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Hilbert's Nullstellensatz saye roughly that there does not exist a solution of the
poelynomial equations f,(z) = f(Z) = - = folT) = 0 iff there does exist a linear
combination of these polynoemials, g (Z) fLIZ) 4 -+ g [F) [ (T) that is identically equal
to 1. [ first heard the idea of using this in a proof system, in a talk by Toniann Pitaesi
at a 1996 DIMACS workshop that Phokion Kolaitis and [ organized. Pitassi and [ddo
Tzameret have now given us & clear explanation of dramatic progress in this area
along with rich interconnections with deep work in algebraic complexity.
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W purvey rixent progress in the prool complexity of strong prool ssatems sl its connection to slgeboaic
clrruit complexity, showing how the synergy between the two glves rise to now approaches o fordamental
open guestioes, selutions to ald problems, apd new disections of research, In poarticular, we foous on tight
connectians breiween proof complexity lower bourds [mamely, lower bounds oo the slze of proofs of certain
tautalogies], algebrale olrowit bower bounds, and the Polymomial 1dentity Testing problem from derandoan-
fzatlon theary.

1. INTRODUCTION

Propositional proof complecity aims {o understand and analyze the compuiational resources
required to prove propositional tentologies, in the same way that circuit complexicy studies
the resources required to compute boolean functions. A central question in the area ashks
whether every boolean tautology has & short propositional proof. Here, & propositional proof
gystem can take many forme. One such proof system s the resolution refutation syetem
whose proof-search algorithm constitutes the hasls of corrent state of the art industrial-
level SAT solvers (this thread of research was recently covered in SigLog: see Nordstedm
[Mordstrém 2015)). For resolution and its weak extensions, strong lower bounds are known
since Haken [Heken 1985]. But the major open questions in proof complexity, those origl-
nating from boolean circult complexdty and complecdty class separations, such as P wa. NF,
are about the length of much stronger proof svetems than resolution, and these stronger
gyatoms will be the focus of this survey.

The prototypical strong proof syetem B the standard Hilbert-style propositional proof
gystom, called Frege proof system, in which a proof sturts from a fixed fnite set of axioms
and derives new propositions] formudas using a fixed set of sound derivation rules, Bstab-
lishing any super-polynomial size lower bound on such proofs (in terms of the size of the
formula proved) is & major open problem in proof complexity, and a fundamental guestion
in complexity theory,

The seminal work of Cook and Reckhow [Cook and Reckhow 19789] showed that in its
strongest form, proof-size lower bound guestions relate directly to fundamentsl hardness
guestions in computational complexity; establishing super-polynomial lower bounds for ev-
ery propositional proof system would separate NP from coNP [and thus also P from NP,

The aim of this survey is to outline & currently thriving resesrch direction, connecting
algebraic clrcult complexity to proof complexity. The prominent goal of thie approach is the
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quest for lower bounds on strong proof systems; other important aspects are connections
to derandomization theory sand spplication to feasible mathematics, The survey s meant
to give some busic background in propositionsl proof complexity and describe the algebraic
approsch to proof complexity,

In what follows, Section 2 gives the basic definitions of algebraic cirenits, propositional
proof systems and slgebraic proof systems, and a guick survey of the background results,
Section 3 i devoted to the Idesl Proof System (IFS). In this sectiom we show thet [PS
iz closely connected to the Extended Frege proof svetem, and show that superpolynomial
lower bounds for IPS proofs imply algebraic dreuit lower bounds. Section 4 is devoted to
the study of the non-commutative IFS. In this section we show that non-commutative TIPS is
equivalent {up toquasi-polvnomial factors) to the Frege system and discuss the ramifications
of this equivalence. Section 5 is dedicated to lower bounds for restricted subsystems of 1P,
Section 6 discusses connections between algebraic proof complexdty and the polynomial
identity testing (PIT) problem and the use of structfural results on algebraic circuits in
proof complexity, as well as application to feasible mathematies, Finally we conclude with
& discugsion and open problems in Sectlon 7.

