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The bird on my birdfeeder instantly processes any change to its visual input: should
it flee or keep eating? In dynamic complexity, we ask what information we should
maintain, so that, upon a small change to our input, we can quickly compute the new
answer to a certain query. It had been a long-standing open question whether graph
reachability could be maintained in first-order logic. A recent breakthrough result is
that yes, it can. In this column, Thomas Schwentick and Thomas Zeume explain this
new result and map out the current landscape of Dynamic Complexity.
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1. INTRODUCTION

In many data management scenarios the data is subject to frequent modifications, and
it is often essential to react to those changes quickly. When a train is canceled on short
notice, travelers need to find alternative connections as fast as possible. When a web
server is temporarily not available, data packages have to be rerouted immediately.

Recomputation of a query result from scratch after each small change of the data
is often not possible in such scenarios due to the large amount of data at hand and
efficiency considerations. Very often it is also not necessary: the breakdown of a single
train does usually affect only a small fraction of the whole train network. Thus it is
reasonable to try to dynamically update essential information in an incremental fash-
ion by reusing information that has been previously computed. Ideally such a dynamic
update should use less resources than recomputation from scratch.

Besides saving resources, a dynamic approach to query answering can increase the
expressivity of database query languages. The relational algebra (corresponding to the
core of SQL) can only express queries that can be formulated in first-order logic (aka
relational calculus) and therefore inherits the well-known expressivity limitations of
first-order logic. In a nutshell, it thus can only express local queries that do not count
(see [Libkin 2004] for more information on the limits of first-order logic). However,
when previously computed information is available after a change of the data, query
results can be “built-up” over time, and therefore queries that the relational algebra
cannot express might be maintainable in this dynamic setting. For example, whether
the size of a set is odd or even can be easily maintained under single insertion and
deletion operations with the help of a single bit of auxiliary (stored) data.

One way to model this dynamic scenario is the descriptive dynamic complex-
ity framework (short: dynamic complexity) introduced independently by Dong, Su
and Topor [Dong and Su 1993; Dong and Topor 1992] and Patnaik and Immerman
[Patnaik and Immerman 1994]. It was mainly inspired by updates in relational
databases. Within this framework, for a relational database subject to change, aux-
iliary relations are maintained to help answering a query Q. When an insertion or
deletion of a tuple to the database occurs, every auxiliary relation is updated through
a first-order query that can refer to the database as well as to the auxiliary relations
(cf. Figure 1). The class of all queries maintainable in this way is called DYNFO.
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Fig. 1. The dynamic setting: after a change operation the auxiliary data is updated and one of the auxiliary
relations, QA, yields the result of Q.

Example 1.1. The reachability query asks for all pairs of nodes that are connected
by a path in a given graph G. A naı̈ve approach for maintaining this query is to use
a binary auxiliary relation T which represents the transitive closure of the graph. We
show how to update T under edge insertions. When an edge (c, d) is inserted then there
is a path from a vertex a to a vertex b if (1) there had been a path from a to b before
the insertion, or (2) there had been a path from a to c and a path from d to b before the
insertion. This can be easily specified by a first-order update rule as follows.

on insert (u, v) into E
update T (x, y) as T (x, y) ∨

(

T (x, u) ∧ T (v, y)
)

The new version of relation T then consists of all pairs (x, y) for which the formula
T (x, y) ∨

(

T (x, u) ∧ T (v, y)
)

holds, where (u, v) represents the inserted edge.

This simple example just illustrates the framework. In fact, it is not possible to update
T under edge deletions without further auxiliary relations (see Theorem 5.1, shown in
[Dong and Su 1998]).

As one of the easiest queries that requires some recursion, the reachability query
has been by far the most intensely studied query in dynamic complexity. We already
saw that it can be maintained when edges can only be inserted. Patnaik and Immer-
man conjectured that Reachability can be maintained under insertion and deletion
operations with first-order update programs [Patnaik and Immerman 1997]. This has
been confirmed1 recently in [Datta et al. 2015].

The main purpose of this article is to give a high-level proof sketch of this result
(in Section 4). Furthermore, it gives a detailed discussion of possible dynamic settings
(Section 3), some inexpressibility results and techniques (Section 5), and some pointers
to the literature for further topics (Section 6). In Section 2 we fix some notation and
formally define the dynamic setting that will be used in this article. The article is not
an exhaustive survey on dynamic complexity.

Readers mainly interested in the upper bound for Reachability might directly jump
to Section 4 and consult Section 2 for the precise notation.

We borrow material from several talks we presented in the last few years as well
as from some of our articles [Gelade et al. 2012; Zeume 2015; Zeume and Schwentick
2014, 2015]. For a more complete exposition of the current state of the art of dynamic
complexity we refer to [Zeume 2015].

1As a side remark: the authors of this article had started a research project, funded by the German DFG,
with the aim to develop lower bound methods and the (remote) ultimate goal to prove REACH ̸∈ DYNFO.
Research is full of surprises.
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2. BASIC DEFINITIONS

For each m ∈ N, the set {0, . . . ,m−1} is denoted by [m]. The reachability query REACH

is defined as usual.

Problem: REACH

Input: Directed graph G
Output: Set of all pairs (u, v), for which there is a path from u to v in G

We have already seen a dynamic program in the introduction. In general, a dynamic
program2 P works on an input structure I over a schema τinp and updates an auxiliary

structure A over a schema3 τaux. Both structures I and A share the same domain D
which does not change during a computation. We call a pair (I,A) a state and consider
it as one relational structure. The relations of I and A are called input and auxiliary
relations, respectively. Input relations can be changed by inserting or deleting a single
tuple. A change operation is thus of the form insert t⃗ into R or delete t⃗ from R, for
some tuple t⃗ and input relation R. For a sequence α of change operations and an input
database I, we denote the database resulting from applying α to I by α(I).

A dynamic program has a set of update rules that specify how auxiliary relations
are updated after a change. An update rule for updating an auxiliary relation T after
inserting a tuple into an input relation R is of the form

on insert x⃗ into R
update T (y⃗) as ϕ(x⃗, y⃗)

where the formula ϕ is over τinp ∪ τaux. We often refer to ϕ as the update formula.
The semantics of such an update rule is as follows. When a tuple a⃗ is inserted into

input relation R, then the new state S of P is obtained by inserting a⃗ into R and

by defining each auxiliary relation T via T
def
= {⃗b | (I,A) |= ϕ(⃗a, b⃗)}. Similarly for

deletions. For a change operation δ we denote the updated state by Pδ(S), and similarly
for sequences of changes.

The dynamic program P maintains a k-ary query Q if it has a k-ary auxiliary relation
QA that, after each change sequence, contains the result of Q on the current input
database. More precisely, for each non-empty4 sequence α of changes and each empty
input structure I∅, relation QA in Pα(S∅) and Q(α(I∅)) coincide. Here, S∅ = (I∅,A∅),
where A∅ denotes the empty auxiliary structure over the domain of I∅.

The class of queries that can be maintained by a dynamic program with update
formulas from first-order logic is called DYNFO.

The precise relationship between DYNFO and standard (static) complexity classes
is unknown. However, a lower and an upper bound can be easily observed: every query
that can be expressed in FO can also be maintained in DYNFO. On the other hand,
every query in DYNFO can be evaluated in polynomial time.

