#
i−1), i > 0. Let S0 be any structure which makes the

resulting domain extended-LL, and for which we need a gen-
eralized plan; the canonical abstraction of S#

0 forms a nat-
ural choice. To obtain the generalized plan, we first convert
π into a sequence of action operators by replacing each ac-
tion with an operator that uses as its argument(s) any element



Algorithm 1: GeneralizeExample

Input: π = (a1, . . . , an): plan for S#
0 ; S#

i = ai(S
#
i−1)

Output: Generalized plan Π

S0 ← canAbs(S#
0 ); Π← π; CΠ ← >1

{S0; a1, . . . , Sn−1; an, Sn} ←2

Trace({S#
0 ; a1, . . . , S

#
n−1; an, S

#
n })

Π← formLoops(S0; a1 . . . , Sn−1; an, Sn)3
if ∃C ∈ CI(R) : Sn|C |= ϕg then4
CΠ ← findPrecon(S0,Π, ϕg)5

return Π, CΠ6

having the role (or even just the type) of the concrete action’s
argument(s). We successively apply the operators from this
sequence to S0, at every step keeping only the abstract struc-
ture Si that embeds the concrete structure S#

i for that step.
This process, which we call tracing, is implemented in the
Trace subroutine.

The formLoops subroutine converts a linear path of
structures and actions into a path with simple (i.e, non-
nested) loops. The restriction to simple loops is imposed
so that we can efficiently find plan-preconditions. One way
of implementing this routine is by making a single pass
over the input sequence of abstract-state and action pairs,
and adding back edges whenever 〈Sj , a〉 is found such that
〈Si, a〉 = 〈Sj , a〉(i < j), and 〈Si, a〉 is not part of, or behind
a loop. Structures and actions following Sj are merged with
those following Si if they are identical; otherwise, the loop is
exited via the last action edge. This method produces one of
the possibly many simple-loop paths from π; we could also
produce all such paths. formLoops thus gives us a general-
ization Π of π. Steps 4 and 5 of the algorithm deal with find-
ing preconditions: if a subset of the final abstract structure
satisfies the goal, then we use the findPrecons subroutine
to obtain the restrictions on S0 for which Π works.

Finding Preconditions
For both searching for plans from scratch and learning from
examples, we need to be able to find the concrete states that
a given sequence of actions, possibly with loops, can take
to the goal. In order to accomplish this, we need a way of
representing regions of abstract states that are guaranteed to
take a particular branch of an action’s focus operation. We
also need to be able to pull these subsets backwards through
action edges in the given path all the way up to the initial ab-
stract state – thus identifying its “solved” concrete members.
We represent regions of an abstract structure by annotating it
with a set of conditions from a chosen constraint language.

Definition 6 (Annotated Structures) Let C be a language
for expressing constraints on three-valued structures. A
C−annotated structure S|C is the refinement of S consisting
of structures in γ(S) that satisfy the condition C ∈ C. Or,
γ(S|C) =

{
s ∈ γ(S)

∣∣ s |= C
}

.

We extend the notation defined above to sets of structures,
so that if Γ is a set of structures then by Γ|C we mean the
structures in Γ that satisfy C. Thus, γ(S|C) = γ(S)|C .

Given an action, the annotated pre-image of a resulting
structure S2|C2 constitutes the preconditions for reaching

S2|C2 through that action. There are two aspects of find-
ing these pre-images: first, we need to classify structures in
S1 that will take the appropriate focus branch; second, we
need to rollback the condition C2 itself. If these operations
are possible, we say the domain is amenable to back propa-
gation:
Definition 7 (Annotated Domains) An annotated domain-
schema is a pair 〈D , C〉 where D is a domain-schema and
C is a constraint language. An annotated domain-
schema is amenable to back-propagation if for every transi-

tion S1
fψa−−→ Si1

τa−→ Si2
b−→ S2 and a target conditionC2 ∈ C

there is an annotationCi1 ∈ C which selects the pre-image of
S2|C2 along this transition. In other words, there should be
an annotation Ci1 such that τa(γ(S1)|Ci1) = τa(γ(Si1))|C2 .

In terms of this definition, since τa(γ(Si1)) is the subset
of γ(Si2) that has pre-images in Si1 under τa, S1|Ci1 is the
pre-image of S2|C2 under a particular focused branch (the
one using Si1) of action a. The disjunction of Ci1 over all
branches taking S1 into S2 therefore gives us a more general
annotation which is not restricted to a particular branch of
the action update.

By induction, we can compose back-propagation along
linear sequences of actions in domains that are amenable to
back-propagation. This makes it straightforward to compute
preconditions of linear sequences of actions in any such do-
main (detailed proofs of this fact and the other results in this
section can be found at (Srivastava, Immerman, & Zilber-
stein 2007)). However, we need to simplify C in order to
find preconditions of plans with loops.

Inequality-Annotated domain-schemas Let us denote
by #R(S) the number of elements of role R in structure
S. In this paper we use CI(R), the language of constraints
expressed as sets of linear inequalities using #Ri(S), for
annotations.

