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Computational complexity lower bounds like P 6= NP assert impossibility results for all possible programs

of some restricted form. As there are presently enormous gaps in our lower bound knowledge, a central
question on the minds of today’s complexity theorists is how will we find better ways to reason about all

efficient programs?

I argue that some progress can be made by (very deliberately) thinking algorithmically about lower
bounds. Slightly more precisely, to prove a lower bound against some class C of programs, we can start by

treating C as a set of inputs to another (larger) process, which is intended to perform some basic analysis of

programs in C. By carefully studying the algorithmic “meta-analysis” of programs in C, we can learn more
about the limitations of the programs being analyzed.

This essay is mostly self-contained; scant knowledge is assumed of the reader.

1. INTRODUCTION
We use the term lower bound to denote an assertion about the computational in-
tractability of a problem. For example, the assertion “factoring integers of 2048 bits
cannot be done with a Boolean circuit of 106 gates” is a lower bound which we hope is
true (or at least, if the lower bound is false, we hope that parties with sinister motiva-
tions have not managed to find such a magical circuit).

The general problem of mathematically proving computational lower bounds is
largely a mystery. The stability of modern commerce relies on certain lower bounds
being true (most prominently in cryptography and computer security). Yet for practi-
cally all of the prominent lower bound problems, we do not know how to begin proving
them true—we do not even know step zero. (For some major open problems, such as the
Permanent versus Determinant problem in arithmetic complexity [Mulmuley 2012],
we do have good candidates for step zero, and possibly step one.) Many present lower
bound conjectures may well be false. In spite of considerable intuitions that we have
about lower bounds, we must admit that our formal understanding of them is awfully
weak. This translates to a lack of understanding about algorithms as well.

In this article, I describe two recently developed ways of viewing lower bound prob-
lems in a constructive, algorithmic way. Of course the idea of viewing lower bounds
in this way is not at all new. A good example from mathematical logic is the frame-
work of Ehrenfeucht-Frässé games [Frässé 1950; Ehrenfeucht 1961], with which one
can prove that certain core problems cannot be expressed in certain logics, by con-
structing winning strategies for a special two-player game on logical structures. The
methods described here are rather different from EF games, and are deeply rooted in
the language and methods of worst-case algorithm design.

1This article is an expanded version of an invited article by the author that appeared in the
proceedings of the 25th EACSL Annual Conference on Computer Science Logic. Supported in part
by NSF CCF-1212372 and a Sloan Fellowship. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

ACM SIGLOG News 29 July 2017, Vol. 4, No. 3



1.1. Barriers
Why are lower bounds so difficult to prove? There are formal reasons, which are
often called “complexity barriers.” These are theorems which demonstrate that the
usual tools for reasoning about computability and lower bounds—such as universal
simulation—are simply too abstract to distinguish modes of computation like P and
NP. There are three major classes of barriers known.
Relativization, Algebrization, Natural Proofs. Many ways of reasoning about al-
gorithm complexity remain valid when one adds “oracles” to the computational model:
that is, one adds an instruction that can call an arbitrary function O : {0, 1}? → {0, 1}
in one step, as a black box. When a proof of a theorem is true no matter which O is
added to the instruction set of the relevant computational model(s), we say that the
proof “relativizes.” Relativizing proofs of statements are generally quite powerful and
broadly applicable. However, relativizing proofs are of limited use in computational
complexity lower bounds: for instance, P = NP when some oracles O are added to
polynomial-time and nondeterministic-polynomial-time algorithms (picking a power-
ful enough oracle will do), but P 6= NP when some other oraclesO′ are added (as proved
by Baker, Gill, Solovay [Baker et al. 1975]). Therefore, no proof resolving P versus NP
can be a relativizing proof. Practically all other major open problems in lower bounds
exhibit a similar resistance to arbitrary oracles, and a surprisingly large fraction of
theorems in complexity theory do relativize.

The more recently developed “algebrization” barrier [Aaronson and Wigderson 2009]
teaches a similar lesson, applied to a broader set of algebraic techniques that was
designed to get around relativization. (Instead of looking at oracles, they look at more
general algebraic objects, where an oracle O that takes n-bit inputs can be “lifted” to
a low-degree polynomial Õ : Fn → F over a field F of order greater than two.) These
barriers teach us that, in order to make progress on problems resembling P versus NP,
it will be necessary to study the guts of programs at a somewhat low level, and reason
more closely about their abilities relative to their simple instruction sets.2

The Razborov-Rudich “natural proofs” barrier [Razborov and Rudich 1997] has a
more subtle pedagogical point compared to the other two. Informally, they show that
strong lower bound proofs cannot produce a polynomial-time algorithm for determin-
ing whether a given function is hard or easy to compute—otherwise, such an algorithm
would (in a formal sense) refute stronger lower bounds that we also believe to hold. It
turns out that many lower bound proofs from the 1980s and 1990s have such an algo-
rithm embedded in them.