We will make use of a very weak form of logically defined reductions under which
DYNFO is closed. In a nutshell, a first-order reduction ρ from a Boolean query Q to a
Boolean query Q′ maps every structure A to a structure B = ρ(A) such that Q(A) is

2We note that, although, in principle, we use the setting of [Patnaik and Immerman 1997], our notation
considerably departs from [Patnaik and Immerman 1997]. This should not hurt much, since we try to avoid
too much notational detail.
3To simplify the exposition, we will usually not mention schemas explicitly and always assume that all
structures we talk about are compatible with respect to the schemas at hand.
4This restriction is needed for technical reasons. Otherwise, we could not handle Boolean queries with a
yes-result on empty structures. Alternatively, one could use an extra formula to compute the query result
from the auxiliary (and input) structure.
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true if and only if Q′(B) is true. For the precise definition of first-order reductions we
refer to [Patnaik and Immerman 1997]. A first-order reduction is5 bounded if there is
a constant c such that every single-tuple change in A yields at most c changes in B.

3. THE SETTING

Although the principal idea of logic-based dynamic complexity is quite simple, several
design choices have to be made in a formalization. We picked one particular setting in
the definition of DYNFO in Section 2. However, there are many aspects of the model
that can be defined differently.

We discuss some of the available design choices in this section. We first discuss al-
ternatives with respect to the allowed change operations, and afterwards alternatives
regarding the definition of update programs. Towards the end of the section, we com-
pare the DYNFO setting with other dynamic settings.

3.1. Change Operations

The DYNFO-setting only allows single-tuple changes: in one change operation, a single
tuple can be added to or deleted from the current input structure. An alternative could
be to allow insertion or deletion of a set of tuples. However, allowing to insert and
delete arbitrary sets of tuples would make the dynamic setting pointless, since in one
step one could jump between two arbitrary inputs. Therefore, set-valued changes seem
to make sense only if they are restricted in some way, e.g., by bounding the size of
change sets or by requiring them to be defined by a formula or algebraic expression.

The restriction to single-tuple changes is severe from a practical point of view. How-
ever, it turns out that already this simple type of changes raises difficult research
challenges. For the same reason, the restriction to single tuple changes is also common
in the study of dynamic algorithms.6

The DYNFO setting comes with a restriction that looks unnatural to many people,
when they see it for the first time: the domain (universe) of the structure at hand is
fixed, that is, it is not possible to add or remove elements from the current domain.
In particular, new tuples can only come with elements that are already present in the
current structure.7 However, update programs of one setting can usually be adapted
to the other setting in a straightforward manner.

3.2. Update Programs

Naturally, the machinery for update programs gives rise to many alternatives. We
distinguish three “sub-aspects” here:

(1) the logic used for updates,
(2) the “data structures”, i.e., the signature of the auxiliary structure, and
(3) the initialization mechanism.

3.2.1. Logic for Updates. In our definition of DYNFO, the logic used for updates is first-
order predicate logic, but many other logics have been considered:

— extensions of first-order logic by, e.g., counting quantifiers to be able to capture
queries that seem(ed) beyond DYNFO, and

— restrictions of first-order logic, especially with the goal to prove lower bounds or to
pinpoint the dynamic complexity of a given query more precisely; these restrictions

5In [Patnaik and Immerman 1997] these reductions were called bounded-expansion reductions, but this
name is now in use for other, unrelated, concepts.
6Nevertheless, we plan to study simple defined changes in the near future.
7This is the main difference between the DYNFO-setting and the FOIES-framework proposed by
[Dong and Su 1993; Dong and Topor 1992].

ACM SIGLOG News 33 April 2016, Vol. 3, No. 2



most often affect the quantifier structure of formulas (and particularly might forbid
quantifiers completely).

The precise semantics of update programs is also important, e.g., whether update
formulas specify the new state of the auxiliary data explicitly or as the “delta” with
respect to the previous state. The definition of DYNFO uses explicit specification, but
this difference obviously does not matter. One might suspect that it matters for re-
stricted logics, but we will see in Section 6 that most often the choice of the semantics
does not influence the expressive power.

3.2.2. Data Structures. The arity of the auxiliary relations (or functions) can influence
the dynamic expressive power of a logic. Many lower bound results involve some arity
restriction, e.g., the reachability query can not be maintained in DYNFO with (at most)
unary auxiliary relations (cf. Theorem 5.1).

For DYNFO, it does not matter whether the auxiliary data is stored in functions
or relations. However, for restrictions of first-order logic, this distinction might be-
come relevant. The quantifier-free fragment of DYNFO which allows relations and
functions8 is called DYNQF and the one that only allows relations is called DYNPROP

[Hesse 2003b]. Since we mainly deal with DYNFO, we assume in the following that
the auxiliary data consists of relations only, unless otherwise stated.

3.2.3. Initialization Mechanism. With respect to initialization, there are many alterna-
tives, as well. Of course, the main interest of dynamic complexity is to understand how
auxiliary data can be used to maintain a query. However, when it comes to the formal
definitions, one has to decide in which situation the dynamic computation starts. Two
questions need to be answered here:

— what are the possible initial values for the input structure, and
— how are the initial values of the auxiliary relations determined?

To give a first glimpse of possible pitfalls, let us assume our answer is “arbitrary”
for the first question and that the initial auxiliary relations are “empty”. With that
choice a query could be maintained in first-order logic (if and) only if it can be already
expressed in first-order logic. This holds because, at the start of a dynamic compu-
tation, the dynamic program would need to be able to react to arbitrary structures
without the help of auxiliary data. And thus the query would be also expressible by
the first-order update formula for the query relation.

Our definition of DYNFO adopted the setting that has been used most often in the
literature, in which the input structure is initially empty and the auxiliary relations
are empty as well [Patnaik and Immerman 1994]. With respect to the initialization,
the definition DYNFO appears very innocent at first sight: what could be wrong
about initially empty auxiliary relations? However, the setting allows a dynamic
program to establish a linear order on the “activated” elements of the structure, i.e.,
those elements that are currently in some tuple or had been in some tuple before
[Patnaik and Immerman 1997]. It is even possible to establish arithmetic relations
(addition and multiplication) on the activated elements [Etessami 1998]. However,
from a practical point of view, this setting seems very plausible and the ability to use a
linear order or arithmetical relations to maintain queries does not contradict intuition.

8For the update of functions, function terms that involve an if-then-else mechanism can be used [Hesse
2003b].
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The DYNFO setting can be strengthened by allowing the auxiliary relations to be
initially non-empty, even though the initial structure has no tuples. This setting re-
minds one of notions of circuit families, where, for each input length n, there is a
circuit Ci that decides all strings of this length. Like in the world of circuit families
one can distinguish the case of non-uniform initialization (the initial value of the aux-
iliary relations is just an arbitrary function of the size of the universe) and various
levels of uniform initialization (where this function is somehow restricted). Restric-
tions that played a role in the literature include polynomial-time computable initial-
izations [Patnaik and Immerman 1994] and just linear order, addition and multiplica-
tion on the whole universe [Etessami 1998]. We refer to the class of queries that can
be maintained by dynamic programs of the latter kind as DYNFO(+,×) . This class
is used in the second step of the proof that the reachability query is in DYNFO (cf.
Proposition 4.2). Non-uniform initialization was considered in [Datta et al. 2014] (for
an extension of DYNFO).