Quality of Abstraction In order for us to be able to clas-
sify the branches caused by focus operations, we need to
impose some quality-restrictions on the abstraction. Our
main requirement is that the changes in abstraction predi-
cates should be characterized by roles: given a structure, an
action should be able to change a certain abstraction pred-
icate only for objects with a certain role. We formalize
this property as follows: a formula ϕ(x) is said to be role-
specific in S iff only objects of a certain role can satisfy ϕ in
S.
Definition 8 (Extended-LL domains) An Extended-LL do-
main with start structure Sstart is a domain-schema such
that ∆+

i and ∆−i are role-specific, exclusive when not equiv-
alent, and uniquely satisfiable in every structure reach-
able from Sstart. More formally, if Sstart →∗ S then
∀i, j, ∀e, e′ ∈ {+,−} we have ∆e

i role-specific and either
∆e
i ≡ ∆e′

j or ∆e
i =⇒ ¬∆e′

j in S.

Handling Paths with Loops In extended-LL domains we
can also effectively propagate annotations back through
paths consisting of simple (non-nested) loops:
Proposition 1 (Back-propagation through loops) Suppose



S0
τ1−→ S1

τ2−→ . . .
τn−1−−−→ Sn−1

τ0−→ S0 is a loop in an
extended-LL domain with a start structure Sstart. Let the
structures before entering the loop and after exit be S and
Sf . We can then compute an annotation C(l) on S which
selects the structures that will be in Sf |Cf after l iterations
of the loop on S, plus the simple path from S to Sf .

Theorem 1 Extended-LL Domains are amenable to back-
propagation.

Detailed proofs of these results can be found at (Srivastava,
Immerman, & Zilberstein 2007).

Methods described by Srivastava, Immerman, & Zilber-
stein can be used to find plan preconditions in extended-
LL domains. Intuitively, these domain-schemas are those
where:

1. The information captured by roles is sufficient to deter-
mine whether or not an object of any role will change
roles due to an action; and

2. The number of objects being acquired or relinquished by
any role is fixed (constant) for each action.

Implementation and Results
We implemented a prototype for our approach using TVLA
as an engine for computing results of action sequences. The
implementation proceeds in four phases. In the first phase,
the example plan is executed on the concrete initial state that
it came with. This gives us a sequence of concrete state and
action pairs. In the second phase, the example plan is ex-
ecuted on an abstract start state, with the real operands re-
placed by unary predicates representing their classes (e.g.
Red or item). In the third phase, for every action we se-
lect the unique abstract result structure that embeds the cor-
responding result structure from the concrete run (tracing).
Finally, loops are identified as described above.

Our planner is named Aranda 1. We used Python for the
implementation. Pyparsing was used to parse the transi-
tion graphs produced by TVLA for phase 3. Pyparsing
is known to be a slow parser, and this operation is the most
expensive in our implementation. pyparsing takes about
5 minutes to parse a file containing 2, 500 structures. This
is extraneous to our algorithm: an exponentially faster sys-
tem can be implemented by following the tracing procedure
described in the section on our Algorithm. This requires a
better interface with TVLA.

Results
We ran Aranda on some practical problems derived from
classical planning benchmarks. We summarize the problems
and the results below.
Delivery We have some objects at a Dock, which have
to be transported to various retail locations. Every object
has a specific destination, determined by the dest relation.
The Dock is connected to all the retail locations (Fig. 1(a)).
There is only one truck, initially at the garage. The gen-
eralized planning problem is to find a plan to deliver all

1after an Australian tribe that had names for numbers only up
to two.

01. setDest(dock)
02. go()
03. choose(item)
04. findDest()
05. Load()
06. setDest(itemDest)
07. go()
08. unload()
09. setDest(dock)
10. go()

11. choose(item)
12. findDest()
13. load()
14. setDest(itemDest)
15. go()
16. Repeat:
17. unload()
18. setDest(dock)
19. go()

20. choose(item)
21. if (#item = 1)
21a. exit loop
22. findDest()
23. load()
24. setDest(itemDest)
25. go()
26. findDest()
27. . . .

Figure 4: Generalized Plan for Delivery

//Actions up to moving Truck to L4
01. Repeat:
02. Unload()
03. mvToL3()
04. mvToL2()
05. chooseVehicle(V an)
06. chooseItem(monitor; atL1)
07. if #(monitor; atL1) = 1
07a. exit loop
08. Load()
09. mvToL3()

10. Unload()
11. mvToL1()
12. chooseVehicle(Truck)
13. chooseItem(server; atL2)
14. Load()
15. mvToL3()
16. chooseItem(monitor; atL3)
17. Load()
18. mvToL4()
19. Load() . . .

Figure 5: Main loop for Assembly and Transport

the objects, irrespective of the number of objects or retail
stores. We used findDest action in this domain to focus
on dest(obj, x) thereby “sensing” the destination of an ob-
ject, and setting the predicate itemDest to it.