2. BASIC COMCEPTS
For & natural number we et ] = {1,....,n}. Let F be a field, Denote by Bl . o0@a)

the ring of {commutative) polynomials with cocfficients from F and variables z;,..., 5. In
this survey, unless otherwise stated, we treat polynomials as formal linear combination of
monomisls, where s monomial is a product of wrisbhes. Henee, when we talk about the zene
polynomial we mean the polyoomial in which the coefficients of all monomials ace zero (it
can happen that over, say, GF(2), ©° + & computes the zero function, but it is noé the zemo
polynomial, becanse it has two nonzero monomial coefficlents]. Similarly, two polynomials
are said to be identical If they have precisely the same monomial coefficients. The degree of
a polynomial {or total degree) ks the maximal sum of varlable powers in a monomial with &
nonzero coafficlent in the polynomial. If the power of each variable in every monomial is at
most 1 we say that the polynomial B multiiinear. We write poly(n] to denote & polynomial

growth in n, namely a function that is upper bounded by ™Y, and gpoly(n) to denote a
quasi-polynomial growth in =, that s, n/®€" ™,

2.1. Propositional Proof Systems

Cook snd Reckhow [Cook and Reckhow 197%] defined & genersl concept of & propositional
proaf system from the perspective of computational complexity theory: a propositional proof
system is s polynomial-time function f from a set of finite strings ower some given alphabet
onde the set of propositional tautologies (reazonsbly encoded), Thus, fir) = y means that
the string = is & proof of the tautology y. Note that sinee f is onto, all taotologies snd only
tauntologies hive proofs (snd thus the proof system is complete and sound).

The ides behind the Cook-Reckhow definition is that a purported proof z mey be much
longer than the tavtology y it proves, but given o proof it should be possible to efficiently
check [efficient with respect to the proof lenghh, but not necessarily the tautology size) that
it is indeed & correct proof of the tautology. We say thet o propositionsl proof system is
polynomially bounded if there exists o polynomiol p that bounds the minimal proof size
x| for every tawtology »; namely, for every tautology  its minimal proof © is such thet
z| = polyl(|y]). Under the general Cook-Reckhow definition we have:

THEOREM 2.1 [(Coor-RECKHOW [CooK AND RECKHOW 10749]).  MNP=coMP i ond
ofely &f there 2 a polymemdally bounded propositionel] proof system.
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Therefore, proving lower bounds ageinst stronger and stronger propositional proof sys-
tems is clearly s formidable problem, as it can be considered as partisl progress towards
proving NP#coMP (and thus P#NP).

The definition of & propositions] Cook-Reckhow proof system encompasses most standard
proof systems for propositions] tautologies, swch s resolution and uswal textbook proof
gystom for propositional logic. In this survey we discuss specific propositionel proof systems,
that wre at lenst as strong as the Frege or the Extended Froge system (see below), Though
proving lower bounds on | Extended ) Frege proof sizes for some families of tautologics would
not smount to NP#ceMP, it would still constitute o breakthrough in complexity theory,

21,1, Frege Proof Systems, Ooe of the most imvestigabed and central propositional proof
gystems comes from the tradition of logic snd is called the Frege proof system, A Frege proof
gystom is any gyvstem that hos o fixed oumber of axiom schemes and sound derivation rales,
that is also implicationslly complete’, and in which proof lines are written as propositional
Formudas, It is known sinoe Reckbow's work [Reckhow 1976] that all Froge proof systems are
polymomislly eguivalent to cach other, and hence it does not matter precisely which rales,
axioms, and logical-connectives we use in the system. For conereteness, the reader can think
of the Frege proof systern as the following simple one (known as Scheenfield's system),
consisting of only three axiom schemes (where A — B ks an abbreviation of -4 v B; and
A, B, are any propositional formulas):

A= (B = A)
(=A = =B} =+ ({~A =+ B) = A)
A= (8= C)) = ([A—+ B) = (4 =),
and & single inference rule (known as modis ponena):
from A and A = B, infer B.

