
COM

COMPLEXITY COLUMN

NEIL IMMERMAN, University of Massachusetts Amherst

immerman@cs.umass.edu

Some of my favorite open problems concern fixed-point logic with counting, FPC. It is

known that counting logic with k + 1 variables, Ck+1, has exactly the same expressive

power as the classic k-dimensional Weisfeiler-Leman Algorithm, k-WL. Furthermore,

the quantifier-depth of a Ck+1 formula needed to express the color of a k-tuple of ver-

tices is equal to the number of iterations of k-WL needed to derive that color.

Much has been learned about FPC and the power of k-WL in the last forty years; but

the most important mysteries remain. Sandra Kiefer’s column guides us through some

of the beautiful new results in her thesis. In particular, she settles to within one the

number of variables needed to characterize planar graphs in counting logic: either 3 or

4. The best previously known bound was that 15 variables suffice. She also sketches the

proof of a generalization of this result, showing that the number of variables needed

to characterize graphs of genus, g, is at most 4g + 4.

ACM SIGLOG News 4 July 2020, Vol. 7, No. 3

The Weisfeiler-Leman Algorithm:
An Exploration of its Power

Sandra Kiefer, RWTH Aachen University

More than half a century after its first formulation, the Weisfeiler-Leman (WL) algorithm is still an impor-
tant combinatorial technique whenever graphs or other relational structures are to be classified. However,
despite its simple algebraic description and its variety of applications, we still lack a precise understanding
of the expressive power of the algorithm.

This column introduces the reader to the basic concepts of the WL algorithm and discusses its dimension
as a parameter to capture the structural complexity of an input graph. Specifically, I present a survey of work
regarding the WL dimension conducted with my co-authors. First, I outline the proof that the 3-dimensional
WL algorithm (3-WL) is able to identify every planar graph. The proof version presented here relies on
strong insights about the ability of 2-WL to decompose graphs. Afterwards, I highlight the most important
ingredients of the generalisation of our bound to graphs that are parameterised by their Euler genus.

Further details as well as a study of other aspects of the WL algorithm can be found in my dissertation
[Kiefer 2020].

1. INTRODUCTION
The Colour Refinement procedure and its generalisation to higher dimensions, the
Weisfeiler-Leman (WL) algorithm, are powerful combinatorial tools to classify graphs
and other relational structures. The algorithm first appeared in the literature more
than half a century ago (see, for instance, [Morgan 1965]), but, as very recent publica-
tions show, it is still widely used and studied both in theoretical and practical computer
science (see, for example, [Fuhlbrück et al. 2020; Grohe et al. 2020]). Most notably,
Babai employs a high-dimensional variant of it in his quasipolynomial-time graph iso-
morphism algorithm [Babai 2016].

The general concept behind the WL algorithm is simple and intuitive: given an input
graph, assign colours to the vertices that encode, in an isomorphism-invariant way,
structural information about the roles of the vertices in the surrounding graph. These
colours are computed in iterations, taking into account previously computed colours.
Considering this very natural approach to classifying vertices in graphs, it may come
as a surprise that there are still numerous open questions regarding the power of the
algorithm.

Persistent interest in it has led to the discovery of many links of the WL algorithm
to seemingly unrelated areas. For example, there is a precise correspondence between
the algorithm and a fragment of first-order logic with counting as well as a certain
type of Ehrenfeucht-Fraı̈ssé game. Also, a recently discovered connection to machine
learning shows that the Colour Refinement procedure captures graph neural networks
with respect to their expressive power [Morris et al. 2019].

ACM SIGLOG News 5 July 2020, Vol. 7, No. 3

In the graph isomorphism context, the algorithm is usually applied to two input
graphs in parallel in order to decide whether they are isomorphic. Distinct colours
of two vertices imply that there is no isomorphism mapping one to the other. Thus, a
colour occuring in the first graph but not in the second implies that they are not isomor-
phic. Therefore, the graphs are always non-isomorphic when they result in different
computed colourings. In fact, for almost all graph pairs, it suffices to run Colour Re-
finement on the two graphs in parallel and use the computed colours to decide whether
the graphs are isomorphic or not [Babai et al. 1980].

The first main parameter of the algorithm with direct links to other areas is its num-
ber of iterations until termination. The number of iterations needed to distinguish two
non-isomorphic graphs from each other corresponds to the quantifier depth of a distin-
guishing formula in the counting logic fragment C

2 (see [Krebs and Verbitsky 2015]).
As recently discovered, the maximum number of iterations of the Colour Refinement
procedure on graphs of order n is either n� 2 or n� 1 [Kiefer and McKay 2020].

However, there are very small examples of non-isomorphic pairs of graphs which
the Colour Refinement procedure simply fails to distinguish. To render the expressive
power of the algorithm more powerful, i.e. to enable it to distinguish more graphs,
one can apply a higher-dimensional variant of it. Instead of colouring the vertices, the
k-dimensional WL algorithm (k-WL) colours vertex k-tuples. In fact, 1-WL is Colour
Refinement, whereas 2-WL colours arcs, i.e. ordered pairs of vertices. No tight bounds
on the number of iterations of higher-dimensional variants of the WL algorithm are
known: for all k � 2, the best known lower bound on the iteration number of k-WL
on graphs of order n is ⌦(n) [Fürer 2001]. Concerning upper bounds, only for k = 2,
significant progress has been made [Kiefer and Schweitzer 2019], the currently best
upper bound on the number of iterations of 2-WL being O(n log n) [Lichter et al. 2019].

Having introduced k-WL, the dimension of the algorithm can be regarded as the
second main parameter with close correspondences in other areas. For example, 2-WL
is closely connected to the concept of coherent configurations [Evdokimov and Pono-
marenko 2000]. In general, the dimension of the WL algorithm that is necessary and
sufficient to distinguish a graph from every other graph is exactly one less than the
number of variables needed to define the graph in the counting logic C [Cai et al. 1992].
Therefore, it is a measure for the inherent descriptive complexity of the graph.

As shown by Cai, Fürer, and Immerman, to describe graphs on n vertices via C-
formulae, ⌦(n) variables are necessary [Cai et al. 1992]. Thus, no fixed dimension of
the WL algorithm suffices to decide graph isomorphism in general. Still, it makes per-
fect sense to study the dimension needed to solve the graph isomorphism problem
restricted to certain graph classes. A graph class G has WL dimension at most k if k-
WL distinguishes every graph in G from every non-isomorphic second graph [Grohe
2017]. We say k-WL identifies the graph. A finite WL dimension of a graph class yields
a polynomial-time isomorphism test for the class (which, however, is mostly of theoret-
ical relevance due to high memory consumption and running time).

For some natural graph classes, their WL dimensions have been determined. For
instance, the graph class whose WL dimension is 1 is well-understood [Kiefer et al.
2015; Arvind et al. 2017] and includes, in particular, forests. For other graph classes,
their WL dimensions are at least known to be finite. Most notably, every graph class
that excludes some graph as a minor has a finite WL dimension [Grohe 2017]. However,
for many of the interesting graph classes, no explicit bounds on the WL dimension are
known and, typically, the asymptotic ones derived from the proofs of the finiteness
cannot be assumed to be anywhere near tight (see, for example, [Grohe 2000; 2012]).

In this column, I consider the class of planar graphs and present the major ingredi-
ents of the proof of the following theorem.

ACM SIGLOG News 6 Vol. 7, No. 3, July 2020

THEOREM 1.1. [Kiefer et al. 2019] The WL dimension of the class of planar graphs

is either 2 or 3.

This bound was obtained in joint work with Ilia Ponomarenko and Pascal Schweitzer
and significantly improved over the previously best upper bound of 14 [Grohe 1998;
Redies 2014]. The proof presented here uses results from a collaboration with Daniel
Neuen to strengthen the insights about the WL algorithm. More precisely, to prove
the bound, we reduce the case of general planar graphs to 3-connected ones. For this
reduction to work in the given context, we need to show that it can actually be per-
formed by 3-WL. Very surprisingly, it turns out that even 2-WL is able to implicitly
decompose a graph into its 3-connected components, which then suffices to conclude
the reduction. We finally solve the problem for 3-connected planar graphs by applying
a very powerful theorem due to Tutte [Tutte 1963].

Afterwards, I give an overview of how Theorem 1.1 can be generalised to graph
classes that are parameterised by their Euler genus. The generalisation is stated in
the following result.

THEOREM 1.2. [Grohe and Kiefer 2019a] The WL dimension of the class of graphs

of Euler genus g is at most 4g + 3.

In the following two sections, I introduce the WL algorithm and its dimension in
more detail. Section 4 treats the reduction from general to 3-connected graphs. Section
5 applies the insights from Section 4 to prove Theorem 1.1. In Section 6, I generalise
the results to graphs of arbitrary Euler genus to obtain Theorem 1.2. I conclude with
a summary and a discussion of possible future projects in Section 7.

2. THE WL ALGORITHM
This section formally defines the WL algorithm, applied to graphs as input. We always
assume graphs to be undirected, i.e. their edges are subsets of size 2 of the vertex set.
Still, in the considered edge colourings, we allow the two orientations of an edge to
have different colours.