The input example plan delivered five objects to two dif-
ferent locations. Our algorithm found the generalized plan
shown in Fig. 4. Actions 26 to 39 execute the last iteration
of the loop. In all of our examples, it is possible to merge the
loop iterations before and after the identified loop by check-
ing that their result structures are embeddable in the struc-
tures inside the loop. Since we are in an extended-LL do-
main, we can use the methods described by (Srivastava, Im-
merman, & Zilberstein 2007), to compute the preconditions
for this plan as #(item) ≥ 3. Essentially, this is because
the loop exit occurs at statement 20 due to the focus opera-
tion, when the number of items to choose from is exactly 1.
In fact, here and in all the following examples the precondi-
tions also show how many loop unrollings there will be in a
plan execution (e.g. #(item) = l + 3, where l ≥ 0 is the
number of loop iterations).
Assembly and Transport This problem was described in
the second section. We represented this domain without us-
ing any binary relations. The example plan for this prob-
lem was described in the second section. Fig. 5 shows the
main loop discovered by our algorithm. Action operands
in the loop are just the roles of chosen objects in the cor-
responding structures. Preconditions can be computed as
#(monitor ∧ atL1) = #(server ∧ atL2) = l + 3.
Striped Block Tower Given a tower of red and blue blocks
with red blocks at the bottom and blue blocks on top, the
goal is to find a plan that can construct a tower of alternating
red and blue blocks, with a red “base” block at the bottom
and a blue block on top. We used transitive closure to ex-
press stacked towers and the goal condition. The input ex-
ample plan worked for six pairs of blocks, by first unstack-
ing the whole tower, and then placing blocks of alternating
colors back above the base block. Our algorithm discov-
ered three loops: unstack red, unstack blue, stack blue and
red (Fig. 6). The preconditions indicate that for the plan to
work, we must have #(Red) = #(Blue) = l+ 4. The rep-
resentation for this problem can also be used to model, and



1. choose(topmost)
2. mvToTable()
3. choose(topmost)
4. mvToTable()
5. Repeat:
6. choose(topmost)
7. mvToTable()
8. if (#Blue = 1)
8a. exit loop
9. choose(topmost)
10. mvToTable()
11. choose(topmost)

12. mvToTable()
13. choose(topmost)
14. mvToTable()
15. Repeat:
16. choose(topmost)
17. mvToTable()
18. if (#Red = 1)
18a. exit loop
19. choose(topmost)
20. mvToTable()

21.. // axns for mv Blue, an
unrolling of the next loop//
26. Repeat:
27. choose(Red;onTable)
28. if (#Red;onTable = 1)
28a. exit loop
29. choose2(Blue;topmost)
30. move()
31. choose(Blue;onTable)
32. choose2(Red;topmost)
33. move()
34. choose(Blue;onTable). . .

Figure 6: Generalized Plan for Striped Block Tower
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Figure 7: Break-ups of Aranda’s plan generalization times

solve program synthesis problems like reversing and travers-
ing link lists. This gives us a method for solving such prob-
lems without the computational overheads of automated de-
duction.

A summary of the timing results can be seen in Fig. 7.
The parsing time for phase 3 in Aranda was between 4 and
6 minutes for these examples and is not shown in the plots.
Loop finding times were less than a second.

Comparison We compared Aranda’s plan-generalization
times with planning times of winners of the last Interna-
tional Planning Competition (IPC-5 2006): SGPlan5 (a non-
optimal planner) and SATPLAN06 (an optimal planner). We
had to explicitly ground our problem encodings for these
planners, which sometimes made the problem easier. For ex-
ample, the goal position of each block in the Striped Tower
problem became explicitly known. Although SGPlan5 al-
lowed quantified goals, they make the planner very unscal-
able – with a quantified goal formula stating the alternating
color condition, it ran for 1500 seconds without solving a
Striped Tower problem instance with 10 pairs.

We present a summary of the results in Fig. 8. The results
clearly illustrate the utility of learning generalized plans. We
used vanilla versions of the planners for this comparison.
The sensing aspect of the Delivery problem could not be
accurately translated without quantified goals, and was thus
not included in the comparison. All but the larger runs for
SGPlan were carried out on a 1.6GHz Pentium Dual Core
machine with 1.5GB RAM. SGPlan with 30 or more pairs of
objects had to be run on a 2GHz machine with 2GB RAM.

Conclusion and Future Work
In this paper we introduced a new category of planning prob-
lems and presented a novel approach for learning general-
ized plans for solving them. Our framework allows us to
obtain the class of problem instances that these generalized
plans solve. The applicability and utility of our approach
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was illustrated through results on several practical problems
from classical planning-benchmark domains. Other than the
natural extension of our work beyond extended-LL domains,
open directions include learning plans with branches inside
loops. Such generalized plans can be easily expressed and
searched for in our framework, but the current methods can-
not learn them from example plans. Developing standard-
ized evaluation metrics for the quality of such plans is also
a very interesting problem and would be invaluable to the
community for comparing approaches that provide plans for
solving multiple problem instances. Although we can detect
nested loops, succinctly expressing preconditions for such
loops is left for future work.
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