1.2. Intuition and Counter-Intuition
There are also strong intuitive reasons for why lower bounds are hard to prove. The
most common one is that it seems extraordinarily difficult to reason effectively about
the infinite set of all possible efficient programs, including programs that we will never
see or execute, and argue that none of them can solve an NP-complete problem. Based
on this train of thought, some famous computer scientists such as Donald Knuth have
dubbed problems like P versus NP to be “unknowable” [Knuth 2015].

But how difficult is it, really, to reason about all possible efficient programs? Let us
give some counter-intuition, which will build up to the main point of this article. We
begin with the observation that, while reasoning about lower bounds appears to be
difficult, reasoning about worst-case algorithms does not appear to be. Reasoning com-
putationally about an infinite number of finite objects is commonplace in the analysis

2There are definitely “non-relativizing” and even “non-algebrizing” techniques in complexity theory, but they
are a minority; see Section 3.4 in Arora and Barak [Arora and Barak 2009] for more discussion.
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of worst-case algorithms. There, we have some computable function f : Σ? → Σ? that
we would like to compute faster, and one proves that a particular efficient procedure
P outputs f(x) on all possible finite inputs x. That is, often in algorithm analysis we
manage to reason about all possible finite inputs x, even those x that we will never see
or encounter in the real world. Our idea is that, if we can find “meta-computational”
problems which

(a) treat their inputs as programs,
(b) determine interesting properties of the function computed by the input program,

and
(c) have interesting/non-trivial algorithms,

then we can hope to import ideas from the design and analysis of algorithms into the
theory of complexity lower bounds. (Yes, this is vague, but it is counter-intuition, after
all.)
Sanity Check: Computability Theory. We must be careful with this counter-
intuition. Which computational problems actually satisfy those three conditions? Un-
dergraduate computability theory (namely, Rice’s theorem [Rice 1953]) tells us that, if
our inputs x encode programs that take arbitrarily long inputs, then it is undecidable
to determine non-trivial properties of the function being computed by the program x.
Thus, it would seem that any problem that satisfies conditions (a) and (b) above will
fail to satisfy condition (c).

One source of this undecidability is the “arbitrary length” of inputs. In particular, if
x encodes a program that takes only finitely many inputs, say only inputs of length n,
then one can produce the entire finite function computed by the input x, and decide
non-trivial properties of that function in a computable way. To simplify the discussion
(and without significantly losing generality), we might as well think of the input x as
encoding a Boolean logic circuit over AND, OR, and NOT gates, taking some n bits
of input and outputting some m bits. Now, x simply encodes a directed acyclic graph
with additional labels on its nodes, and a procedure P operating on x’s can be said to
be a “circuit analysis” program, which reasons about the aggregate behavior of finite
circuits on their inputs.

However, one of the major lessons of the theory of NP-hardness is that, while reason-
ing about arbitrary programs may be undecidable, reasoning about arbitrary circuits
is often decidable but is still highly likely to be intractable. Probably the simplest pos-
sible circuit analysis problem is:

Given a Boolean circuit C, does C compute the all-zeroes function?

This problem is already very difficult to solve; it is equivalent to the NP-complete prob-
lem CIRCUIT SATISFIABILITY (a.k.a. Circuit SAT) which asks if there is some input on
which C outputs 1. From this point of view, the assertion P 6= NP tells us that arbitrary
programs are intractable to analyze, even over finitely many inputs: we cannot feasibly
determine if a given circuit is trivial or not. As circuit complexity is inherently tied to
P versus NP, the assertion P 6= NP appears to have negative consequences for its own
provability; this looks depressing. (This particular intuition has been proposed many
times before; for instance, the Razborov-Rudich work on “natural proofs” [Razborov
and Rudich 1997] may be viewed as one way to formalize it.)
Slightly Faster SAT Algorithms? The hypothesis P 6= NP only says that very effi-
cient circuit analysis is impossible. More precisely, for circuits C with k bits of input
encoded in n bits, P 6= NP means there is no kO(1) ·nO(1) time algorithm for detecting if
C is satisfiable. There is a giant gap between this kind of bound and the 2k · nO(1) time
bound obtained by simple exhaustive search over all 2k possible inputs to the circuit.