We start off with a presentation of 1-WL, more commonly known as the Colour Re-

finement procedure.

2.1. Colour Refinement
Proceeding in iterations, Colour Refinement computes a so-called stable colouring of
the vertex set of its input graph. In every iteration, it reassigns to a vertex the mul-
tiset of colours of its neighbours from the previous iteration until the vertex partition
induced by the colours is not refined anymore. In the following, we use the notation
N(v) for the set of neighbours of the vertex v. We generally use the letter � for colour-
ings computed by the WL algorithm and use � for arbitrary colourings. We refer to the
coloured graph the WL algorithm is applied to as well as its dimension in the index.
(However, since these parameters are often unambiguous, we mostly skip in our nota-
tion whatever is clear from the context. In particular, since the input colouring � will
always be clear or irrelevant, we omit it in the index.)

Definition 2.1 (Colour Refinement). Let � : V (G) ! C, where C is some set of
colours, be a vertex colouring of a graph G. The colouring computed by Colour Refine-
ment on input (G,�) is defined recursively: we set �0

G,1 := �, i.e. the initial colouring
is �. For i 2 N, the colouring �i

G,1 computed by Colour Refinement after i iterations
on G is defined as

�i

G,1(v) :=
�
�i�1
G,1(v),

��
�i�1
G,1(w)

��w 2 N(v)
 �

.

ACM SIGLOG News 7 Vol. 7, No. 3, July 2020

That is, �i

G,1(v) consists of the colour of v from the previous iteration as well as
the multiset of colours of neighbours of v from the previous iteration. For a colouring
� : V (G) ! C, denote by ⇡(�) the vertex partition induced by �. It is not difficult to
see that the reassignment refines the previous colouring. Therefore, there is a unique
minimal integer j such that ⇡(�j

G
) is as fine as ⇡(�j+1

G,1). For this value j, we define the
output of Colour Refinement on input G to be �G,1 := �j

G,1.
Colour Refinement can be implemented to run in time O((m+n) log n), where n is the

order of the input graph and m is the number of its edges (see, for example, [Cardon
and Crochemore 1982; McKay 1981; Paige and Tarjan 1987]). Figure 1 displays an
application of Colour Refinement to a path. Note that the information of being adjacent
to a vertex of a “special” colour is propagated to the centre of the path and then the
algorithm terminates.

1st

2nd

3rd

4th

5, ...

Fig. 1: The iterations of Colour Refinement when applied to an uncoloured path of
length 8.

For two graphs G and G0, Colour Refinement distinguishes G and G0 if the multisets
of colours in the images of �G,1 and �G0,1 are distinct. If the graphs are not distin-
guished by Colour Refinement, we call them equivalent with respect to Colour Refine-
ment. The algorithm identifies G if it distinguishes G from every other, non-isomorphic
graph G0. The definition of the algorithm is isomorphism-invariant, i.e. the output only
depends on the isomorphism class of the input graph. Thus, whenever Colour Refine-
ment distinguishes two graphs from each other, they are non-isomorphic.

The simplest example of two graphs that are indistinguishable by 1-WL is formed by
a monochromatic hexagon and the disjoint union of two monochromatic triangles, i.e.
two 2-regular graphs on six vertices each: every vertex has exactly two neighbours and
all vertices have the same colour. However, although the algorithm fails on such basic
graphs, it is not difficult to see that 1-WL identifies, for example, every vertex-coloured
forest. Much more strongly, on almost all graphs G, the colouring computed by Colour
Refinement after two iterations is discrete on V (G), i.e. every vertex obtains a unique
colour in the final colouring (which implies graph identification, as is not difficult to
see) [Babai et al. 1980].

ACM SIGLOG News 8 Vol. 7, No. 3, July 2020

In the next subsection, we generalise the introduced concepts to vertex tuples in-
stead of single vertices.

2.2. Higher Dimensions of the WL Algorithm
Suppose k 2 N. To define k-WL, we need some additional notions. An edge-coloured

graph (G,�) is a graph G with a function � :
�
(u, u) | u 2 V (G)

[
�
(u, v) | {u, v} 2

E(G)

! C, where C is some set of colours. For the colouring �, we assume that the set

of colours of loops and the set of colours of other arcs are disjoint, that is, we have
�
�(u, u) | u 2 V

\
�
�(u, v) | u 6= v, {u, v} 2 E(G)

= ;.

The atomic type of a vertex k-tuple ū = (u1, . . . , uk) of a vertex- or edge-coloured
graph (G,�) is the set of all atomic facts satisfied by these vertices. That is, ū =

(u1, . . . , uk) and v̄ = (v1, . . . , vk) have the same atomic type if and only if the mapping
ui 7! vi is an isomorphism from the induced coloured subgraph G[{u1, . . . , uk}] to the in-
duced coloured subgraph H[{v1, . . . , vk}].1 We denote the atomic type of ū := (u1, . . . , uk)

in (G,�) by atp(G,�, ū). Note that, for k = 1, the atomic type of a vertex v in a vertex-
coloured graph (G,�) simply consists of �(v). For k � 2, the atomic type atp(G,�, ū) can
be encoded as a (k ⇥ k)-matrix M with

Mij =

8
<

:

(0,�
�
ui, ui)

�
, if ui = uj

(1,�
�
ui, uj)

�
, if (ui, uj) 2 E(G), ui 6= uj

(2,?), if (ui, uj) /2 E(G), ui 6= uj .

We describe the colourings �i

G,k
computed by k-WL on input a coloured graph (G,�).

(Again, � will always be unambiguous and we omit it in the index.) The colouring �0
G,k

assigns to each tuple its atomic type:

�0
G,k

(ū) := atp(G,�, ū).

For i 2 N0, the colouring �i+1
G,k

computed in the (i+ 1)-st iteration is defined via

�i+1
G,k

(ū) :=
�
�i

G,k
(ū),Mi(ū)

�
,

where, for ū = (u1, . . . , uk), the multiset Mi(ū) is defined as
���

�i

G,k
(u1, . . . , uk�1, v),�

i

G,k
(u1, . . . , v, uk), . . . ,�

i

G,k
(v, u2, . . . , uk)

� �� v 2 V (G)

if k � 2, and Mi(ū) :=
��
�i

G,k
(w)

��w 2 N(ū)

if k = 1. Note that, for k = 1, the definition
coincides with the one for Colour Refinement from Section 2.1.

For i 2 N0, let ⇡i

G,k
be the partition induced by �i

G,k
on (V (G))

k. Just as for Colour
Refinement, ⇡i+1

G,k
refines ⇡i

G,k
and hence, there is some minimal integer j such that

⇡j

G,k
= ⇡j+1

G,k
. For this value j, we call �j

G,k
the stable (k-tuple) colouring of G and denote

it by �G,k.
For k > 1, the algorithm k-WL takes as input an edge-coloured graph (G,�) and

computes �G,k. For k = 1, we assume input graphs are only vertex-coloured, see Sec-
tion 2.1. A bound on the running time of k-WL is O(nk+1

log n), where n is the order of
the input graph [Immerman and Lander 1990].

If the graph G or the dimension k is clear from the context, we omit it in the sub-
scripts of � and ⇡. Distinction, equivalence, and identification of graphs with respect to

1For the reader not familiar with this notion, the subgraph of G induced by a set of vertices V
0 ✓ V (G) is

the graph G[V 0] with V (G[V 0]) := V
0 and E(G[V 0]) := E(G) \ {{u, v} | u, v 2 V

0}.

ACM SIGLOG News 9 Vol. 7, No. 3, July 2020

k-WL are defined analogously as for 1-WL. See [Kiefer 2020] for a detailed introduction
to k-WL.

2.3. Connections to Logic and Games
Even though the description of the WL algorithm is simple, as soon as its dimension is
larger than 2, it becomes difficult to understand how the colourings computed by the
algorithm evolve during its execution and which information they precisely encode.
Already arguing that two vertex tuples obtain different or equal colours in the stable
colouring becomes cumbersome. Luckily, Cai, Fürer, and Immerman found precise cor-
respondences between the algorithm and two other areas from theoretical computer
science, namely logics and games, which we briefly discuss in the following [Cai et al.
1992]. Besides these connections, the WL algorithm has links to plenty of other fields
(see, for example, [Atserias and Maneva 2013; Grädel et al. 2019; Grohe and Otto
2015]).

Counting Logics. A very fruitful connection of the WL algorithm exists to logics (see
also [Grohe 2017]). Denote by C the extension of first-order logic FO by counting quan-

tifiers of the form 9
�mx with the obvious meaning. C has the same expressive power

as FO. Nevertheless, the situation changes when considering the fragments C
k, which

consist of all C-formulae with at most k distinct variables (which can, however, be
reused): if m > k, then 9

�mx cannot be expressed in the k-variable fragment of FO.
We write '(x1, . . . , x`) to indicate that the free variables of ' are among x1, . . . , x`.

Then for a graph G and vertices u1, . . . , u` 2 V (G), we write G |= '(u1, . . . , u`) to denote
that G satisfies ' if, for all i, the variable xi is interpreted by ui.

A graph G is definable in a logic L if there is an L-sentence isoG such that for every
graph H, it holds that

H |= isoG () G ⇠= H.