Frege systems are consldered strong for several reasons. First, no super-polynomial lowes
bounds are known for Frege proofs, sod moresver proving such bower bounds seems o be
out of resch of current techniques, and belleved by some to be even harder than proving
explicit cireuit lower bounds [Huzhr.rrr.w H015]. Sm::-nl:ﬂ:.r hard candidutes for Froge systems
are hard to find; common tawtologies such as the pigeonhole principle that are known to be
hard for weaker proof systems hoave polynomial-size Frege proofs. (Sce [Bonet ot al, 1985
Razborov 2015; Krajitek 2011; Li and Tewmeret 2013] for further discussions on hard proof
complexity candidates, )

An Extended Prege proof system is obtained by sugmenting Frege with the axiom:

Extension Asxiom: ER

where z is any new variable (namely, a varisble thet does not ocour before in the proof)
and  is any formuls (thet does not contein 2}, and where the new varisbles 2 appearing
in the extension axiom does not ocear in the finel formula in the proof. The point of the
extension axiom is to allow the use of new variables to represent inbermediste subformules
in & proof; with this new axiom scheme, polvnomial-size Extended Frege proofs can reason
about propositions computable by polynomial-size circuits (rather than just propositions
computable by polynomial-size formulas, as is the case for polynomial-size Frege proofs).

For comprehensive texts on proof compleaxity and strong proof eystams see a.g., the mono-
graph by Krajffek [Krajifek 1905] and [Clote and Kranakis 2002, Chapter 5].

'Mtl-:n.in.: that if & set of [ormules I kogically impliee & fermula o, Shen theee i3 & proof of 4 in the aystan
with formulas in [ sdded to the axioms.
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2.2, Comparing Proof Systems

To compare the relative strength of two proof systems we define the notion of & simolation,
W say thut a propositional proof system P polynomially simulates snother propositional
proof system 0 if there is a polynomisl-time computable function f that maps Q-proofs to
P-proofs of the same tautologics (if P and Q use different representations for tautologies, we
fix a (polynomial) translation from one representation to the other), In case £ is computable
in time #{n) (for n the input-size], we say that P ¢(n)-simulotes Q. We say that P and QF are
polyromially eqeivalent in case P polynomially simulates @ and Q@ polynomislly simolates
P I P polynomislly simulates @ but @ does not polynomially simulete P owe say thet P
s strictly stronger than @ (equivalently, that @ s strictly weaker San 7).

2.3, Algebraic Circuits, Formulas, and Algebraic Complexity Classes

Algebraie circults and formulas [over some fived chosen field or ring) compute polynomials
vin addition wod multiplication gates, stacting from the input variables snd constants from
the field. More precisely, an algebraic circadf F is a finite directed acyclic graph with fnput
nodes (i, nodes of in-degres zero) and a gingle eudput mode (i.c., 8 node of out-degree zera),
Input nodes are labeled with cither a variable or a feld dement in F. All the other nodes
have in-degres two (unbess otherwise stated) and are labeled by cither + or %, An input
nedde i 2aid to compute the variable or scalar that labels itself. A + (or =) gate is said to
compute the addition (product, resp,) of the polynomials computed by its incoming nodes,
An algebraic cirouit is called a formude, if the undeclying directed acyclic graph s o troe
([that is, cvery node has at most one outgoing edge). The size of & cirewit is the number of
nodes in it, and the depth of & cirowit is the length of the longest directed peth in it.

Algebralc Complexity Classes, We now recall some basie notions from elgebraie com-
plexity (for more details see [Shpilka and Yehudayoff 2010, Sec. 1.2]). Owver a ring R, VPp
(for “Valiant’s P") s the class of familles f = ( f,,)*, of formal polynomials f, such that f,
has polyin] input variables, ks of poly(n) degres, and can be computed by algebraic circuits
over I of poly(a) size. VNP (for “Valiant’s NP™) is the class of families g of polynomials
gn such that g, has poly(n) input variables and is of poly(n) degree, and can be written as

ﬂ'ru[i-'-ll---"'TPﬁJHH_I] = Z fulE,T)

Eiz 0,1 }ein]

for some family (f,] € VPR

A polynomial f(Z) i a projection of a polynomial g(g) if f(2) = g{L(Z)) identically as
polynomials in 2, for some map L that assigns to each y, elther a varlable or a constant. A
family of polynomials { f.) is & polynomial projection or p-profection of another family (g, )
if there is a function £{n) = n®(1) such that f, is a projection of Bifny for all (sufficiently
large) . The permanent polynomial 3°_ o [T, £ 0 (for &, the permutsation group on
7 elements] is complete under p-projections for VNP, The deferminant polynomial on the
other hand is known to be in VP but is not known to be complete for WP under p-projections.