ACM SIGLOG News 31 July 2017, Vol. 4, No. 3



What if we simply asked for a non-trivial running time for detecting the satisfiability
of C, something that is merely faster than exhaustive search?

I would like to argue that finding any asymptotic improvement over 2k time for
CIRCUIT SATISFIABILITY is already a very interesting problem. This is not an obvious
point to argue. First off, without any further knowledge of its inner workings, a 1.9k ·
nO(1)-time algorithm for CIRCUIT SATISFIABILITY would not be terribly more useful
in practice than the 2k · nO(1) time of exhaustive search: one would only see a different
for small values of k, and the rest of the instances would remain intractable.3 Work on
worst-case algorithms for SAT over many years (such as [Monien and Speckenmeyer
1979; Dantsin 1981; Monien and Speckenmeyer 1985; Kullmann and Luckhardt 1997;
Pudlák 1998; Hirsch 2000; Schöning 2002; Paturi et al. 2005; Wahlström 2007; Chen
et al. CC14], see the survey [Dantsin and Hirsch 2009]) has been primarily motivated
by the intrinsic interest in understanding whether trivial exhaustive search is optimal
for solving the Satisfiability problem.
The Non-Black-Box-ness of Circuit SAT Algorithms. There is also a deeper rea-
son to pursue minor improvements in SAT algorithms. Any algorithm for CIRCUIT
SAT running in (say) time 1.9k · nO(1) must necessarily provide a kind of “non-
relativizing” analysis of every given circuit C, an analysis which relies on the structure
and encoding of C. If you were required to design a CIRCUIT SAT algorithm which
could only access C as a black-box oracle, obtaining the output C(y) from inputs y and
no other information about C, then your algorithm would necessarily require at least
2k steps in the worst case. The reason is simple: if you are completely blind to the in-
sides of the circuit C, then even a small (O(k) size) circuit could hide a satisfying k-bit
input from you.

In more detail, note there is a trivial circuit Z which always outputs 0, and for every
k-bit input y, there is an O(k)-size circuit Zy which outputs 1 if and only if the input
equals y. Given the code of your black-box SAT algorithm A, one can note the sequence
of k-bit inputs y1, y2, . . . that A calls the oracle on, assuming that the oracle circuit
keeps outputting 0. At the end of the execution of A, if it has only seen 0-outputs, then
A must conclude that the circuit is not satisfiable (otherwise, it would give the wrong
answer on the all-zeroes circuit). Furthermore, if A did not query the oracle on some
k-bit input y, then the circuit Zy will be satisfiable and yet A will have concluded it is
unsatisfiable. It follows that, for A to be correct on all circuits Z and Zy, it needs to call
the oracle circuit on all 2k possible inputs.

Therefore, a 1.9k · nO(1) time algorithm for CIRCUIT SAT must necessarily use the
fully-given representation of the circuit in some critical ways, to work faster than ex-
haustive search. Even an algorithm running in O(2k/k) time on circuits of size O(k)
would be interesting, for the same reason.4

A Possible Road to Circuit Complexity Lower Bounds. The ability to analyze a
given circuit more efficiently than analyzing a black box suggests a further implication:
a CIRCUIT SAT algorithm running faster than exhaustive search could potentially be
used to prove a circuit complexity limitation. At the very least, if the CIRCUIT SAT

3This attitude is not shared in cryptography, where any improvement in exhaustive search over all keys
may be considered a “break” in the cryptosystem.
4Perhaps you do not believe that CIRCUIT SAT can be solved any faster than 2k · nO(1) steps. This belief
turns out to be inessential for the main intuition and the formal theorems that follow. For example, you may
instead believe that we can non-deterministically approximate the fraction of satisfying assignments to a
k-input circuit of size n in 1.9k ·nO(1) time; this is also something that oracle access to a circuit cannot accom-
plish. Furthermore, if you do not believe even this, then your lack of faith in algorithms requires you to have
strong beliefs in the power of Boolean circuits—they would be powerful enough to solve nondeterministic
exponential-time problems. See the references [Impagliazzo et al. 2002; Williams 2013a].
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problem can be solved faster than exhaustive search on a given collection of circuits C
(some of which encode the all-zero function, and some which do not), then the collection
C fails to obfuscate the all-zeroes function from some algorithm running in less than
2k steps. That is, the assumed CIRCUIT SAT algorithm can “efficiently” distinguish
all circuits encoding the all-zeroes function from those circuits which do not; these
circuit cannot hide satisfying inputs as well as oracles can. This points to a potential
deficiency in C that the CIRCUIT SAT algorithm takes advantage of. Surprisingly, this
intuitive viewpoint can be made formal.
Outline. In the remainder of this article, we first describe some known connections be-
tween circuit satisfiability algorithms and circuit complexity lower bounds (Section 2).
Then, we turn to a more recent example of how algorithms and lower bounds are tied
to each other, in a way that we believe should be of interest to the union of logicians
and computer scientists (Section 3). In particular, we reconsider the basic problem of
testing circuit functionality via input-output examples, define the test complexity as a
way of measuring the difficulty of testing, and describe how circuit complexity lower
bounds are equivalent to test complexity upper bounds. We conclude the article with
some hopeful thoughts.