As we will see, determining the dimension of the WL algorithm that is necessary and
sufficient to identify a particular graph is equivalent to counting how many distinct
variables are necessary and sufficient to define the graph in C.

Before stating the precise correspondence between the WL algorithm and C, we treat
a second link of the algorithm, which is often helpful when arguing about its power.

Pebble Games. The following is a type of Ehrenfeucht-Fraı̈ssé game that captures the
evolution of the colours computed by the WL algorithm when applied to two graphs.

Let k 2 N. For graphs G and H with equal numbers of vertices and vertex colour-
ings � and �0, respectively, we define the bijective k-pebble game BPk(G,H) as follows
(see also [Hella 1996]). The game is played by the players Spoiler and Duplicator. It
proceeds in rounds, each of which is associated with a pair of configurations (v̄, w̄)

with v̄ 2
�
V (G)

�` and w̄ 2
�
V (H)

�`, where ` 2 {0, . . . , k}. If not specified otherwise, the
initial configuration is a pair of empty tuples.

In the following, we describe one round of the game. Suppose the current configu-
ration is (v̄, w̄) =

�
(v1, . . . , v`), (w1, . . . , w`)

�
with ` 2 {0, . . . , k}. Now Spoiler picks an

i 2 {1, . . . , k}. Then Duplicator chooses a bijection f : V (G) ! V (H) and Spoiler picks
a vertex v 2 V (G) and defines w := f(v). If i `, the new configuration of the game is
the tuple

�
(v1, . . . , vi�1, v, vi+1, . . . , v`), (w1, . . . , wi�1, w, wi+1, . . . , w`)

�
.

Otherwise, the new configuration is
�
(v1, . . . , v`, v), (w1, . . . , w`, w)

�
.

ACM SIGLOG News 10 Vol. 7, No. 3, July 2020

Let
�
(v1, . . . , v`0), (w1, . . . , w`0)

�
denote the new configuration. Recall that `0 k must

hold. Now Spoiler wins the play (after the current round) if there is an i 2 {1, . . . , `0}
such that �(vi) 6= �0

(wi), or there are i, j 2 {1, . . . , `0} such that vi = vj ,/ wi = wj

or {vi, vj} 2 E(G) ,/ {wi, wj} 2 E(H). That is, Spoiler wins if the induced ordered
subgraphs of G and H are not isomorphic. Otherwise, the game continues with the
next round. If there is no configuration of the play such that Spoiler wins, i.e. if the
game continues forever, then Duplicator wins.

The interpretation of a configuration
�
(v1, . . . , v`), (w1, . . . , w`)

�
is that ` distinguish-

able pairs of pebbles are placed on the vertices, the i-th pair being positioned on vi
and wi.

We say that Spoiler (and Duplicator, respectively) wins the game BPk(G,H) if Spoiler
(and Duplicator, respectively) has a strategy to win the game.

Recalling the definition of the counting logics, we can now phrase the correspondence
between the WL algorithm, logics, and games.

THEOREM 2.2 ([CAI ET AL. 1992; IMMERMAN AND LANDER 1990]). Let k 2 N0.

Let G and H be graphs, possibly vertex-coloured, with |V (G)| = |V (H)|, and suppose

ū := (u1, . . . , uk) 2
�
V (G)

�k
and v̄ := (v1, . . . , vk) 2

�
V (H)

�k
. Then the following are

equivalent:

(1) �G,k(ū) = �H,k(v̄)

(2) G |= '(ū) () H |= '(v̄) holds for all C
k+1

-formulae '(x1, . . . , xk).

(3) Duplicator wins the game BPk+1(G,H) with the initial configuration (ū, v̄).

In fact, the connection is even more precise: if G and H are not equivalent with re-
spect to k-WL, then the number of iterations of the algorithm needed to distinguish G
and H is exactly one less than the quantifier depth of a distinguishing C

k+1-formula
and also one less than the number of rounds that Spoiler needs to win against Dupli-
cator in the pebble game BPk+1(G,H).

3. THE WL DIMENSION
The WL algorithm can be used to detect the non-isomorphism of two given graphs
by computing the stable colourings and rejecting if there is a colour c such that the
numbers of c-coloured vertex tuples in the two graphs differ. However, even if the
stable colourings agree in all colours, the graphs might not be isomorphic. In the light
of this phenomenon, Grohe introduced the notion of the WL dimension of a graph as a
measure for its inherent structural complexity (see [Grohe 2017, Definition 18.4.3]).

Definition 3.1. Let G be a graph. The WL dimension of G is the smallest k 2 N
such that k-WL identifies G. Similarly, for a class G of graphs, its WL dimension is the
smallest k 2 N such that every graph in G has WL dimension at most k, and 1 if no
such k exists.

By the correspondence stated in Theorem 2.2, we obtain the following insight, which
will prove to be very useful when determining bounds on the WL dimension of a graph
class.

COROLLARY 3.2. A graph has WL dimension at most k if and only if it is definable

in C
k+1

.

An upper bound of n � 1 on the WL dimension of a graph with n vertices follows
straight from its definition, e.g. via the correspondence to pebble games. Therefore, for
a graph class that contains up to isomorphism only finitely many graphs, an upper

ACM SIGLOG News 11 Vol. 7, No. 3, July 2020

bound on its WL dimension can be obtained easily. However, this task can become
much more challenging when considering graph classes that contain infinitely many
different isomorphism types.

The class of all graphs has WL dimension 1 (see [Cai et al. 1992]). Nevertheless,
the situation may be different when restricting the input to come from a particular
subclass of graphs: if one of the input graphs has certain structural properties, these
might be exploited by the algorithm when comparing it with other graphs, possibly
from outside the class.

Suppose we intend to determine the WL dimension of a graph class that is heredi-
tary, i.e. closed under taking induced subgraphs. Then, as the following lemma states,
we can restrict ourselves to the connected graphs in the class. This is easy to see,
since 2-WL can detect reachability of one vertex from another.

LEMMA 3.3. Let G be a hereditary graph class and suppose k � 2. If every connected

graph in G has WL dimension at most k, then the WL dimension of G is at most k.

For the further reductions we are going to perform when trying to determine the WL
dimension of certain graph classes, the following property will become important.

Definition 3.4. Let H be a set of graphs and let k 2 N. We say that k-WL deter-

mines (vertex) orbits on H if for every pair of edge-coloured graphs (G,�), (G0,�0
) with

G,G0
2 H and all vertices v 2 V (G) and v0 2 V (G0

), the following holds: there exists an
isomorphism from (G,�) to (G0,�0

) mapping v to v0 if and only if �G,k(v) = �G0,k(v0).

It is not difficult to see that if k-WL determines vertex orbits on H, then it also
distinguishes every pair of non-isomorphic graphs in H from each other.

4. REDUCTION FROM GENERAL TO 3-CONNECTED GRAPHS
In the next section, we show an upper bound on the WL dimension of planar graphs.
By Lemma 3.3, once we accept WL dimension at least 2, it suffices to restrict the
analysis to connected planar graphs, since the class of planar graphs is hereditary.
In general, decomposing a graph into components of higher connectivity is a powerful
combinatorial tool when dealing with graphs whose structure as a whole is too com-
plex. For example, the decomposition of a graph into its 2-connected components is
isomorphism-invariant and has a tree structure. A similar statement holds for the de-
composition of a graph G into its “3-connected components”, which are minors and not
necessarily subgraphs of G. With respect to the identification of graphs, the canonical
decompositions and the tree structure allow to reduce the general problem to the one
for 3-connected graphs via an inductive approach.

We intend to follow this path in order to identify general planar graphs. Note that
one can expect the problem to become significantly simpler when the input graph can
be assumed to be 3-connected, additionally to being planar. Indeed, in that case, by
a powerful result due to Whitney, we know that the plane embedding of the graph
is combinatorially unambiguous [Whitney 1932]. However, the challenging part about
the outlined plan is that, in order to obtain a strong upper bound on the WL dimen-
sion of planar graphs, the decomposition must be implicitly performed by a very low
dimension of the WL algorithm, since we are not allowed to exceed its power.

In this section, we revisit aspects of graph decompositions into 2- and 3-connected
components. We apply the insights in Section 5 in order to distinguish planar graphs
with 3-WL.

The results presented in the following two subsections were obtained in collabora-
tion with Ilia Ponomarenko and Pascal Schweitzer. The detailed proofs can be found in
[Kiefer et al. 2019]. The contents of Subsection 4.3 are based on joint work with Daniel

ACM SIGLOG News 12 Vol. 7, No. 3, July 2020

S1
S2

S3

K K 0

G?

S1
S2

S3

K K 0

GS1
> GS3

>GS2
>

Fig. 2: Schematic illustrations of G? and GS

>. In the 2-connected graph on the left,
the 2-separators are depicted and the respective decomposed graphs are shown on the
right.

Neuen. I refer to [Kiefer and Neuen 2019a] and the full version [Kiefer and Neuen
2019b] for proof details.