Orthogonally, the DYNFO setting can be varied by allowing initial situations, in
which the structure under consideration is non-empty. Besides the non-sensical vari-
ant with empty initial auxiliary relations, mentioned above, non-uniform and uniform
initializations of the auxiliary relations can be considered here as well. It is not hard
to see that for non-uniform initialization the expressive power is the same, no matter
whether the initial input structure is empty or non-empty. The non-uniform setting
emphasizes the maintenance aspect as it somehow “abstracts away” the effect of the
initialization. Thus, lower bounds against this setting are guaranteed to show a lack of
maintainability as opposed to proofs that might exploit the weakness of initialization.
Thus, inexpressibility results for this setting are the most powerful and therefore, the
most desirable ones.

There is another, more subtle, aspect that makes the setting with non-empty ini-
tial structures interesting: it allows to study the maintainabilty of properties in the
context of unordered input structures. Such investigations have been carried out by
Grädel and Siebertz [Grädel and Siebertz 2012]. They considered the definition of ini-
tial auxiliary relations by extensions of first-order logic like inflationary fixed-point
logic with or without counting quantifiers. This form of initialization is, in general, not
able to define a linear order on unordered structures (let alone arithmetic) and allows
to prove inexpressibility results.

The following table gives an overview of the main settings considered in this article.

Table I. Overview of settings and dynamic classes.

Initial auxiliary relations Initial input structure

Empty Arbitrary

Empty DYNFO FO

+,× DYNFO(+,×) FO(+,×)

Arbitrary Non-uniform DYNFO

The interplay of different initializations has been investigated in [Datta et al. 2015;
Grädel and Siebertz 2012; Patnaik and Immerman 1997; Weber and Schwentick 2007;
Zeume and Schwentick 2015].

3.3. DYNFO and dynamic algorithms

The original motivation for the introduction of the framework of dynamic complexity
was to study the dynamic evaluation of relational database queries from a Logic and
Complexity perspective. The framework captures a restricted form of incremental view
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maintenance in which the underlying database changes by only one tuple at a time.
It is therefore natural to consider first-order logic as update language, since it directly
corresponds to the relational algebra which in turn is subsumed by the database query
language SQL. Thus, queries in DYNFO can be maintained by SQL updates.

Dynamic problems have been studied extensively from an algorithmic point of view
as well. In this area the focus is on developing algorithms that need less resources
for recomputing query results after modifications than a naı̈ve algorithm that recom-
putes results from scratch. A good starting point for readers interested in dynamic
algorithms are [Demetrescu and Italiano 2008; Roditty and Zwick 2008] (for upper
bounds) and the survey by Miltersen on cell probe complexity [Miltersen 1999] (for
lower bounds). A sequential framework for studying dynamic complexity was proposed
in [Miltersen et al. 1994].

The consideration of first-order logic as an update language also makes sense from
an algorithmic point of view. Since the (uniform version of the) circuit complexity class
AC0 corresponds to FO(+,×) [Barrington et al. 1990], DYNFO(+,×) can be seen as a

dynamic version of AC0. On the other hand, circuits from this class can be simulated by
parallel random access machines (short: PRAMs) with polynomially many processors
in constant time (see, e.g., [Vollmer 1999]). Thus if a query can be maintained via first-
order update formulas (with built-in arithmetic), it can be dynamically recomputed by
a highly parallel program in constant time as well. This low parallel complexity does
not necessarily translate into fast sequential algorithms in the sense of dynamic algo-
rithms, and it is not immediately clear how to implement first-order update programs
in real systems. However, results from dynamic descriptive complexity offer a founda-
tion for future work towards fast, parallel dynamic programs for important queries.

4. THE DYNAMIC COMPLEXITY OF REACHABILITY

Before we sketch a proof for the first-order maintainability of the reachability query,
we give a short account of previous dynamic expressibility results for the reachability
query. For lower bound results we refer to Section 5.

Whether REACH ∈ DYNFO, i.e., whether the reachability query can be maintained
by first-order update programs, has been one of the main questions studied in the field
of dynamic complexity. The positive results that were obtained towards the resolution
of this question can be clustered in two groups:

(1) results that show how to maintain REACH on restricted classes of graphs, and
(2) results that show how to maintain REACH in extensions of DYNFO.

In a sense, the latter line of research has won this race, since the methods developed
there ultimately yielded a DYNFO program for REACH. We will report about the lim-
ited success of a third line of research that worked on inexpressibility results in the
DYNFO setting in Section 5.

Results of group (1) showed that the reachability query can be maintained in
DYNFO for undirected graphs [Patnaik and Immerman 1994], directed acyclic graphs
[Dong and Su 1993], and embedded planar graphs [Datta et al. 2014]. For undirected
graphs, reachability can even be maintained in DYNQF (i.e., with quantifier-free
formulas using auxiliary functions) and for acyclic deterministic graphs even in
DYNPROP (i.e., with quantifier-free formulas with auxiliary relations) [Hesse 2003b].

In the case of undirected graphs, spanning trees [Patnaik and Immerman 1994] or
distance functions [Grädel and Siebertz 2012] can be used. In the case of directed
acyclic graphs a smart observation that allows to figure out whether there is a path
from a to b after deleting some edge (c, d) can be used [Dong and Su 1993].
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The first result in the second group was that, on arbitrary directed graphs, Reach-
ability can be maintained in DYNTC0 [Hesse 2003a]. The technique was based on us-
ing generating functions for representing the number of paths of a given length from
one node to another and on the observation that only paths up to length n have to
be considered. In [Datta et al. 2014] it was shown by a similar approach that Reach-
ability can be even maintained in DYNAC0[2]. In terms of logic, DYNAC0[2] can be
seen as the extension of non-uniform DYNFO in which update formulas are allowed
to use modulo-2 counting quantifiers. This paper initiated the study of the dynamic
complexity of matrix rank (putting it in DYNTC0) which eventually led to the result
that Reachability can be maintained in DYNFO [Datta et al. 2015]. We describe the
surprisingly elementary proof and some consequences of this result in the remainder
of this section.

THEOREM 4.1 ([DATTA ET AL. 2015]). REACH ∈ DYNFO.

For technical simplicity, we will sketch the proof for the Boolean s-t-reachability query
instead of REACH, since a program for REACH can be obtained from a program for
s-t-REACH by running it in parallel, for every pair (u, v) of vertices.

Problem: s-t-REACH

Input: Directed graph G, nodes s, t
Question: Is there a path from s to t in G?

Before we start the description of the proof, we first fix some notation for matri-
ces and vectors. By A[i, j] we refer to the entry in the i-th row and j-th column of a

matrix A. Similarly, x[i] denotes the i-th entry of vector x. By e
(m)
i we denote the m-

dimensional unit (column) vector e with e[i] = 1 and e[j] = 0 for j ̸= i. We write x⊤

if we use vector x as a row vector. The rank and the determinant of A are denoted by
det(A) and rank(A). For a prime number p, we denote by rankp(A) the rank of A as a
matrix over Zp (and with entries adjusted modulo p).

The following algorithmic problem will play an important role in the proof.

Problem: FULLMATRIXRANK

Input: (m×m)-matrix A with values from {0, . . . ,m}
Question: Is rank(A) = m?

The proof consists of three relatively simple steps, all of which build to some extent
on previous work.

(1) s-t-REACH can be reduced to FULLMATRIXRANK by a bounded first-
order reduction (and since DYNFO(+,×) is closed under such reductions,
FULLMATRIXRANK ∈ DYNFO(+,×) implies REACH ∈ DYNFO(+,×)).