2. CIRCUIT SAT VERSUS CIRCUIT COMPLEXITY
Let us briefly review some relevant notions from the theory of circuit complexity; for
more, see the textbook of Arora and Barak ([Arora and Barak 2009], Chapter 6).
Circuit Complexity. A Boolean circuit with n inputs and one output is a directed
acyclic graph with n sources and one sink, and labels of AND/OR/NOT on all other
nodes. Each circuit computes some finite function f : {0, 1}n → {0, 1}. To compute
infinite languages, of the form L : {0, 1}? → {0, 1}, the computational model is extended
to an infinite family of circuitsF = {Cn}∞n=1, whereCn has n inputs and one output. For
such a family F , we say that F computes L if for all x ∈ {0, 1}? we have C|x|(x) = L(x).
For a function s : N → N, a family F has size s(n) if for all n, the number of nodes
(i.e., gates) in Cn is at most s(n). A language L has polynomial-size circuits if there is a
polynomial p(n) and a family C of size p(n) that computes L. The class of all languages
having polynomial-size circuits is denoted by P/poly. One should think of P/poly as
the class of computations for which the minimum “sizes” of computations do not grow
considerably with the input length to those computations.

The class P/poly is poorly understood. It could be enormously powerful, or it could
be fairly weak. It is easy to see that every language of the form {1n | n ∈ S} (for
some subset S ⊆ N) is in P/poly; however, a simple counting argument shows there
are undecidable languages of this form. Therefore P/poly contains some undecidable
languages. In that sense, P/poly is powerful, but this comes from the fact that the
computational model defining P/poly can have infinite-length descriptions. (This ob-
servation also shows that traditional thought in computability theory is probably not
going to be very helpful in understanding the power of P/poly.) However, P/poly also
looks obviously limited, in the sense that for all input lengths n, only polynomial-in-n
resources need to be spent in order to decide all 2n inputs of that length. A counting
argument shows that for every n, some function f : {0, 1}n → {0, 1} requires circuits of
size exponential-in-n; in fact, most functions do.

A prominent question in complexity theory is:

How does P/poly relate to the Turing-based classes of classical complexity
theory, like P, NP, PSPACE, etc.?

It is pretty easy to see that P ⊂ P/poly: every “finite segment” of a polynomial-time
algorithm can be simulated with a polynomial-size circuit. It is conjectured that NP 6⊂
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P/poly (which would in turn imply P 6= NP). But it is an open problem to prove that
NEXP 6⊂ P/poly! That is, every language in the exponential-time version of NP could in
fact have polynomial-size circuits. It is amazing that a problem like this is still open.
Fifty years ago, Hartmanis and Stearns [Hartmanis and Stearns 1965] showed that
some O(n3)-time computations are more powerful than all O(n)-time ones; how is it
possible that we can’t distinguish exponential time Turing machines from polynomial
size circuits? This open problem demonstrates how truly difficult it is to prove lower
bounds on circuit complexity; perhaps the infinite circuit model is powerful!

2.1. Enter Circuit SAT
Let’s return to thinking about the role of CIRCUIT SATISFIABILITY. Earlier, we were
arguing that a faster algorithm for Circuit SAT would point to some deficiency in the
power of circuits: unlike a black-box oracle, circuits would be unable to successfully
“hide” satisfying inputs from algorithms that run in o(2k) steps. We would like to say:

The existence of a “faster” algorithm A solving CIRCUIT SAT,
for all circuits C from a class of circuits C

=⇒
The existence of an “interesting” function f : {0, 1}? → {0, 1},

that is not computable by all circuit families from that class C

Written in the above way, the logical quantifiers match up well, and the idea of using
an algorithm to prove a circuit complexity lower bound looks less counter-intuitive.
Indeed, we can say a formal statement as described in the above box. Here is one
version.