4.1. Graph Decompositions
For k 2 N, a graph G is k-connected if G has more than k vertices and for all X ✓ V (G)

with |X| < k, the graph G�X is connected. (Here, G�X := G[V (G)\X].) A k-separator

of G is a set S ✓ V (G) with |S| = k for which there are vertices u, v 2 V (G) \ S that
belong to the same connected component of G, but to different connected components
of G � S. 1-separators are also called cut vertices. Define P (G) as the set consisting of
the tuples (S,K), where S is a separator of G of minimum cardinality and K is the
vertex set of a connected component of G� S.

We define a partial order on P (G) by setting

(S,K) (S0,K 0
) () K ✓ K 0.

Under the aforementioned assumptions for G, this partial order is well-defined.
Let P0(G) be the set of minimal elements of P (G) with respect to . If G is connected
but not 3-connected, the elements of P0(G) correspond to the leaves in a suitable de-
composition tree (i.e. the decomposition into 2- or 3-connected components).

In the following, we present a method to remove the vertices appearing in the second
component of elements from P0(G) in a canonical way, which will then let us devise an
inductive isomorphism test. In the next two subsections, we show that, surprisingly,
already 2-WL implicitly performs this induction, yielding a reduction from general to
3-connected graphs.

For a graph G and a set S ✓ V (G), let GS

> be the graph with vertex set

V 0
:= S [

[

(S,K)2P0(G)

K

and edge set E0 := E(G[V 0
])[{{s, s0} | s, s0 2 S and s 6= s0}, see Figure 2 left and bottom

right.

ACM SIGLOG News 13 Vol. 7, No. 3, July 2020

For an edge colouring � of G, we define an edge colouring �S

> for GS

> by setting

�S

>(v1, v2) :=

8
<

:

(0, 0) if {v1, v2} ✓ S and {v1, v2} /2 E(G)

(�(v1, v2), 1) if {v1, v2} ✓ S and {v1, v2} 2 E(G)

(�(v1, v2), 2) otherwise.

If G is a vertex-coloured graph with vertex colouring �0, in order to obtain a colouring
for GS

>, define an edge colouring � as �(v1, v2) := �0
(v1) and let �S

> be as above.
For (S,K) 2 P0(G), let G(S,K)

> := GS

>[S [K]. We associate with G(S,K)
> a colour-

ing �(S,K)
> , the restriction of �S

> to pairs (v1, v2) with v1, v2 2 S [K.
Given a graph G, let G? (see Figure 2 left and top right) be the graph with vertex

set

V? := V (G) \

✓ [

(S,K)2P0(G)

K

◆

and edge set
E? := E(G[V?]) [

�
{s1, s2} | 9(S,K) 2 P0(G) s.t. s1, s2 2 S, s1 6= s2

.

If G is not 2-connected, then G? = G[V?] holds. If G is not 3-connected and satisfies
certain degree conditions (see [Kiefer et al. 2019, Lemma 3]), then G? is a minor of G.

In the following, we restrict ourselves to graphs that are not 3-connected. Given an
edge colouring � of G, define an edge colouring �? of G? as follows. Assume that v1, v2 2

V (G?), possibly with v1 = v2. Let S := {v1, v2}.
If S is a 2-separator of G, but S /2 E(G), set

�?(v1, v2) :=
⇣
0, ISOTYPE

⇣�
GS

>,�
S

>
�
(v1,v2)

⌘⌘
.

Furthermore, if v1 = v2 or {v1, v2} 2 E(G), set

�?(v1, v2) :=
⇣
�(v1, v2), ISOTYPE

⇣�
GS

>,�
S

>
�
(v1,v2)

⌘⌘
,

where the expression ISOTYPE((GS

>,�
S

>)(v1,v2)) denotes the isomorphism class of the
coloured graph (GS

>,�
S

>)(v1,v2) obtained from the coloured graph (GS

>,�
S

>) by individu-
alising the vertices v1 and v2, i.e. by assigning to each of them a unique colour (which
therefore identifies the vertex).

If not stated otherwise, we implicitly assume that for a graph G with initial colour-
ing �, the corresponding graph G? is a coloured graph with initial colouring �?. The
following lemma implies that the described colourings maintain all information that
is necessary to determine the isomorphism class of the original graph G. For the proof,
see [Kiefer et al. 2019, Lemma 4].

LEMMA 4.1. For k 2 {1, 2}, if G and G0
are k-connected graphs that are not (k + 1)-

connected and that are of minimum degree at least
3k�1

2 with edge colourings � and �0
,

respectively, then

(G,�) ⇠= (G0,�0
) () (G?,�?) ⇠= (G0

?,�
0
?).

4.2. Reduction to 2-Connected Graphs
With the insights obtained about decompositions of graphs, we can now state a reduc-
tion from general to 2-connected graphs.

THEOREM 4.2. Let G be a hereditary graph class. If, for k � 2, it holds that k-

WL distinguishes every two non-isomorphic 2-connected vertex-coloured graphs (G,�)

ACM SIGLOG News 14 Vol. 7, No. 3, July 2020

and (G0,�0
) with G,G0

2 G from each other, then k-WL distinguishes all non-isomorphic

vertex-coloured graphs in G.

The following are the basic insights to prove the theorem.

THEOREM 4.3. Assume k � 2 and let G and G0
be two graphs. Let u and v be

vertices from the same 2-connected component of G and let u0
and v0 be vertices that are

not contained in a common 2-connected component of G0
. Then �k

G
(u, v) 6= �k

G0(u0, v0).

COROLLARY 4.4. Let k � 2 and assume G and G0
are connected graphs. Suppose

that w 2 V (G) and w0
2 V (G0

) are vertices such that G�{w} is connected and G0
�{w0

}

is disconnected. Then �k

G
(w) 6= �k

G0(w0
).

The proof of the theorem uses the ability of 2-WL to count for every ` the walks
(i.e. paths with possible vertex repetitions) of length ` between two given vertices.
Intuitively, in the corresponding game BP3 with three pebble pairs, we can use two
pebble pairs to mark u and u0 as well as v and v0. If there is an ` 2 N such that the
numbers of walks from u to v and from u0 to v0 differ, we can use the third pebble pair
to spot this difference. Otherwise, we can use it to mark a cut vertex w0 between u0

and v0 and a vertex w 2 V (G) that is not a cut vertex and show that, now counting
walks to w and w0, respectively, will yield a difference.

To see that the theorem implies the corollary, note that 2-WL can distinguish w
and w0 because w0 has neighbours u0 and v0 that do not share a 2-connected component,
but there are no such neighbours for w.

Knowing that 2-WL distinguishes vertex pairs that share a 2-connected component
from other vertex pairs and also assigns special colours to cut vertices, we can now
sketch the proof of Theorem 4.2.

PROOF SKETCH FOR THEOREM 4.2. Recall that, by Lemma 3.3, it suffices to con-
sider connected graphs. From Theorem 4.3 and Corollary 4.4, it can be deduced that
for connected graphs G and G0 which are not 2-connected and vertices v 2 V (G?)
and w 2 V (G0

)\V (G0
?), it holds that �G,2(v) 6= �G0,2(w). This means, informally speak-

ing, that the algorithm detects heights of vertices in the decomposition tree. Moreover,
using Theorem 4.3, it also “sees” 2-connected components of vertices in the decomposi-
tion tree.

We can then deduce that, for every cut vertex s which occurs in a first component in
P0(G), i.e. that is at the “bottom level” in the decomposition tree, the colour that 2-WL
computes for s in G encodes the isomorphism class of the subtree of the decomposition
tree rooted at s. This implies that the partition of the vertices and edges of G? induced
by the restriction of �G,2 to pairs of vertices from V (G?) ✓ V (G) is at least as fine
as �G?,2.

Now the theorem follows by induction. Indeed, suppose the input consists of two
vertex-coloured input graphs (G,�) 6⇠= (G0,�0

) of equal order. If |V (G)| + |V (G0
)| = 2,

then the statement is trivial. Otherwise, if at least one of the graphs is 2-connected,
the statement follows from the assumptions of the theorem and Corollary 4.4. If nei-
ther of G and G0 is 2-connected, Lemma 4.1 yields that (G?,�?) 6⇠= (G0

?,�
0
?). By

the induction hypothesis, since G? and G0
? are smaller than G and G0, 2-WL dis-

tinguishes (G?,�?) and (G0
?,�

0
?). Thus, since 2-WL recognises whether a vertex be-

longs to V (G?) and V (G0
?), respectively, and the colourings computed on (G,�) and

(G0,�0
) refine �G?,2 and �G

0
?,2 on the domains of those, 2-WL also distinguishes (G,�)

and (G0,�0
).

ACM SIGLOG News 15 Vol. 7, No. 3, July 2020

By Theorem 4.2, in particular, a bound on the WL dimension needed to distinguish
every pair of 2-connected planar graphs also gives a bound on the dimension needed
to distinguish arbitrary planar graphs from each other.

4.3. Reduction to 3-Connected Graphs
In this subsection, the aim is to push the reduction from the previous subsection fur-
ther and show that, to find bounds on the WL dimension of a (minor-closed) graph class,
it suffices to consider the edge-coloured versions of the 3-connected graphs in the class.
Put in other words, we will see that 2-WL implicitly computes the decomposition of a
graph into its 3-connected components.