(2) FULLMATRIXRANK ∈ DYNFO(+,×).
(3) For every domain independent query Q, if Q ∈ DYNFO(+,×) then Q ∈ DYNFO

(and therefore s-t-REACH ∈ DYNFO, since s-t-REACH is domain independent ).

Here, a query Q is domain independent, if Q(D1) = Q(D2) for all databases D1 and D2

that coincide in all relations and constants (but may differ in the underlying domain).
The first step is similar in spirit to reductions in [Cook 1985; Laubner 2011]. The al-

gorithm constructed for step (2) adapts a dynamic sequential algorithm for maintain-
ing rank from [Frandsen and Frandsen 2009]. The third step extends the technique
for maintaining arithmetic presented in [Etessami 1998].

In the following we describe the three steps separately and largely self-contained.
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4.1. From Reachability to Matrix Rank

Towards the reduction from s-t-reachability to matrix rank, let G be a graph with
n vertices and AG its adjacency matrix, and let s, t be vertices of G. The important
observation (which can be found, e.g., in [Horn and Johnson 2012, Theorem 6.1.10.]) is
that I − 1

nAG is invertible and

(I −
1

n
AG)

−1 = I +
∞
∑

i=1

(
1

n
AG)

i.

A closer inspection of the sum on the right hand side reveals that this matrix has
a non-zero entry at position (s, t) if and only if t is reachable from s. Thus, the same
holds for the inverse of I − 1

n
AG.

For technical reasons, we prefer to deal with integer matrices and therefore rather
work with the matrix B

def
= nI − AG, which is also invertible. We denote by B+s the

((n + 1)× n)-matrix that is obtained by extending B by an additional row (e(n)s )⊤ and

by B+st the extension of B+s by the additional column vector e
(n+1)
t .

Then the following chain of equivalences holds.

t is reachable from s ⇐⇒ (B−1)[s, t] ̸= 0

⇐⇒ (B−1e
(n)
t )[s] ̸= 0

⇐⇒ the equation Bx = e
(n)
t has no solution vector x with x[s] = 0

⇐⇒ the system
Bx = e

(n)
t

(e(n)s )⊤x = 0
has no solution vector x at all

⇐⇒ e
(n+1)
t is not in the column space of B+s

⇐⇒ B+st has rank n+ 1

The latter equivalence holds since B is invertible, and thus B and B+s have rank n.
We next describe, how the above equivalence gives rise to a bounded first-order re-

duction from s-t-REACH to FULLMATRIXRANK. We first observe that , for graphs with
n vertices the resulting matrix has only entries in {0, . . . , n}. We can therefore repre-
sent inputs for FULLMATRIXRANK as follows by finite structures. A matrix with m
rows and columns and values in {0, . . . ,m} is represented by a structure with universe
of size m + 1, a linear order < and a ternary relation A. Thanks to <, the elements
can be identified with the numbers 0, 1, . . . ,m in a natural way. A tuple (i, j, k) ∈ A
indicates that the (i, j)-entry of A is k. If there is no (i, j, k)-tuple for some i, j, then the
(i, j)-entry has the value 0. We only consider changes of A that leave A in a semanti-
cally meaningful way, that is, for every i, j there is at most one k such that (i, j, k) ∈ A.
We note that changes in B+st that are triggered by single edge changes in G can be
applied in a way that ensures this property.

It is now easy to check that, in the presence of a linear order9, B+st can be obtained
from G by a first-order reduction that has the additional property that each entry in
B+st depends on at most one edge of G. Hence, the reduction is a bounded-first-order
reduction [Patnaik and Immerman 1997] and therefore reachability can be maintained
in DYNFO(+,×) if the problem FULLMATRIXRANK can be maintained in DYNFO(+,×).

9We can assume that the reduction has a linear order available, since it is applied in the context of
DYNFO(+,×).
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4.2. Matrix rank in DYNFO(+,×)

Next, we show the most important intermediate result for Theorem 4.1, which is in-
teresting also in its own right.

PROPOSITION 4.2. FULLMATRIXRANK ∈ DYNFO(+,×).
PROOF SKETCH. We give an informal description of the dynamic algorithm for

FULLMATRIXRANK. It can be easily transformed into a DYNFO(+,×) program. In the
following we fix m > 0 and only consider (m×m)-matrices with entries from {0, . . . ,m}.

We first show that in order to maintain whether rank(A) = m it suffices to main-
tain rankp(A) for sufficiently many small primes p. Clearly, rank(A) = m if and
only if det(A) ̸= 0. Since det(A) is bounded by m!mm, its binary representation has
O(m logm) digits (for sufficiently large m). It follows with the help of the Prime Num-
ber Theorem10 that det(A) ̸= 0 if and only if there exists a prime p ≤ m2 such that
det(A) ̸≡ 0(mod p).

Therefore, for large enough m, rank(A) = m if and only if there exists a prime p ≤ m2

such that rankp(A) = m.
In the following, we describe how rankp(A) can be maintained, for a prime p. To this

end we adapt a dynamic algorithm that has been stated in [Frandsen and Frandsen
2009]. The idea is to maintain an invertible matrix U and a matrix E in reduced row-
echelon form such that UA = E. That E is in reduced row-echelon form means that

— the leading entry, i.e., the left-most non-zero entry, in every row is 1,
— the column of such a leading entry is all-zero otherwise, and
— rows are sorted in a “diagonal” fashion, that is, for larger row numbers, the column

numbers of leading entries strictly increase.

Thanks to rank(E) = rank(UA) = rank(A) and the structure of E, it holds that
rank(A) equals the number of non-zero rows of E.

We describe next, how this information can be maintained after a change of A[i, j],
for any i, j ≤ m. Let A′ denote the new value of matrix A after this change. We explain
next, how new matrices U ′ and E′ can be obtained such that U ′A′ = E′.

After a change of A[i, j], UA′ differs from UA at most in column j. Thus, to get the
desired matrix E′ in reduced echelon form, we can proceed as follows.

(1) If column j has more than one leading entry of UA′:
— let the entry with the maximum number of successive zeros in its row (uniquely

determined) be the new leading entry,
— set this leading entry to 1, and set all other entries of column j to 0 by appro-

priate row operations.
(2) If a former leading entry of a row k is lost in column j (by the change in A or by

step (1)),
— set its new leading entry (i.e., the next non-zero entry in row k and some col-

umn ℓ > j) to 1 and set all other entries of column ℓ to 0 by appropriate row
operations.11

(3) If needed: move the (at most two) rows, for which the position of the leading entry
has changed (compared with E) to their correct positions.

An illustrating example can be found in Figure 2. The row operations mentioned above
are done by suitably adapting U . Each of the three steps can be performed in constant

10The Prime Number Theorem yields about N primes between 1 and N logN .
11Since all other columns with leading entries have only one non-zero entry, and row k has no non-zero
entries before column ℓ, these row operations do not do any harm to the echelon structure of the rest of the
matrix.
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parallel time and therefore by a DYNFO(+,×) update program Pp. It remains to com-
bine the DYNFO(+,×) programs Pp, for each prime p ≤ m2 into one update program
that performs all computations simultaneously. To this end, for each relation R that is
k-ary in each Pp there is a (k + 2)-ary relation in the full program. Each tuple comes
with two additional entries p1, p2, representing a prime ((p1 − 1) × m + p2). The pro-
gram can easily determine which pairs (p1, p2) represent actual primes, since it can
use arithmetic right from the start.
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Fig. 2. Illustration of the modifications necessary for one change in matrix A for p = 5.