THEOREM 2.1 ([WILLIAMS 2013A; 2014B]). Suppose for all polynomials p, Circuit
Satisfiability of circuits with n inputs and p(n) size is decidable in O(2n/n10) time. Then
NEXP 6⊂ P/poly. That is, there are (explicit) functions computable in nondeterministic
exponential time that do not have polynomial-size circuits.

(The polynomial n10 is almost certainly not optimal, and it depends on the pre-
cise machine model, but it suffices.) Notice the required improvement over exhaustive
search: it would normally take 2n · p(n) time to solve SAT on circuits of p(n) size. In
order to solve satisfiability fast enough, we need to be able to “divide by an arbitrary
polynomial” in the running time. This is a much weaker requirement than bounds like
1.9n time, which had been the primary focus of researchers.

Here we will briefly describe the proof of Theorem 2.1. For more technical details,
see the original paper [Williams 2013a] and the surveys [Williams 2011; Santhanam
2012; Oliveira 2013].

Proof Outline of Theorem 2.1. The known proofs proceed by contradiction. We
assume:

(A) There is a CIRCUIT SAT algorithm A running in 2n/n10 time, and
(B) Every function f ∈ NEXP has polynomial-size circuits. (Note that it is equivalent to

assume that a single function, complete for NEXP under polynomial-time reductions,
is computable with polynomial-size circuits.)

These two assumptions are inherently algorithmic in nature: item (A) asserts that
CIRCUIT SATISFIABILITY can be solved faster, and item (B) asserts that a huge class
of decidable problems are computable with polynomial-size circuit families.

ACM SIGLOG News 34 July 2017, Vol. 4, No. 3



The main idea is to utilize these two algorithmic assumptions to solve NEXP-
complete problems in a way which is provably impossible. Namely, assumptions (A)
and (B) together are shown to imply that every function computable in nondeterminis-
tic time O(2n) is computable in nondeterministic time O(2n/n2), which contradicts the
time hierarchy theorem for nondeterminism [Žák 1983].

Compressible Witnesses for NEXP.. Our proof uses a highly non-trivial consequence
of item (B). Recall that NEXP consists of those problems L for which there is a verifier
algorithm V which runs in time exponential in |x| so that for all inputs x, x ∈ L if and
only if there is a witness y of length exponential in |x| such that V (x, y) accepts. (The
definition of NP would replace “exponential” with “polynomial.”)

Work of Impagliazzo, Kabanets, and Wigderson [Impagliazzo et al. 2002] shows an
important consequence of item (B): if NEXP is in P/poly, then all exponential-time
verifiers have highly compressible witnesses. More precisely, they prove that item (B)
implies:

(C) For all L ∈ NEXP and all exponential-time verifiers V for L, for every x ∈ L, there is
a poly(|x|)-size circuit Cx with poly(|x|) inputs with truth table y such that V (x, y)
accepts.5

In other words, every string x in L has a witness that has a very succinct representa-
tion, of only poly(n) size.

The Impossible Algorithm.. Let L be an arbitrary language that is computable in
nondeterministic 2n time. We want to construct another nondeterministic algorithm
that computes L in O(2n/n2) time, which implies the desired contradiction (as men-
tioned above). Here is a high-level outline of the nondeterministic algorithm:

Algorithm Outline: On input x,

(1) Nondeterministically guess poly(n)-size circuit Cx which is intended to encode
a witness for x (Note that if x ∈ L then such a Cx exists, by item (C).)

(2) Deterministically verify that Cx is a correct guess. Here we wish to use the
CIRCUIT SAT algorithm asserted by item (A).

Clearly, Step 1 takes poly(n) time to guess the circuit Cx. We need to find conditions
for which Step 2 will run in O(2n/n2) time, assuming the CIRCUIT SAT algorithm of
item (A).