The following theorem states the reduction we outline in this subsection. Note that
it requires the determination of vertex orbits instead of just distinguishability.

THEOREM 4.5. Let G be a minor-closed graph class and assume k � 2. Suppose k-

WL determines vertex orbits on the class of 3-connected graphs in G. Then k-WL distin-

guishes all non-isomorphic edge-coloured graphs in G.

Although technically more involved, for k � 3, the proof of Theorem 4.5 works simi-
larly as the one for Theorem 4.2 and details can be found in [Kiefer et al. 2019].

The proof that the statement in the theorem also holds when k = 2 is quite lengthy
and described in more detail in [Kiefer and Neuen 2019b]. We outline it in the re-
mainder of this section. Analogously as in the previous subsection, we show that 2-WL
implicitly computes the decomposition tree of a graph that is 2-connected but not 3-
connected into its 3-connected components. Under certain assumptions, which we can
make, these components are actually minors (not necessarily subgraphs) of the input
graph. Also, the separators are now pairs of vertices instead of single cut vertices.
Therefore, for a statement analogous to the one in Corollary 4.4, we need to show
that 2-WL distinguishes 2-separators from other pairs of vertices. This is a surprising
fact: recall that, in order to show Theorem 4.3, we used the possibility to mark a cut
vertex with a third pebble pair. However, now there are no cut vertices and in order
to create one artificially, we have to “block” a vertex contained in a 2-separator, which
will then make the second vertex in the pair a cut vertex. But for this, we need an
additional pebble pair. Thus, the game is played with 4 pebble pairs and yields only
insights about 3-WL. So we cannot take this route.

Instead, in [Kiefer and Neuen 2019a], we perform a structural analysis of all n-
vertex graphs. We consider their �2-colours and reduce the general case to the case of
at most two different �2-colours. Finally, we obtain the following insight.

THEOREM 4.6. Suppose k � 2. Let G and H be connected graphs. Assume

{w1, . . . , wk} ✓ V (G) is a k-separator in G. Let {v1, . . . , vk} ✓ V (H) and suppose

�G,k(w1, . . . , wk) = �H,k(v1, . . . , vk). Then {v1, . . . , vk} forms a k-separator in H.

Knowing that 2-WL assigns special colours to 2-separators in 2-connected graphs,
we can then proceed similarly as outlined in the proof sketch for Theorem 4.2 to show
that, in fact, 2-WL implicitly computes the entire decomposition tree of a 2-connected
graph that is not 3-connected into its 3-connected components. By induction, this yields
Theorem 4.5.

5. THE WL DIMENSION OF PLANAR GRAPHS
This section constitutes the last part of the proof of Theorem 1.1. Again, I refer to the
full version for more details on the presented results and their proofs [Kiefer et al.
2019].

By the reduction stated in Theorem 4.5, to show that 3-WL distinguishes all planar
graphs from each other, it now suffices to show that the algorithm determines vertex

ACM SIGLOG News 16 Vol. 7, No. 3, July 2020

orbits on the class of 3-connected planar graphs. To this end, we show that, typically,
there is a way to individualise two vertices u, v so that an application of 1-WL to the
obtained coloured graph G(u,v) yields a discrete colouring. That is, when two suitable
vertices are assigned unique vertex colours, then the stable colouring computed by
Colour Refinement on the graph will assign a unique colour to every vertex. All graphs
in which this is not possible will be called exceptions and we treat them separately.

Definition 5.1. We call a graph G an exception if G is a 3-connected planar graph
in which there are no two vertices v, w in G such that �G(v,w),1 is a discrete colouring.

The following lemma is a translation of a theorem by Tutte to the context of the WL
algorithm.

LEMMA 5.2. Let G be a 3-connected planar graph and let v1, v2, v3 be vertices of G.

If v1, v2, v3 lie on a common face, then �G(v1,v2,v3),1 is a discrete colouring.

PROOF. Let v1, v2, v3 be vertices of a common face of G. For v 2 V (G), we set d(v) :=
|N(v)|. Choose µ0 : V (G) ! R2 such that µ0(v1) = (0, 0), µ0(v2) = (1, 0), µ0(v3) = (0, 1),
and µ0(v) = (1, 1) for every v 2 V (G) \ {v1, v2, v3}. For i 2 N0, define µi+1 recursively by
setting

µi+1(v) =

(
1

d(v)

P
w2N(v) µi(w) if v /2 {v1, v2, v3},

µi(v) otherwise.

Then, by Tutte’s Spring Embedding Theorem (see [Kobourov 2013, Section 12.3]), the
recursion converges to a planar embedding of G [Tutte 1963]. In particular, from a
certain i on, the map µi is injective.

Recall that we write �i

G,k
for the colouring computed by the k-dimensional WL algo-

rithm after i iterations on input G. We show that for all i 2 N0 and every two vertices v
and v0, it holds that

µi(v) 6= µi(v
0
)) �i

G(v1,v2,v3),1
(v) 6= �i

G(v1,v2,v3),1
(v0).

We proceed by induction in i. For i = 0, the statement holds by the definition
of µ0 and since v1, v2, and v3 have unique colours in G(v1,v2,v3). For the induction
step from i > 0 to i + 1, if µi+1(v) 6= µi+1(v0), this implies that

P
w2N(v) µi(w) 6=P

w02N(v0) µi(w0
). Thus, also the following multiset inequality holds:

{{µi(w) | w 2 N(v)}} 6= {{µi(w
0
) | w0

2 N(v0)}}.

Hence, by induction,
{{�i

G(v1,v2,v3),1
(w) | w 2 N(v)}} 6= {{�i

G(v1,v2,v3),1
(w0

) | w0
2 N(v0)}}.

Therefore, by Definition 2.1, it holds that �i+1
G(v1,v2,v3),1

(v) 6= �i+1
G(v1,v2,v3),1

(v0).
Now the fact that from some i on, the map µi is injective implies that �i

G(v1,v2,v3),1

and hence also �G(v1,v2,v3),1 is a discrete colouring.

The translation of Tutte’s Theorem to the context of the WL algorithm allows us to
deduce the following.

COROLLARY 5.3. 4-WL determines vertex orbits on the class of 3-connected planar

graphs.

PROOF. Let G be an edge-coloured 3-connected planar graph and let n := |G|. Then
by Lemma 5.2, there are vertices v1, v2, v3 such that �G(v1,v2,v3),1 is discrete, since the

ACM SIGLOG News 17 Vol. 7, No. 3, July 2020

additional edge colouring can only refine the stable colouring of the uncoloured graph.
This implies that the multiset C := {{�G,4(v1, v2, v3, x) | x 2 V (G)}} contains n differ-
ent colours. Let H be a second edge-coloured graph. If H contains vertices v01, v

0
2, v

0
3

such that {{�H,4(v01, v
0
2, v

0
3, x

0
) | x0

2 V (H)}} = C, then G and H are isomorphic
via an isomorphism that maps v1 to v01. Otherwise, the colour �4

G
(v1, v2, v3, v3) is for

all v01, v02, v03 2 V (H) different from �4
H
(v01, v

0
2, v

0
3, v

0
3), which implies that the sets of ver-

tex colours computed by 4-WL in G and H are disjoint.

In fact, since the graph H is not required to be planar, the proof of the corollary
implies that 4-WL also identifies edge-coloured 3-connected planar graphs.

Together with Theorem 4.5, we thus obtain an upper bound of 4 on the WL dimension
of the class of planar graphs. To move it down to 3, the strategy is to get by with
individualising just two vertices u and v in the statement of the corollary. Whenever
such an individualisation enables 1-WL to assign a unique colour also to a third vertex
that lies on a common face with u and v, we can apply Lemma 5.2. Assuming this is not
possible, the graph is an exception (cf. Definition 5.1). Figure 3 on the following page
displays the collection of exceptions, analysed in detail in [Kiefer et al. 2019]. Since the
collection is very restricted, a thorough case-by-case analysis shows then that, also on
all exceptions, 3-WL determines vertex orbits. Hence, 3-WL distinguishes all planar
graphs from each other. In fact, again, the arguments we use in the full version of the
proof do not require the second graph to be planar. Therefore, applying Theorem 4.5,
we obtain Theorem 1.1.

6. GENERALISATION TO GRAPHS OF ARBITRARY EULER GENUS
Having proved an almost-tight upper bound on the WL dimension of the class of all
planar graphs, we now intend to generalise this result to more complex graph classes.
More precisely, we consider classes parameterised by their Euler genus. By the clas-
sification theorem for surfaces (see [Mohar and Thomassen 2001, Theorem 3.1.3]),
up to homeomorphism, which is the topological notion for equivalence, every surface
falls into either the family (Sk)k�0 of orientable surfaces or the family (N`)`�1 of non-
orientable surfaces. The sphere S0, the torus S1, and the double torus S2 are the first
three orientable surfaces, and the projective plane N1 and the Klein bottle N2 are
the first two non-orientable surfaces. We can thus define the Euler genus eg(S) of a
surface S as 2k if S is homeomorphic to the orientable surface Sk, and ` if S is homeo-
morphic to the non-orientable surface N`. The Euler genus of a graph G is the smallest
number g such that G is embeddable (that is, can be drawn without edge crossings) in
a surface of Euler genus g. See Figure 4 for an example.