4.3. DYNFO(+,×) vs. DYNFO

Since, s-t-REACH is easily seen to be domain independent, the proof sketch for Theo-
rem 4.1 can be completed by a proof sketch for the following result.

PROPOSITION 4.3. If a query Q ∈ DYNFO(+,×) is domain-independent, then
Q ∈ DYNFO.
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Etessami already observed that DYNFO programs have the same expressive power
as DYNFO(+,×) programs, if, before the actual change sequence starts, for each ele-
ment u of the universe, the edge (u, u) is inserted and afterwards deleted [Etessami
1998]. He described how these preliminary changes can be used to construct a linear
order and compatible + and × predicates on the whole universe. He also observed that,
alternatively, arithmetic can be defined incrementally, so that at any point there are re-
lations <ad, +ad and ×ad that represent a linear order on the activated domain, and cor-
responding ternary addition and multiplication relations, respectively. We show next
that by a refined technique DYNFO programs can simulate DYNFO(+,×) programs
for domain-independent queries without any form of preprocessing.

PROOF (SKETCH). Let Q be a domain-independent query and P a DYNFO(+,×)
program that maintains Q. For simplicity, we assume that Q uses only one binary
relation E, the adaptation for arbitrary structures is straightforward. We recall that
change sequences are applied to an initially empty structure, but that P uses non-
empty initial relations that provide a linear order and the corresponding addition and
multiplication relations on the full universe.

We will construct a DYNFO program P ′ that simulates P . By definition of DYNFO,
P ′ has to maintain Q under change sequences from an initially empty structure (just
as P) but with initially empty auxiliary relations (unlike P). The challenge is therefore
that P ′ cannot simply simulate P right from the beginning of the change sequence, as
it does not have <, + and × available.

We say that an element u of the universe has been activated by a change sequence
α = δ1, . . . , δℓ, if u occurs in some δi, no matter, whether an edge with u is still present
after the whole sequence α. We refer to the set of activated elements by A. The update
program P ′ maintains a linear order < on A. Whenever new elements are activated by
the insertion of a tuple t, the linear order is extended by these elements in a straight-
forward fashion. The relative order of the newly activated elements is determined by
their position in t. Also an addition relation and a multiplication relation on A is main-
tained, just as in [Etessami 1998]. Thanks to the linear order, we can assume that A
is always of the form [m], for some number m, consistent with <.

The basic idea for the construction of P ′ is to split computations of P into phases,
based on the size of A, and to let P ′ use different simulations for the different phases
of P . More precisely, we say that a computation of P on a universe U of size n is in
phase i <

√
n+ 1, if more than (i − 1)2 but at most i2 elements of U are activated. The

update program P ′ uses one simulation per phase of P and we refer to the simulation
that is responsible for phase i as the i-simulation.

For each i, the i-simulation begins as soon as i elements are activated.12 The i-
simulation stops as soon as A contains more than i2 elements. For each i, the query
result of P ′ is the query result of the simulation that is responsible for the current
phase. That is, the query result is provided by the i-simulation if more than (i − 1)2

and at most i2 elements are activated (in the simulated run of P).
When the i-simulation starts, a linear order, an addition relation and a multipli-

cation relation over [i] are available. From these relations a linear order, an addition
relation and a multiplication relation on pairs over [i] can be easily defined in first-
order logic.13 The i-simulation uses the set of pairs over [i] as universe of size i2. It

12We note that a simulation need not start at a phase border. But each simulation is responsible for one
phase.
13Technically, the addition relation over [m] is a 6-ary relation, a tuple (u1, u2, v1, v2, w1, w2) of which is
interpreted as (u1, u2) + (v1, v2) = (w1, w2).
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maintains a bijection14 gi between the activated elements of the structure with respect
to the computation of P and the pairs over [i]2, that respects the linear order. At the
start of the i-simulation, gi(k) = (0, k), for every k ∈ [i].

The actual i-simulation starts on the structure over [i]2 with empty input relations
and with the linear order and the corresponding addition and multiplication relations
over [i]2. It uses one 2k-ary auxiliary relation, for every k-ary auxiliary relation of P ,
and a 4-ary auxiliary relation E′ that corresponds to E.

As already stated, the input relation of the i-simulation is empty, when the simula-
tion starts. However, at this point the “real” input relation E might have up to i2 tuples
over [i], to which we refer as the old tuples. For each change operation δ, P ′ inserts up
to four tuples to E′ and simulates P for these four insertion steps. If δ is a deletion,
then one tuple might be deleted. More precisely, for each occurring change operation
P ′ determines the four lexicographically smallest tuples t1, . . . , t4 in E, whose image
under gi is not yet in E′, inserts gi(t1, ) . . . , gi(t4) to E′ and simulates the induced be-
havior of P on the auxiliary relations. If the change operation deletes some tuple t from
E and it holds gi(t) ∈ E′, then gi(t) is deleted from E′ and the corresponding update

operations are performed. It is easy to see that after i2

2 change operations, E′ will co-
incide with gi(E) and from this point on, the i-simulation only needs to simulate the
actual current change operation. This happens before phase i starts and therefore, the
query result provided by the i-simulation during phase i (translated via g−1

i ) will be
always correct.15

This completes the description of the i-simulations, for each i. Of course, it is not
possible to let each simulation use its own set of auxiliary relations. However, we can
simply increase the arity of each relation symbol by one and use the new entry to
indicate, for each tuple, the number of the simulation, for which it is used.

4.4. Some consequences of REACH ∈ DYNFO

From Theorem 4.1, one can infer that some other queries are in DYNFO by relatively
straightforward bounded first-order reductions.

As a first example we consider regular path queries (RPQs) on graph databases. A
graph database is basically a directed graph with edge labels from a finite16 alphabet.
A regular path query Q is just a regular expression over label names. It yields all pairs
(u, v) of a graph database for which there is a path from u to v whose sequence of
labels is in the language specified by Q. The problem of maintaining such a query can
be easily reduced to REACH as follows. Let A be an NFA for the language of Q with
initial state q0 and unique accepting state qf . Then one can construct, given a graph
database G, the synchronized product G×A of G and A; and (u, v) ∈ Q(G) holds if and
only if (v, qf ) is reachable from (u, q0) in (the unlabelled graph) G×A. Since each single
change in G only induces at most |A| changes in G × A, the reduction is bounded and
therefore, the maintainability of RPQs follows from Theorem 4.1. This easily transfers
to conjunctions of regular path queries, CRPQs. We note that further classes of query
languages for labeled graphs have been studied in the literature [Muñoz et al. 2016;
Weber and Schwentick 2007].

By a standard reduction to reachability it also follows that 2-SAT is in DYNFO.
However, the consequences of Theorem 4.1 are not fully understood yet. One might

be tempted to expect that DYNFO can maintain all queries Q that can be expressed by

14Technically, we can think of gi as a ternary relation at this point.
15For careful readers we note that for very small values of i this has to be slightly adapted.
16The set of labels actually needs not be fixed a priori. However, given a regular expression r, only labels
that occur in r are relevant for maintaining r and all other labels can be replaced by some fixed label X not
occurring in r.
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a formula with a unary transitive closure operator in front of a first-order formula ϕ.
However, even though in this case ϕ basically specifies a first-order reduction from Q
to REACH, this reduction does not need to be bounded and therefore maintainability
in DYNFO does not immediately follow.