The deterministic verification of Step 2 is a subtle process. The CIRCUIT SAT algo-
rithm of item (A) can check in O(2n/n10) time whether a given n-input circuit always
outputs 0, over all possible 2n input assignments. A key observation is that it would
suffice to build a larger circuit Dx with m ≤ n + 8 log n inputs and poly(n) size (in
O(2n/n2) time) that is based on Cx, such that Cx encodes a witness for x if and only
if Dx is not satisfiable. Then, running the CIRCUIT SAT algorithm of item (A) on Dx

takes time

O
(
2m/m10

)
≤ O

(
2n+8 log(n)/(n+ 8 log n)10

)
≤ O

(
2n/n2

)
,

and would be unsatisfiable if and only if Cx encodes a witness for x, as desired. Hence,
if we could build such a Dx, then we could implement step 2 of the above algorithm
outline in time O(2n/n2).

5We use the notation poly(n) to denote an arbitrary fixed polynomial factor of n.
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How to Use the Circuit SAT Algorithm.. So how can we build a circuit Dx which
is unsatisfiable if and only if Cx encodes a witness for x? We turn to special struc-
tural properties of NEXP computations. In particular, every language L computable in
nondeterministic O(2n) time can be (very) efficiently reduced to the following NEXP-
complete problem:

SUCCINCT 3SAT: Given a circuit E of n inputs, does its truth table of 2n bits
encode a satisfiable 3CNF formula?

In particular, as we evaluate E on various inputs, the outputs encode clauses of
an exponentially-large 3CNF formula. Sharp technical results on the NP-hardness of
3SAT [Fortnow et al. 2005; Williams 2013a] show how to reduce any nondeterministic
O(2n)-time L to a poly(n)-size instance of SUCCINCT 3SAT with at most n + 4 log n
inputs. That is, we have a polynomial-time algorithm A that, given an instance x,
outputs a circuit Ex which is a yes-instance of SUCCINCT 3SAT if and only if x ∈ L.

From here, the desired circuit Dx can be constructed in the following way. Note
that the witness circuit Cx guessed for an instance of SUCCINCT 3SAT will encode a
variable assignment. On an input y of length n+ 4 log n, our circuit Dx:

— Prints the “yth clause” of the 3CNF formula encoded by Ex.
— Uses three copies of the guessed circuit Cx to verify if at least one of the three

literals in the yth clause is satisfied by the assignment encoded by Cx.
— Outputs 0 if and only if the yth clause is indeed satisfied.

Then, such a Dx is unsatisfiable if and only if Cx encodes a satisfying assignment to
the 3CNF formula encoded by Ex. This completes the proof outline of Theorem 2.1. 2

While the above proof yields the desired outcome, it is obviously an indirect method,
and feels lacking. It is an interesting open problem to find simpler and/or more infor-
mative proofs of this algorithms-to-lower-bounds connection.
Applying the Connections. The framework behind Theorem 2.1 has been general-
ized so that circuit satisfiability algorithms for various circuit classes C imply lower
bounds for computing functions in NEXP with circuits from C. So far, through the de-
sign of new circuit satisfiability algorithms, this framework has led to several uncon-
ditional circuit lower bound results:

— NEXP does not have so-called ACC0 circuits of polynomial size [Williams 2014b],
— NE/1∩coNE/1 (a potentially weaker class) does not have ACC0 circuits of polynomial

size [Williams 2013b].
— NEXP does not have ACC0 circuits of polynomial size, augmented with a layer

of neurons (linear threshold gates) that connect directly to the inputs [Williams
2014a].

— ENP does not have sub-quadratic size circuits composed of arbitrary symmetric and
linear threshold gates [Tamaki 2016].

— ENP does not have ACC0 circuits of 2n
o(1)

size, augmented with a layer of n2−ε neu-
rons (linear threshold gates) that connect to another layer of 2n

o(1)

neurons, and this
second layer connects directly to the inputs [Alman et al. 2016].

All results except for the second were obtained by designing explicit circuit satisfia-
bility algorithms for the relevant circuit classes; the second was obtained by sharpen-
ing the complexity-theoretic arguments themselves.

ACM SIGLOG News 36 July 2017, Vol. 4, No. 3



One might not believe that even slightly faster circuit satisfiability algorithms are
possible. We stress that it is possible that one might prove that NEXP 6⊂ P/poly without
providing a new CIRCUIT SAT algorithm. There are at least two ways in which this
could be done:

1. Instead of solving the NP-hard CIRCUIT SAT problem, it is possible to
show [Williams 2013a; Santhanam and Williams 2014] that one only needs to deter-
ministically solve the following CIRCUIT APPROXIMATION PROBABILITY PROBLEM
(CAPP):

Given a circuit C that is promised to have either at least 2n−1 satisfying assign-
ments, or zero satisfying assignments, determine which is the case.