The bound presented in the previous section holds for the class of planar graphs,
which is the class of graphs embeddable in the sphere S0. In this section, we establish
bounds for graphs embeddable in an arbitrary surface. More formally, we show Theo-
rem 1.2, i.e. that every graph of Euler genus g has WL dimension at most 4g + 3. This
result constitutes the first explicit parameterisation of the WL dimension of a graph by
its Euler genus. It was obtained in collaboration with Martin Grohe and the presented
contents were published in [Grohe and Kiefer 2019a] (see also the full version [Grohe
and Kiefer 2019b]).

To show Theorem 1.2, we use the correspondence from Theorem 2.2 and prove that
every graph of Euler genus g is definable in C

4g+4. We follow an inductive approach: if
the Euler genus is 0, the graph is planar and we can use the results from the previous
section. If the Euler genus is higher, the surface will contain a non-contractible curve
yielding a so-called non-contractible cycle in the embedded graph. Removing the curve
results in surfaces of smaller Euler genus. Thus, removing the cycle yields a graph of
smaller Euler genus, for which we have a bound on the needed number of variables

ACM SIGLOG News 18 Vol. 7, No. 3, July 2020

bipyramid tetrahedron triakis tetrahedron

cube (hexahedron) tetrakis hexahedron rhombic dodecahedron

icosahedron

octahedron triakis octahedron

Fig. 3: The 3-connected planar graphs that constitute exceptions.

ACM SIGLOG News 19 Vol. 7, No. 3, July 2020

Fig. 4: Embedding of K5 into the torus S1.

by induction. In [Grohe and Kiefer 2019a], we show that the removal of the cycle costs
4 variables. Note that, if we start with an orientable surface, the removal of the non-
contractible curve will never yield a non-orientable surface. Hence, the Euler genus
reduces by at least 2. This yields the following corollary.

COROLLARY 6.1. The WL dimension of the class of graphs embeddable in an ori-

entable surface of Euler genus g is at most 2g + 3.

The remainder of this section is dedicated to an outline of the proof of Theorem 1.2.
We start by revisiting some topological concepts. For a more detailed introduction, I
refer to [Grohe and Kiefer 2019a] and [Kiefer 2020].

We write topological spaces with bold-face letters. For a topological space X and a
subset Y ✓ X, the boundary of Y in X is the set of all points x 2 X such that every
neighbourhood of x has a nonempty intersection with both Y and X \Y.

A simple curve in a topological space is a homeomorphic image of the real inter-
val [0, 1]. Similarly, a simple closed curve is a homeomorphic image of S1. A topological
space X is arcwise connected if for any two points x, y 2 X, there is a simple curve in X
with endpoints x and y.

A closed disk is a homeomorphic image of {x 2 R2
| kxk 1} equipped with the

usual topology, and an open disk is a subspace of R2 homeomorphic to R2. A simple
closed curve g in a surface S is contractible if it is the boundary of a closed disk in S,
otherwise g is non-contractible. If g is non-contractible, we obtain one or two surfaces
of smaller Euler genus by cutting the surface along g and gluing a disk onto each of
the obtained holes.

The vertices of a graph embedded in a surface S are points in S, and the edges are
simple curves connecting the vertices without edge crossings. Suppose G is a graph
embedded in S. A non-contractible cycle in G is a cycle C, i.e. a path with identical end
vertices, in G such that C is a non-contractible simple closed curve in S. We denote
by G the subset of S consisting of all points that are vertices or contained in an edge
of G. We say that an abstract graph G0 is embeddable in a surface S if it is isomorphic
to (the underlying graph of) a graph embedded in S.

A graph G is polyhedrally embedded in a surface S if G is embedded in S, 3-
connected, and every non-contractible simple closed curve g ✓ S intersects G in at
least three points. Just like 3-connected graphs embedded in a plane, polyhedrally
embedded graphs have nice properties, which we will exploit here.

To proceed via induction, we will use the correspondence from Theorem 2.2: we in-
tend to show that, in order to define graphs of Euler genus g, we need only at most 4
more variables than for defining a graph of smaller Euler genus. This will then yield
the factor 4 from Theorem 1.2.

ACM SIGLOG News 20 Vol. 7, No. 3, July 2020

If g = 0, the graph is planar and the statement follows from Theorem 1.1.
Suppose g � 1. Using the reduction to 3-connected graphs stated in Theorem 4.5,

in the full version [Grohe and Kiefer 2019b], we show that it suffices to prove the
following.

LEMMA 6.2. Suppose g � 1 and that there is an s � 4 such that every graph of

Euler genus smaller than g can be defined in C
s
. Let G be a coloured graph that is

polyhedrally embedded in a surface S of Euler genus g. Then G is definable in C
s+3

.

To show the lemma, we consider two cases as explained in detail below. The goal in
the simpler case is to prove that, roughly speaking, fixing just 3 vertices, we can define
a subgraph of G whose embedding contains a non-contractible cycle and express how
the subgraph is attached to the remainder of the graph. Since the latter is embeddable
in a surface of smaller Euler genus and therefore, by the assumptions of the lemma,
definable with s variables, we can define the entire graph G with s+ 3 variables.

The full proof of this informal statement is technically involved. Therefore, we limit
ourselves to a presentation of the very basic building blocks and the main structure of
the proof. The subgraph which we “cut out” is a so-called necklace, a complex structure
which even makes an explicit reference to the embedding of the graph. However, since
the graph G is just embeddable and not actually embedded, this reference is in its
nature highly problematic for the definability of the necklace in C. In order to obtain
something definable, we need to base the necklace construction on definable objects as
well. It turns out that shortest paths serve very well as these objects.

Definition 6.3. Let G be a graph and u, u0
2 V (G). A shortest path system (sps)

from u to u0 is a family Q of shortest paths in G from u to u0 such that every shortest
path from u to u0 in the subgraph

S
Q2Q Q is contained in Q.

We let V (Q) :=
S

Q2Q V (Q) and E(Q) :=
S

Q2Q E(Q) and G(Q) :=
�
V (Q), E(Q)

�
=S

Q2Q Q.
The vertices in

T
Q2Q V (Q), i.e. the vertices that lie on every shortest path from u

to u0 in Q, are the articulation vertices of Q. An articulation vertex v is proper if v 6= u
and v 6= u0.

For all u, u0
2 V (G) such that there is a path from u to u0 in G, the canonical sps

from u to u0
in G is the set QG

(u, u0
) of all shortest paths from u to u0 in G.

In order to make sure that the final definable object (the necklace) contains a non-
contractible cycle, we must restrict our further analysis to special shortest path sys-
tems.

Definition 6.4. A patch in G is an sps Q in G such that:

— Q has no proper articulation vertices.
— There is a closed disk D ✓ S such that G(Q) ✓ D.

As indicated above, patches look highly non-definable in C because they make ex-
plicit reference to a specific embedding of G. However, it turns out that, once we are
guaranteed that G does not contain a certain type of patch, then this intuition is wrong:
in this case, we can define the subgraph contained in a patch. That is, the subgraph
becomes independent of the precise embedding of the graph G. We now describe the
type of patch whose existence must be excluded for this way of proceeding to work.

We call a subgraph H ✓ G simplifying if every connected component of G \ H :=

G� V (H) has Euler genus at most g � 1. Otherwise, H is non-simplifying.

ACM SIGLOG News 21 Vol. 7, No. 3, July 2020

u
0

u

A
⇤

Fig. 5: A patch and some attached connected components. The red component A⇤ rep-
resents the unique non-planar connected component attached to the patch.

A patch Q is simplifying if the graph G(Q) is. Maybe surprisingly, non-simplifying
patches can be easier to handle than simplifying ones. The reason is the following
result, which, informally stated, allows to define the “outside” of the patch.

LEMMA 6.5 ([GROHE 2017], COROLLARY 15.3.5). For every non-simplifying sub-

graph H ✓ G, there is exactly one connected component A⇤
of G \H such that A⇤

does

not have Euler genus smaller than g, and all other connected components are planar.

Figure 5 displays a schematic view of a non-simplifying patch with its attached con-
nected components. Note that by Definition 6.4, the connected component A⇤ must be
embedded outside of the embedded patch, due to its own non-planarity. Thus, we can
use A⇤ to mark the outside of the patch and to show that, in fact, the planar sub-
graph contained inside the embedded patch is definable in our logic. Consequently,
non-simplifying patches can be combined to construct more complex definable struc-
tures, as we will see.

We are ready to prove Lemma 6.2 via a case distinction.

Case 1: G does not contain any simplifying patches
In this case, we use non-simplifying patches to form the aforementioned necklaces,
which we define next.

Definition 6.6. A necklace in G is a tuple B := (u0,Q0, u1,Q1, u2,Q2
), where

u0, u1, u2
2 V (G) and Q

i
= Q

G
(ui, ui+1

) (indices taken modulo 3) is the canonical sps
from ui to ui+1, such that the following conditions are satisfied for every i 2 {0, 1, 2}:
— u0, u1, u2 are pairwise distinct.
— V (Q

i
) \ V (Q

i+1
) = {ui+1

} (indices modulo 3).
— There is a disk Di

✓ S such that G(Q
i
) ✓ Di.