5. INEXPRESSIBILITY RESULTS

Many queries are thus in DYNFO. It is also desirable to learn what queries are not in
DYNFO. As mentioned above, each query in DYNFO can be evaluated in polynomial
time, but we do not expect that all polynomial-time queries are in DYNFO.

There are many standard methods available that can be used to prove that a query at
hand is not expressible in first-order logic [Libkin 2004]. However, explicit lower bound
results for FO(+,×) are much harder to achieve [Arora and Barak 2009] and there
are no results of this kind for the extension of FO(+,×) by arbitrary modulo counting
quantifiers. Proposition 4.3 can be interpreted as a statement that lower bounds for
DYNFO are at least at hard as for FO(+,×). Indeed two prime examples of queries
that cannot be expressed in first-order logic, reachability and parity, can be maintained
in DYNFO. Thus the two notorious weaknesses of first-order logic, locality and the
inability to count globally, are not shared by DYNFO— and thus cannot be used to
prove inexpressibility results.

With current methods, explicit inexpressibility results for DYNFO seem out if reach.
It is thus natural to develop such methods first for fragments of DYNFO. In this sec-
tion, we give examples of such inexpressibility results for a fragment with auxiliary
relations of bounded arity and for the fragment DYNPROP in which update formulas
are quantifier-free.

The first result from [Dong and Su 1998] shows that the reachability query cannot
be maintained with only unary auxiliary relations. Since the definition of DYNFO re-
quires that the query result is always represented in one distinguished auxiliary rela-
tion “only unary auxiliary relations” means that all auxiliary relations besides this one
binary auxiliary relation are unary. The result therefore also subsumes the result men-
tioned in the introduction, that reachability cannot be maintained without auxiliary
relations (besides the query relation).

THEOREM 5.1 ([DONG AND SU 1998]). Reachability cannot be maintained in
DYNFO with unary auxiliary relations.

PROOF. Towards a contradiction assume that there is a DYNFO-program P that
maintains Reachability with one binary auxiliary relation T for storing the query re-
sult and otherwise only m unary auxiliary relations. We assume that the update rule
for T for deletions is

on delete (u, v) from E
update T (x, y) as ϕ(u, v, x, y)

for some formulaϕ of some quantifier-depth k. Let n be sufficiently large with respect
to k and m. Let G = (V,E) be a graph on n vertices which forms a directed cycle. Let S
be the state of P after insertion of the edges of E in some order (see Figure 3).

Since the transitive closure of E is V ×V , ϕ is equivalent to the formulas ϕ′ resulting
from ϕ by replacing all occurrences of T -atoms by ⊤. Clearly, ϕ′ only refers to E and
the auxiliary relations. Since n was chosen sufficiently large, there are three disjoint
paths P1, P2 and P3 in C of length 2k+1 that are isomorphic in S . Let (a1, b1), (a2, b2)
and (a3, b3) be the innermost edges of P1, P2 and P3, and assume that they occur in
this cyclic order. When deleting the edge (a2, b2), there is still a path from a3 to a1 but
no path from a1 to a3. Yet (S, a2, b2, a1, a3) |= ϕ′ if and only if (S, a2, b2, a3, a1) |= ϕ′ by
Gaifman’s Theorem [Immerman 1999]. This is the desired contradiction.
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p1 p2 p3

a1 b1 a2 b2 a3 b3

Fig. 3. Illustration of the construction in Theorem 5.1. The colors indicate the content of the unary relations.

This proof has a very “static flavor”. Starting from some state of a certain shape, a
contradiction is obtained by considering only one change operation and the proof argu-
ment can therefore use a standard inexpressibility method for first-order logic, locality.
“Static lower bound methods” have been used in several dynamic inexpressibility
results. Along similar lines as for Theorem 5.1 one can prove, e.g., that local update
languages (possibly stronger than FO) cannot maintain Reachability with unary
relations only [Dong et al. 2003], that there is a context-free language that is not in
DYNFO with unary relations [Vortmeier 2013], and that the equal cardinality of two
unary relations cannot be expressed in DYNFO in a setting with weak initializations
[Grädel and Siebertz 2012]. A further lower bound from static complexity that has
been reused in dynamic complexity is a theorem of Cai, stating that m parity functions
cannot be computed in AC0 using m − 1 help bits [Cai 1990]. It has been used by
Miltersen to obtain an arity hierarchy for DYNFO by exploiting a correspondence
between help bits and auxiliary bits 17. Unfortunately, “static methods” seem not
sufficient (as discussed above) to prove very strong dynamic inexpressibility results.
It thus seems necessary to develop more “dynamic methods” to prove inexpressibility
for non-unary fragments of DYNFO.

We next sketch such a method for DYNPROP, the quantifier-free fragment of
DYNFO. We give two applications, one of which yields a query that cannot be main-
tained in DYNPROP at all, and the other shows that REACH cannot be maintained by
DYNPROP programs with binary auxiliary relations, the currently best lower bound
for REACH with respect to arity.

The method uses a simple locality property of DYNPROP programs. When updating

an auxiliary tuple d⃗ after a change of an edge e⃗, a quantifier-free update formula only

has access to d⃗, e⃗, and the constants of the input structure. Thus, if a change operation
changes a tuple inside a substructure A of a state S, the auxiliary data of A is not
affected by any information from outside of A. In particular, two isomorphic substruc-
tures A and B remain isomorphic, when corresponding changes are applied to them.

The notion of corresponding changes is formalized as follows. Let π be an isomor-

phism from A to B. Two changes δ(⃗a) on A and δ′ (⃗b) on B are said to be π-respecting if

δ = δ′ and b⃗ = π(⃗a). Two sequences α = δ1 · · · δm and β = δ′1 · · · δ′m of changes respect
π if δi and δ′i are π-respecting for every i ≤ m. We recall that Pα(S) denotes the state
obtained by executing the dynamic program P for the change sequence α from state S.

LEMMA 5.2 ([GELADE ET AL. 2012; ZEUME AND SCHWENTICK 2015]). Let P be
a DYNPROP-program and let S and T be states of P with domains S and T . Further let
A ⊆ S and B ⊆ T such that S !A and T !B are isomorphic via π. Then Pα(S) !A and
Pβ(T )!B are isomorphic via π for all π-respecting change sequences α, β on A and B.

Here, S !A denote the substructure of S that is induced18 by A.

17[Dong and Su 1998] attributes the result to Miltersen.
18We note that induced substructures contain all constants of the input structure.
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We refer to this lemma as the Substructure Lemma.
The Substructure Lemma can be applied along the following lines to prove that a

(graph) query Q cannot be maintained in a setting with quantifier-free updates. To-
wards a contradiction, assume that there is a quantifier-free program P that main-
tains Q. Then, find

— two states S and T of P for two graphs GS and GT ,
— substructures S !A and T !B of S and T isomorphic via π, and
— two π-respecting change sequences α and β on A and B,

such that there is a tuple a⃗ over A that is contained in the query result for the graph
α(GS) but π(⃗a) is not in the result of β(GT ). This yields the desired contradiction,
since either both or neither of the tuples a⃗ and π(⃗a) are contained in the distinguished
query relations of Pα(S) and Pβ(T ) due to the Substructure Lemma.