With randomness, it is trivial to distinguish between the two cases with high prob-
ability, even in a black-box way: just pick uniform random inputs and check if any of
them make C output 1. By using succinct probabilistically checkable proofs in place of
SUCCINCT 3SAT [Ben-Sasson et al. 2005; Ben-Sasson and Viola 2014], a determinis-
tic solution to CAPP running in 2n/n10 time on circuits of polynomial size would also
imply NEXP 6⊂ P/poly.

2. It could be that the assumption NEXP ⊂ P/poly could be used to imply the ex-
istence of satisfiability algorithms sufficient for proving NEXP 6⊂ P/poly. (It is in fact
known that NEXP ⊂ P/poly implies faster algorithms for solving some NP problems,
but CIRCUIT SAT is not known to be among them!)

3. CIRCUIT COMPLEXITY AND TESTING CIRCUITS WITH DATA
We now turn to a problem related to program verification, and describe a connection
to circuit complexity. In practice, programs are often verified by the quick-and-dirty
method of trial and error: the program is executed on a suite of carefully chosen inputs,
and one checks that the outputs of the program are what is expected. For a given
function to compute, it is natural to ask when trial and error can be efficient: when
does can one use a small number of input-output examples, and determine correctness
of the program with certainty?

If there are no constraints on what the program can be, then there is not much to say
about this problem: without any further information, the program is a black box, and
one would simply have to try all possible inputs to know whether the program does
what it should. But in testing, we’re never given a program as a black box; we know
something about it, such as its total size. Could such side information be useful for the
testing problem? Formal mathematical work on this kind of problem from years ago
(such as [Howden 1976; DeMillo and Lipton 1978; Budd and Angluin 1982]) focused on
restrictions to the functions to be computed and how to efficiently generate test data
for them, rather than including more side information about the programs themselves
to make the testing problem less black-box.

Recently with Brynmor Chapman [Chapman and Williams 2015], we have proposed
a general circuit-analysis problem that we call data design. Let f : {0, 1}? → {0, 1}
be a function to test for, and a class C of size-s circuits that can implement “slices” of
f (restricted to fixed-length inputs). The task of data design for f is to select a small
suite of input-output test data that can be used to determine whether a given n-input
circuit C from C computes f restricted to n-bit inputs.

More formally, we say that the test complexity of f (as a function of the circuit size s)
is the minimum number of input-output examples such that, for any circuit C of size
s, one can determine with certainty whether C computes f (on all n-bit inputs, where
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n is the number of inputs to C), by evaluating the circuit C on the examples. Note
that every function f depending on all of its inputs has test complexity O(s2s): the test
suite may contain all possible input-output pairs for f on all input lengths n = 1, . . . , s.
When can test suites be made smaller?

While the data design problem certainly has practical motivation, we are mainly
interested in the problem due to its intriguing inversion of the roles of program and
input. The circuit C computing f is the input to the data design problem, and the
program for testing the circuit is the collection of input-output examples needed to
determine if C computes a slice of f . We have uncovered a surprising correspondence
between upper bounds on data design and lower bounds on circuit complexity. In gen-
eral:

Designing small suites of data for testing whether C-circuits compute f
is equivalent to

Proving C-circuit lower bounds on computing f .

For example:

THEOREM 3.1 ([CHAPMAN AND WILLIAMS 2015]). A function f is in P/poly if and
only if for some ε > 0, the test complexity of testing circuits for f is greater than 2s

ε

for
almost every s.

So if we wanted to prove that (for example) that NEXP 6⊂ P/poly, it would be neces-
sary and sufficient to design test suites of sub-exponential test complexity for a func-
tion in NEXP. Intuitively, such a correspondence is possible because the circuit design
problem and the data design problems work with similar types of unknowns. The cir-
cuit C designed must compute f on all n-bit inputs, and the set of data designed must
test the functionality of f for all s-size circuits C. Let us outline the ideas of the proof.

Proof Outline of Theorem 3.1. There are two parts to the equivalence.

Circuit Complexity Upper Bounds Imply Test Complexity Lower Bounds.. Let k ≥ 1.
If the function f has a circuit of size nk on n-bit inputs, then a test suite for size-s
circuits must include at least 2Ω(s1/k) input-output pairs. That is, an upper bound on
the circuit complexity of f implies a lower bound on the test complexity of f .