A necklace B := (u0,Q1, u1,Q2, u2,Q3
) is reducing if there are paths Qi

2 Q
i such

that B := Q1
[Q2

[Q3 is a non-contractible cycle.
We can think of a reducing necklace as a necklace around a handle or a crosscap of

our surface, the beads of the necklace being the disks of the patches. Figure 6 shows a
necklace on a torus with articulation vertices u0, u0

1, u1, u2.
LEMMA 6.7 (NECKLACE LEMMA). Suppose G is a graph polyhedrally embedded in

a surface S of Euler genus g � 1 and that G does not contain any simplifying patches.

Then G has a reducing necklace.

ACM SIGLOG News 22 Vol. 7, No. 3, July 2020

u1

u0

u2

u0
1

Fig. 6: A necklace on a torus section.

Knowing that G has a reducing necklace, we can proceed as follows. First, we fix a
reducing necklace B = (u0,Q1, u1,Q2, u2,Q3

). (To this end, since the Q
i are canonical

sps, it is sufficient to fix u0, u1, u2.) We are going to define a subgraph Cut(B) that is
obtained from G by “cutting through the beads”. More precisely, since the necklace is
reducing, there is a non-contractible simple closed curve through the necklace, yielding
a non-contractible cycle. We can then remove a certain definable supergraph of the
cycle to obtain the cut graph Cut(B). Thus, every connected component of Cut(B) is
embeddable in the surface(s) obtained from cutting S along the non-contractible closed
curve and therefore has smaller Euler genus. We can hence define Cut(B) in C

s using
the induction assumption. We then show that the remaining parts of G can be encoded
in vertex colours for Cut(B) such that we can reconstruct G.

To prove that G is definable in the logic C
s+3, we need to show that every second

graph Ĝ that satisfies the same C
s+3-sentences as G is isomorphic to G. We use the

fact that the necklace B is definable in G by C
4-formulae using the three parameters

u0, u1, u2 and define, based on B, the cut graph Cut(B). Since Cut(B) has a smaller
Euler genus, by the induction assumption, there is a C

s-formula that defines it as
an uncoloured graph. We use the additional 3 variables to be able to refer to u0, u1, u2,
which is equivalent to individualising these vertices. A thorough analysis then enables
us to construct a C

s+3-formula cut-isoG that defines the graph Cut(B)(u0,u1,u2) in G,
together with all vertex colours that encode how the necklace B is attached to the cut
graph and therefore allow to reconstruct G.

The formulae for B and Cut(B) identify some objects B̂ and Cut(B̂) in Ĝ. We call those
objects a pseudo-necklace and a pseudo-cut graph. Using cut-isoG, we know that the
coloured versions of Cut(B) and Cut(B̂) are isomorphic. Since we can reconstruct G and
Ĝ from the respective (pseudo-)cut graphs, we conclude that G and Ĝ are isomorphic.

Case 2: G contains a simplifying patch
At first sight, this case sounds simpler than the first one: we could just remove the
simplifying patch instead of a complicated necklace, and the remaining pieces have
smaller Euler genus and thus can be identified in the logic C

s. However, we need to
make sure not to lose information about the way the pieces are attached to each other.
That is, we need to guarantee that we can reconstruct the original graph G. The prob-
lem is that simplifying patches have a much more complicated structure than non-
simplifying patches. For example, we cannot define the inside of a simplifying patch

ACM SIGLOG News 23 Vol. 7, No. 3, July 2020

in the same way as we did for non-simplifying patches, since there is not necessarily a
non-planar connected component that marks the “outside region”. Therefore, the idea
of the proof is to remove the canonical sps and some interior parts of the corresponding
patch, which actually turn out to be definable.

More precisely, we fix two vertices u and u0 such that Q := Q
G
(u, u0

) is a mini-
mal simplifying canonical patch in G, that is, a simplifying patch all of whose proper
subpatches are non-simplifying. We extend Q by the interior graphs of all proper sub-
patches and obtain a graph J , which is embedded in the disk of Q and therefore planar.

Now we distinguish between two cases. If J � {u, u0
} is connected, the patch Q be-

haves almost like a non-simplifying patch, and we can argue similarly as in Case 1.
If J � {u, u0

} is disconnected, the patch Q can be split into several so-called fibres. The
subgraph J contained in the fibres is definable after fixing one additional particular
vertex. In fact, the subgraph contained in every single fibre is definable. We exploit this
in order to encode in the boundary vertices of the fibres the way in which the remain-
der of the graph is attached to them, similarly as in Case 1, but due to the possibly
complex structure of J a lot more involved.

7. OUTLOOK
After an introduction to the central concepts of the WL algorithm, this column has
given an overview of recent results concerning improved bounds on the WL dimension
of the class of planar graphs and, more generally, the classes of graphs parameterised
by a bound on their Euler genus. More precisely, we showed that the WL dimension
of the class of planar graphs is either 2 or 3 (see Theorem 1.1) and provided a linear
parametrisation with good constants of the WL dimension of a graph by its Euler
genus (see Theorem 1.2). To obtain these results, we used insights about the ability
of 2-WL, 3-WL, and higher dimensions of the WL algorithm to detect substructures
in graphs. For example, 2-WL can detect 2-separators in graphs, which implies that it
can implicitly compute the decomposition of a graph into its 3-connected components.
Also, 3-WL identifies all 3-connected planar graphs and even determines vertex orbits
on them.

A goal for future work would be to determine the precise WL dimension of the class
of planar graphs. Note that, by Theorem 4.5, it would suffice to show that 2-WL deter-
mines vertex orbits on all 3-connected planar graphs and identifies them. Even without
identification, it would be major progress to know that 2-WL distinguishes all pairs of
3-connected planar graphs. However, it remains widely open to find, similarly as the
one in Figure 3, a useful characterisation of the graphs on which individualising a sin-
gle vertex and applying Colour Refinement afterwards does not yield a discrete vertex
colouring. The collection of such graphs will be much bigger than the set of excep-
tions depicted in Figure 3 and it is unclear how the new exceptions could be identified
by 2-WL.

To show that the WL dimension of the class of planar graphs is 3, one would have to
find pairs of non-isomorphic planar graphs that are equivalent with respect to 2-WL.
The classical construction for such difficult graphs is the one described by Cai, Fürer,
and Immerman in [Cai et al. 1992]. However, already for very low vertex degrees, the
construction yields non-planar graphs and can therefore only be of restricted use in
the given context.

If 2-WL turns out to identify all planar graphs, the additive constant 4 in the bound
from Theorem 1.2 can be replaced with a 3, since C

3 corresponds to 2-WL. Also, by
refining the arguments in [Grohe and Kiefer 2019b], it might be possible to bring the
constant factor in the statement of the theorem down to 3 or 2. However, without

ACM SIGLOG News 24 Vol. 7, No. 3, July 2020

substantial new ideas, it seems impossible to obtain a better bound than 2g + 3 on the
WL dimension of graphs of Euler genus g.

Concerning lower bounds on the WL dimension in terms of the Euler genus, with
the construction described in [Cai et al. 1992], it is not difficult to prove a bound of " ·g,
albeit with a small constant factor ". It remains open how to narrow the gap between
this lower and the explicit upper bound presented in this column.

Instead of the Euler genus, one can also find parametrisations of the WL dimension
by other graph invariants. By the graph minor theory due to Robertson and Seymour,
for every surface, the graphs embeddable in the surface can be completely charac-
terised via a certain list of excluded minors [Robertson and Seymour 1990]. For ex-
ample, by a version of Kuratowski’s Theorem (see [Kuratowski 1930]) due to Wagner,
a graph is planar if and only if it excludes both the complete graph K5 and the com-
plete bipartite graph K3,3 as minors [Wagner 1937]. Moreover, in [Archdeacon 1981],
the excluded minors that characterise the graphs embeddable in the projective plane
are described. Unfortunately, explicit excluded-minor characterisations for more com-
plex surfaces are not known. Still, a natural and interesting target for further study
of the WL dimension of a graph class would be the one characterised by the excluded
minor K`. The WL dimension of this class is bounded [Grohe 2017], but so far, it is not
even known to be exponentially bounded in `.