The first example shows that the Boolean alternating reachability query is not in
DYNPROP. An alternating graph is represented by a binary edge relation E and a
unary relation A of universal nodes. Given a node t ∈ V , the set of all reachable nodes
Reach(t) is defined as the smallest set satisfying19

— t ∈ Reach(t);
— if u ̸∈ A and there is a v ∈ Reach(t) such that (u, v) ∈ E, then u ∈ Reach(t); and
— if u ∈ A and for all v ∈ V with (u, v) ∈ E, we have v ∈ Reach(t), then u ∈ Reach(t).

We consider the following P-complete problem (see, for example, [Vollmer 1999]).

Problem: ALT-REACH

Input: Alternating graph G = (V,E,A) and two nodes s and t
Question: Is s ∈ Reach(t)?

THEOREM 5.3 ([GELADE ET AL. 2012]). ALT-REACH ̸∈ DYNPROP.

PROOF. For each m ∈ N, we define a graph Gm = (Vm, Em) (see Figure 4 for an
illustration).

The vertex set Vm is the union of the following sets of nodes.

— {s, t};
— a set P of 2m nodes p1, ..., p2m;
— a set Q, consisting of one node qI , for each subset I of P with |I| = m; and
— a set R, consisting of one node rJ , for each subset J of Q.

The set A of universal nodes is just Q. The set Em contains the following edges:

— (qI , p), for each node qI of Q and each p ∈ I; and
— (rJ , q), for each node rJ of R and each q ∈ J .

Towards a contradiction, we assume that there is a DYNPROP-program P for
ALT-REACH with p auxiliary relations of maximal arity ℓ. Let m be chosen sufficiently
large with respect to p and ℓ, and let A,P,Q,R be the sets of vertices of Gm as defined
above.

We note that |Q| =
(

2m
m

)

≥ 2m, for large enough m, and therefore |R| = 2|Q| ≥ 22
m

.
For each r ∈ R, let Ur be the set {s, t, r} ∪ P of size 2m+ 3, and let Or be the linear

order on Ur defined by s < t < r < p1 < · · · < p2m. The number of different structures

19We note that this is a backward reachability.
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Fig. 4. An illustration of the graph Gm. Full edges represent edges from Gm; Gr
m and Gr

′

m result from Gm

by inserting the dashed edges and one of the dotted edges, respectively.

(with respect to isomorphism) with a domain of size 2m+3, a linear order and at most

p relations of maximal arity ℓ ≥ 2 is bounded by 2(p+1)·(2m+3)ℓ , which is strictly smaller
than 22

m

, for sufficiently large m.
Let S be the state of P after insertion of all edges of Gm. Due the above reasoning,

since |R| ≥ 22
m

, there must be two different nodes r, r′ ∈ R for which S ! Ur and
S ! Ur′ are isomorphic under the isomorphism which maps r to r′ and is the identity
otherwise.20

Let J, J ′ ⊆ Q with r = rJ and r′ = rJ′ . Since J ̸= J ′ we can assume without loss
of generality that there is a set I = {pi1 , ..., pim} such that qI ∈ J but qI ̸∈ J ′. Let Gr

m
be the graph resulting from inserting the edges (s, r) and (pi1 , t), . . . (pim , t) into Gm

and Gr′

m be the graph resulting from inserting the edges (s, r′) and (pi1 , t), . . . (pim , t)
into Gm. Let Sr and Sr′ denote the states of P after insertion of these edges, respec-
tively. By the semantics of alternating reachability, s ∈ Reach(t) with respect to Gr

m,

but s ̸∈ Reach(t) with respect to Gr′

m. However, the Substructure Lemma guarantees

that Sr !Ur and SR′

!Ur′ are isomorphic and therefore, the update formula for the query
relation of P yields the same query result in both states, the desired contradiction. The
construction is illustrated by Figure 4.

The proof of the following result is similar in spirit.21

THEOREM 5.4 ([ZEUME AND SCHWENTICK 2015]). Reachability cannot be main-
tained in binary DYNPROP.

PROOF. Towards a contradiction assume that a dynamic program P with quantifier-
free update formulas and binary auxiliary schema maintains the dynamic s-t-
reachability query. We choose numbers n and n′ such that n′ is sufficiently large with
respect to the size of the auxiliary schema and n is sufficiently large with respect to n′.
Consider the graph G

def
= (V,E) defined as follows. Let V

def
= {s, t} ' A 'B where B is a

set of size n and A is of size 2n. We associate with every subset X ⊆ B a unique vertex

20The orders Or are only needed to make sure that the isomorphism works in exactly this way.
21Its presentation closely follows [Zeume and Schwentick 2015].
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Tk:
s

t

aX1
aXk

aXℓ

b1 bi1−1 bi1 bi1+1 bi2−1 bi2 bi2+1 bk bk+1 bik−1 bik bik+1 bℓ

Tℓ:
s

t

aX1
aXk

aXℓ

b1 bi1−1 bi1 bi1+1 bi2−1 bi2 bi2+1 bk bk+1 bik−1 bik bik+1 bℓ

Fig. 5. The structure S′ from the proof of Theorem 5.4 with highlighted isomorphic substructures Tk and Tℓ.

aX from A in an arbitrary fashion. The graph has an edge (b, t) for all b ∈ B as well as
an edge (aX , b) for every subset X of B and every b ∈ X .

Let S be a state of P with G as underlying structure. Our plan is to find two sets
X,X ′ such that X ! X ′ ⊆ B and the restriction of S to {s, t, aX′} ∪ X ′ contains an
isomorphic copy of S restricted to {s, t, aX} ∪ X . Then the Substructure Lemma will
easily give us a contradiction as follows. Consider the two change sequences β1 and β2:

(β1) Deleting edges (aXk
, b1), . . . , (aXk

, bk) and adding an edge (s, aXk
).

(β2) Deleting edges (aXℓ
, bi1), . . . , (aXℓ

, bik) and adding an edge (s, aXℓ
).

Applying β1 to G yields a graph in which t is not reachable from s, whereas applying
β2 yields a graph in which t is reachable from s. Yet, the substructures induced by
{s, t, aX′}∪X ′ and {s, t, aX}∪X in the corresponding states are still isomorphic due to
the Substructure Lemma. This is a contradiction.

For finding the sets X and X ′ we employ two well-known combinatorial techniques;
a Ramsey-like argument and Higman’s Lemma.

Let ≺ be an order on B. Since |B| is large with respect to n′, a Ramsey-like theorem
for structures can be employed to obtain a subset B′ ⊆ B of size n′ such that all
tuples (b1, b2) ∈ B′ × B′ with b1 ≺ b2 have the same type in S. Let b1 ≺ . . . ≺ bn′ be an
enumeration of the elements of B′ and let Xi

def
= {b1, . . . , bi}, for every i ∈ {1, . . . , n′}.

Let Si denote the restriction of S to Xi∪{s, t, aXi}. For every i, we construct a word wi

of length i that has a letter for every node in Xi and captures all relevant information
about those nodes in Si. More precisely, wi

def
= σ1

i · · ·σi
i , where for every i and j, σj

i is
the binary atomic type of (aXi , bj).