To prove this, we observe a couple of simple facts. First, if f has a circuit of size
nk on n-bit inputs, then there is some circuit C of size s that computes f on inputs of
length about s1/k. Second, for every input y of length s1/k, there is a circuit Cy of about
s+O(s1/k) size which equals C on all inputs except for y. From these two facts, one can
show that the test suite for size-s circuits will need to include all possible input-output
pairs for f on (δ ·s1/k)-bit inputs (for some δ > 0), in order to distinguish the good size-s
circuit C from all of the other (bad) Cy circuits. That is, the test suite needs at least
2δs

1/k

input-output pairs.

Circuit Complexity Lower Bounds Imply Test Complexity Upper Bounds.. For the
other side of the equivalence, we show that if f does not have a circuit of size O(nk+1)
on n-bit inputs, then there is a set of only poly(nk) input-output pairs (x, f(x)) on n-
bit inputs that is sufficient for testing all circuits of size up to nk. (This statement is
something of a “dual” to a result in learning theory [Bshouty et al. 1996] on learning
small circuits with an NP oracle.) Then, a lower bound on the circuit complexity of f
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for circuits of size nk+1 ensures that the test complexity for f is not too large for testing
circuits of size nk.

The above result applies theorems on “sparse” strategies for zero-sum games. (Re-
call that for zero-sum games, a strategy is just a probability distribution on the set of
possible actions for a player.) Such theorems [Althöfer 1994; Lipton and Young 1994]
say that for every zero-sum game where the “row player” has m possible actions and
the “column player” has n possible actions, there is a strategy for the row player with
only O(log n)-size support and for the column player with only O(logm)-size support,
that closely approximates the optimal strategy of the game.

To apply such results here, the key idea is to consider a zero-sum game with
a Circuit Player (ranging over all circuits of size up to nk) and an Input Player
(ranging over all inputs of length up to n). If f does not have a circuit of size
O(nk+1) on n-bit inputs, then for every tuple (C1, . . . , CO(n)) of nk-size circuits that
could form a sparse strategy for the Circuit Player, there is an input x? such that
f(x?) 6= MAJORITY (C1(x?), . . . , CO(n)(x

?)). That is, every sparse strategy of the Cir-
cuit Player badly fails to compute f on at least one input x?: for every sparse strategy,
a random choice of a circuit from the strategy fails to compute f on x? with probability
very close to 1/2.

As every sparse strategy for the Circuit Player badly fails to compute f , one can show
that there must be a good sparse strategy for the Input Player: there is a poly(nk)-size
set S of input-output pairs (x, f(x)) such that for every circuit C of size up to nk, there
is an (x, f(x)) ∈ S such that C(x) 6= f(x). This set S is precisely the test suite that we
wanted to obtain.

Let fn be the restriction of f to inputs of length n. Putting the two above items
together, we (informally) have

f ∈ P/poly ⇐⇒ (∃k)(∀n)[fn has nk-size circuits]

⇐⇒ (∃k)(∀s)[the test complexity of f is 2Ω(s1/k)]

This concludes the proof outline. 2

Designing reliable exhaustive circuit tests and circuit complexity lower bounds are
therefore deeply related tasks, when phrased in the above language. Not only would
small test suites detect errors efficiently, they would also be useful for formal verifi-
cation. Assuming the circuit being tested is in the appropriate class C, passing a test
suite would be a proof of correctness on all inputs. In turn, proving that a small test
suite (relative to the circuit size) works is equivalent to proving a limitation on what
can be computed in C. This “constructive” algorithmic viewpoint on lower bounds is
still in its early stages of development, and it remains to be seen how effectively one
can prove lower bounds with it.

4. CONCLUSION
Knowledge from all areas of theoretical computer science could contribute significantly
to the general projects outlined here. Computer scientists will have to develop new
methods of argument in order to make a serious dent in the major lower bound prob-
lems, and it is worth trying every sort of reasonable argument we can think of (at least
once). Perhaps the logic side of computer science will provide some of these new proof
methods.
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Ryan Williams. 2011. Guest column: a casual tour around a circuit complexity bound. ACM SIGACT News
42, 3 (2011), 54–76.

Ryan Williams. 2013a. Improving Exhaustive Search Implies Superpolynomial Lower Bounds. SIAM J.
Comput. 42, 3 (2013), 1218–1244.

Ryan Williams. 2013b. Natural Proofs Versus Derandomization. In STOC. 21–30.
Ryan Williams. 2014a. New algorithms and lower bounds for circuits with linear threshold gates. In STOC.

194–202.
Ryan Williams. 2014b. Nonuniform ACC Circuit Lower Bounds. JACM 61, 1 (2014), 2.
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