REFERENCES
Dan Archdeacon. 1981. A Kuratowski Theorem for the Projective Plane. Journal of Graph Theory 5, 3 (1981),

243–246. https://doi.org/10.1002/jgt.3190050305
Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. 2017. Graph Isomorphism, Color

Refinement, and Compactness. Computational Complexity 26, 3 (2017), 627–685. https://doi.org/10.
1007/s00037-016-0147-6

Albert Atserias and Elitza N. Maneva. 2013. Sherali-Adams Relaxations and Indistinguishability in Count-
ing Logics. SIAM J. Comput. 42, 1 (2013), 112–137. https://doi.org/10.1137/120867834

László Babai. 2016. Graph Isomorphism in Quasipolynomial Time. In Proceedings of the Fourty-Eighth An-

nual ACM Symposium on Theory of Computing. 684–697. https://doi.org/10.1145/2897518.2897542
László Babai, Paul Erdős, and Stanley M. Selkow. 1980. Random Graph Isomorphism. SIAM J. Comput. 9,

3 (1980), 628–635. https://doi.org/10.1137/0209047
Jin-Yi Cai, Martin Fürer, and Neil Immerman. 1992. An Optimal Lower Bound on the Number of Variables

for Graph Identification. Combinatorica 12 (1992), 389–410. https://doi.org/10.1007/BF01305232
Alain Cardon and Maxime Crochemore. 1982. Partitioning a Graph in O(|A| log |A|). Theoretical Computer

Science 19 (1982), 85–98. https://doi.org/10.1016/0304-3975(82)90016-0
Sergei Evdokimov and Ilia N. Ponomarenko. 2000. Separability Number and Schurity Number of Coherent

Configurations. The Electronic Journal of Combinatorics 7 (2000). https://doi.org/10.37236/1509
Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. 2020. Identifiability of Graphs with Small Color

Classes by the Weisfeiler-Leman Algorithm. In STACS (LIPIcs), Vol. 154. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 43:1–43:18. https://doi.org/10.4230/LIPIcs.STACS.2020.43

Martin Fürer. 2001. Weisfeiler-Lehman Refinement Requires at Least a Linear Number of Iterations. In
Proceedings of the Twenty-Eighth International Colloquium, Automata, Languages and Programming.
322–333. https://doi.org/10.1007/3-540-48224-5\ 27

Erich Grädel, Martin Grohe, Benedikt Pago, and Wied Pakusa. 2019. A Finite-Model-Theoretic View on
Propositional Proof Complexity. Logical Methods in Computer Science 15, 1 (2019). https://doi.org/10.
23638/LMCS-15(1:4)2019

Martin Grohe. 1998. Fixed-point Logics on Planar Graphs. In Proceedings of the Thirteenth IEEE Sympo-

sium on Logic in Computer Science. 6–15. https://doi.org/10.1109/LICS.1998.705639
Martin Grohe. 2000. Isomorphism Testing for Embeddable Graphs through Definability. In Proceedings of

the Thirty-Second Annual ACM Symposium on Theory of Computing. 63–72. https://doi.org/10.1145/
335305.335313

Martin Grohe. 2012. Fixed-point Definability and Polynomial Time on Graphs with Excluded Minors. J.

ACM 59, 5 (2012), 27:1–27:64. https://doi.org/10.1145/2371656.2371662

ACM SIGLOG News 25 Vol. 7, No. 3, July 2020

Martin Grohe. 2017. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory. Lecture
Notes in Logic, Vol. 47. Cambridge University Press. https://doi.org/10.1017/9781139028868

Martin Grohe and Sandra Kiefer. 2019a. A Linear Upper Bound on the Weisfeiler-Leman Dimension of
Graphs of Bounded Genus. In Proceedings of the Fourty-Sixth International Colloquium on Automata,

Languages, and Programming. 117:1–117:15. https://doi.org/10.4230/LIPIcs.ICALP.2019.117
Martin Grohe and Sandra Kiefer. 2019b. A Linear Upper Bound on the Weisfeiler-Leman Dimension of

Graphs of Bounded Genus. Computing Research Repository (2019). http://arxiv.org/abs/1904.07216
Martin Grohe and Martin Otto. 2015. Pebble Games and Linear Equations. Journal of Symbolic Logic 80, 3

(2015), 797–844. https://doi.org/10.1017/jsl.2015.28
Martin Grohe, Pascal Schweitzer, and Daniel Wiebking. 2020. Deep Weisfeiler Leman. Computing Research

Repository (2020). http://arxiv.org/abs/2003.10935
Lauri Hella. 1996. Logical Hierarchies in PTIME. Information and Computation 129, 1 (1996), 1–19. https:

//doi.org/10.1006/inco.1996.0070
Neil Immerman and Eric Lander. 1990. Describing Graphs: A First-order Approach to Graph Canoniza-

tion. In Complexity theory retrospective, Alan L. Selman (Ed.). Springer, 59–81. https://doi.org/10.1007/
978-1-4612-4478-3 5

Sandra Kiefer. 2020. Power and Limits of the Weisfeiler-Leman Algorithm. Ph.D. Dissertation. RWTH
Aachen University, Aachen. https://doi.org/10.18154/RWTH-2020-03508

Sandra Kiefer and Brendan D. McKay. 2020. The Iteration Number of Colour Refinement. In 47th In-

ternational Colloquium on Automata, Languages, and Programming (ICALP 2020) (Leibniz Inter-

national Proceedings in Informatics (LIPIcs)), Artur Czumaj, Anuj Dawar, and Emanuela Merelli
(Eds.), Vol. 168. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 73:1–73:19.
https://drops.dagstuhl.de/opus/volltexte/2020/12480

Sandra Kiefer and Daniel Neuen. 2019a. The Power of the Weisfeiler-Leman Algorithm to Decompose
Graphs. In Proceedings of the Fourty-Fourth International Symposium on Mathematical Foundations

of Computer Science. 45:1–45:15. https://doi.org/10.4230/LIPIcs.MFCS.2019.45
Sandra Kiefer and Daniel Neuen. 2019b. The Power of the Weisfeiler-Leman Algorithm to Decompose

Graphs. Computing Research Repository (2019). http://arxiv.org/abs/1908.05268
Sandra Kiefer, Ilia N. Ponomarenko, and Pascal Schweitzer. 2019. The Weisfeiler-Leman Dimension of Pla-

nar Graphs Is at Most 3. Journal of the ACM 66, 6 (2019), 44:1–44:31. https://doi.org/10.1145/3333003
Sandra Kiefer and Pascal Schweitzer. 2019. Upper Bounds on the Quantifier Depth for Graph Differenti-

ation in First-Order Logic. Logical Methods in Computer Science 15, 2 (2019). https://doi.org/10.23638/
LMCS-15(2:19)2019

Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. 2015. Graphs Identified by Logics with Counting. In
Proceedings of the Fortieth International Symposium on Mathematical Foundations of Computer Sci-

ence, Vol. 9234. Springer, 319–330. https://doi.org/10.1007/978-3-662-48057-1 25
Stephen G. Kobourov. 2013. Force-Directed Drawing Algorithms. In Handbook of Graph Drawing and Visu-

alization. Chapman and Hall/CRC, 383–408. https://doi.org/10.1201/b15385
Andreas Krebs and Oleg Verbitsky. 2015. Universal Covers, Color Refinement, and Two-Variable Counting

Logic: Lower Bounds for the Depth. In Proceedings of the Thirtieth Annual ACM/IEEE Symposium on

Logic in Computer Science. 689–700. https://doi.org/10.1109/LICS.2015.69
Casimir Kuratowski. 1930. Sur le Problème des Courbes Gauches en Topologie. Fundamenta Mathematicae

15, 1 (1930), 271–283. http://eudml.org/doc/212352
Moritz Lichter, Ilia N. Ponomarenko, and Pascal Schweitzer. 2019. Walk Refinement, Walk Logic, and

the Iteration Number of the Weisfeiler-Leman Algorithm. In Proceedings of the Thirty-Fourth An-

nual ACM/IEEE Symposium on Logic in Computer Science. 1–13. https://doi.org/10.1109/LICS.2019.
8785694

Brendan D. McKay. 1981. Practical Graph Isomorphism. Congressus Numerantium 30 (1981), 45–87.
Bojan Mohar and Carsten Thomassen. 2001. Graphs on Surfaces. Johns Hopkins University Press.
Harry L. Morgan. 1965. The Generation of a Unique Machine Description for Chemical Structures – A

Technique Developed at Chemical Abstracts Service. Journal of Chemical Documentation 5, 2 (1965),
107–113. https://doi.org/10.1021/c160017a018

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan E. Lenssen, Gaurav Rattan,
and Martin Grohe. 2019. Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. In
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.
v33i01.33014602

Robert Paige and Robert E. Tarjan. 1987. Three Partition Refinement Algorithms. SIAM J. Comput. 16, 6
(1987), 973–989. https://doi.org/10.1137/0216062

ACM SIGLOG News 26 Vol. 7, No. 3, July 2020

Joachim Redies. 2014. Defining PTIME Problems on Planar Graphs with Few Variables. Master’s thesis.
RWTH Aachen University.

Neil Robertson and Paul D. Seymour. 1990. Graph Minors. IX. Disjoint Crossed Paths. Journal of Combina-

torial Theory, Series B 49, 1 (1990), 40–77. https://doi.org/10.1016/0095-8956(90)90063-6
William T. Tutte. 1963. How to Draw a Graph. Proceedings of the London Mathematical Society 13 (1963),

743–767. https://doi.org/10.1112/plms/s3-13.1.743
Klaus Wagner. 1937. Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114, 1 (1937), 570–590. https:

//doi.org/10.1007/BF01594196
Hassler Whitney. 1932. Congruent Graphs and the Connectivity of Graphs. American Journal of Mathemat-

ics 54 (1932), 150–168. https://doi.org/10.2307/2371086

ACM SIGLOG News 27 Vol. 7, No. 3, July 2020