Since B′ is sufficiently large with respect to the size of the auxiliary schema, Hig-
man’s Lemma can be employed to find k and ℓ such that k < ℓ and wk is a subse-
quence of wℓ, that is wk = σ1

kσ
2
k . . .σ

k
k = σi1

ℓ σi2
ℓ . . .σik

ℓ for suitable numbers i1 < . . . < ik.
Define Tk

def
= S ′

k ! Tk where Tk = {s, t, aXk
, b1, . . . , bk} and Tℓ

def
= S ′

ℓ ! Tℓ where
Tℓ

def
= {s, t, aXℓ

, bi1 , . . . , bik}. We refer to Figure 5 for an illustration of the substructures
Tk and Tℓ of S ′. It is straightforward to show that Tk ≃π Tℓ, where π is the isomorphism
that maps s and t to themselves, aXk

to aXℓ
and bj to bij for every j ∈ {1, . . . , k}.

Thus X and X ′ can be chosen as {b1, . . . , bk} and {bi1 , . . . , bik}, respectively.

For inexpressibility proofs with the Substructure Lemma, the challenge is to find
well-behaved isomorphic structures. Several combinatorial techniques have been em-
ployed to find such structures. A similar counting argument as in the proof of Theo-
rem 5.3 has been used to show that Reachability is not in DYNPROP for a restricted
initialization in [Zeume and Schwentick 2015]. We have seen an application of com-
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bining the Substructure Lemma with Ramsey’s Theorem and Higman’s Lemma in the
proof that Reachability is not in binary DYNPROP. Finally, in [Zeume 2014], upper and
lower bounds for Ramsey numbers have been used to establish an arity hierarchy for
DYNPROP for queries on graphs under insertions, by showing that (k + 2)-Clique is
not in k-ary DYNPROP. We conjecture that the same approach can be used to prove an
arity hierarchy for DYNPROP for graph queries (under insertions and deletions).

For very small fragments also some purely dynamic ad-hoc proof techniques have
been used [Hesse 2003b; Zeume and Schwentick 2014].

The biggest future challenge for determining the power of dynamic programs is
to come up with new tools and methods for proving inexpressibility for larger frag-
ments of DYNFO. The potential of the two approaches described above, the reuse of
static techniques and the Substructure Lemma, seems to be exhausted. For instance,
even though an extension of the Substructure Lemma can be employed to prove inex-
pressibility for the slight extension of DYNPROP with unary auxiliary functions, it has
been argued in [Zeume 2014] that inexpressibility proofs for binary functions require
new ideas. Several alternative approaches for proving non-expressibility for larger
fragments of DYNFO, for instance Ehrenfeucht-Fraissé games and diagonalization-
based approaches, have been explored by various researchers. Unfortunately the lower
bounds proved with those approaches are not very strong so far. Yet we hope they yield
better lower bounds in the future. We refer to [Zeume 2015] for a more detailed discus-
sion. In [Grädel and Siebertz 2012] a combination of locality and dynamic techniques
has been used to show inexpressibility results in a setting with arbitrary initial input
structures and restricted initialization of auxiliary structures.

6. SOME FURTHER TOPICS IN DYNAMIC COMPLEXITY

As mentioned in the introduction, this article is not meant as a comprehensive survey.
However, in this section, we mention a few other research directions with an emphasis
on such directions to which the authors of this article contributed.

Maintainability Results. Although the reachability query has been the main ob-
ject of study in Dynamic Complexity, other graph queries have been investigated as
well. Previous work on undirected graph reachability lead to dynamic programs for
spanning forests, 2-colorability, and the binary distance query in undirected graphs
[Dong and Su 1998; Grädel and Siebertz 2012; Patnaik and Immerman 1997]. Tree
isomorphism can be maintained with first-order updates as well [Etessami 1998].

The maintainability of formal languages has been studied as well. Already Patnaik
and Immerman observed that regular languages and Dyck languages can be main-
tained22 in DYNFO [Patnaik and Immerman 1997]. Hesse showed that the regular
languages can be even maintained in DYNQF [Hesse 2003b]. In [Gelade et al. 2012]
the dynamic complexity of regular language was pinpointed exactly: a formal lan-
guage can be maintained in DYNPROP if and only if it is regular. We note that this
is also an inexpressibility result, since it shows that every non-regular language is not
in DYNPROP. They also showed that all context-free languages can be maintained in
DYNFO; and that certain context-free languages can be maintained in DYNQF. The
maintenance of path queries in labeled graphs is closely related.

The Fine Structure of DYNFO. As described in Section 3, various dynamic complex-
ity classes can be obtained by varying the update formalism, the arity of the auxil-
iary relations and the initialization mechanism. Higher arity of auxiliary relations
indeed increases the expressive power of dynamic programs with first-order updates

22We note that in the study of formal languages, the set of positions and its underlying order is fixed. The
change operations can insert a symbol at a position or delete it (leaving the position empty).
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[Dong and Su 1998] on arbitrary structures. For the quantifier-free fragment an arity
hierarchy for graph queries has been established under insertions [Zeume 2014]. An
extensive study of syntactical restrictions of first-order updates from a database theo-
retical point of view has been performed in [Zeume and Schwentick 2015]. This study
considered, besides DYNPROP and DYNQF, the following kinds of restrictions:

— Restrictions of the quantifier structure in update formulas: DYN∃∗FO and
DYN∀∗FO;

— Restricted database query languages based on (unions of) conjunctive queries:
DYNCQ and DYNUCQ;

— Their quantifier-free restrictions: DYNPROPCQ, DYNPROPUCQ;
— Classes resulting from ∆-semantics of update formulas, indicated by a prefix ∆−.

Although one could have expected that these many different restrictions induce a com-
plicated graph of relationships, it turned out that they are all neatly stacked in a linear
hierarchy.

Dynamic versus Static Complexity Theory. Besides the relationship of dynamic
complexity classes among each other, also the relationship to classical static com-
plexity classes has been investigated, and several connections have been estab-
lished [Etessami 1998; Patnaik and Immerman 1994]. All first-order definable prop-
erties can be maintained using existential first-order updates (though with FO-
initialization only) [Zeume and Schwentick 2014] and all existential first-order prop-
erties are in DYNQF. Further there are (artificial) PTIME-complete problems
and natural LOGCFL-complete problems in DYNFO [Patnaik and Immerman 1994;
Weber and Schwentick 2007].

Analyzing dynamic programs, e.g. checking satisfiability of a dynamic program, is
of course not easier than analyzing first-order formulas, and therefore undecidable
in general. Many static analysis problems remain undecidable for very restricted dy-
namic programs [Schwentick et al. 2015].

7. PERSPECTIVES

Many questions remain open and we can only hint at some of them.
We have seen in Section 4 that the maintainability of the reachability query can

be used to show other maintainability results. This might be possible for algorithmic
problems from other areas as well, e.g., from Model Checking [Kähler and Wilke 2003],
Program Analysis [Lev-Ami et al. 2009, 2007], or Knowledge Representation.

As mentioned before, every problem that is reducible to reachability under bounded
first-order reductions can be maintained in DYNFO. It is an interesting question
to what extent the boundedness requirement can be weakened. This question is
strongly related to the question, whether the reachability query can be maintained
under more complex change operations that can change more than one tuple (or a
constant number of tuples). Complex change operations were already discussed in
[Patnaik and Immerman 1994], but a systematic study is still missing as of yet.

Complex change operations could help to make the algorithms found in Dynamic
Complexity more applicable. Another step in that direction could be the development
of a “dynamic programming language”.

Another line of research that suggests itself is which other algorithmic problems
from Linear Algebra can be maintained in DYNFO and in which ways they can be
used to maintain other queries.

Last but not least, the machinery for inexpressibility proofs needs to be further de-
veloped. Proving that the reachability query is not in DYNPROP seems not completely
out of reach [sic!].
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