Two central gquestions in algebraie complexity theory are whether the permanent 8 a
p-prajection of the determinant (a stronger variant speaks about quasi-polynomial projec-
tions); and whether WP equals VNP [Valiant 1978a; Valiant 1979h; Valiant 1982]. Since the
permanent is complete for VNP [under p-projections), showing YPEVNP amounts to proving
that the permanent cannot be computed by polynomial-size algebraic circuits.

2.4, Algebraic Proof Systems

Let us now describe several algebraic proof systems for propositional logic (e for boolean
tauntologies), Assume we start from s set of initisl polynomials (ealled arioms) fi1,..., fm €
Fzy....,T,) over eome feld F, then (the weak version of) Hilbert's Nullstellensatz shows
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that f1{T) = --+ = fr{T] =0 is unsatisfiable {over the algebraic closure of F) if and only if
there are polynomials gy, ..., gm € F[Z] such that 3. g,(T)f;(Z) = | (as & formal identity],
or equivalently, that 1 is in the ideal generated by the {fi};.

Beame, Impagliazzo, Kraj{tek, Pitassi, and Podlik [Beame et al. 1906] suggested to treat
these {g,}; aa a proof of the unsatisfiability of these axioms, called a Nullstellensatz
refutation. This is particularly relevant for complexity theory as one can restrict attention
to boalean solutions to these axioms by adding the boslesn ericms, that i=, adding the
polynomials :I'Ii—.‘i."i]-':;] to the axioms. As such, one can then naturally encode NP-complets
problems such as the satisfability of 3CNF formulas sz the satisfiability of a collection of
constant-degree polynomisls, sod & Nullstellensstz refutation is then sn equetion of the
form

3 a(mhE+ Y hiz)e ) =1

i=1 =1

for g5, R € F[T.. This proof syetem iz sound [only refuting unsatisGable axioms over {0, 13"
and complete (refuting any unsatisfinble sxioms, by Hilbert's Nullstellensatz), Given that
the above proof system is sound and complets, it is then natural to ask what is its power
to refute unsatisfable collections of polynomial equetions cver {0,1}", To understand this
gquestion one must define the notion of the size of the sbove refutations, Two populer notions
are that of the degree, and the spersity (oumber of monomials).

Strong (linear) lower bounds on Nullstellensatz degrees as well as strong {exponential)
lower bounds on the sparsity of Nullstellensats refutations are known (of, [Besme ot al, 19586
Buss ot al, 1996; Rasborov 1998; Grigoriev 1998; Impagliazzo of al. 1999; Buss et al, 2001;
Alekhnovich and Razhorov 2001) and references th.erein?. Unfortunately, the hard examples
used for these lower bownds do admit polynomial-size proofs in stronger proof syetema Hke
Frege.

Therefore, to correspond more accurately to Frege, strong algebraic proof systems must
use & more economical representation of polynomials in proofs than sum of monomials
{similarly to the way a boolean formula s & much more succinet representation of a boolean
function than a mere CNF). The natural way i to measure the skze of & polynomial by the
glze of the minimal algebraie cirewit or formnla that compuates it

The idea to consider algebraie cirenit size of algebraic proofs was raised initially by
Pitassi [Pitassi 1997] for Nullscellensatz written as algebraic circuits, and was investigated
further in [Grigoriev and Hirsch 2003; Raz and Tzameret 2008b; Raz and Tzameret 2008a;
Teameret 2011] in the context of the polynomial caleulus proof system.

Recently, Grochow and Pitassl [Grochow and Pitassi 2014] have suggestad the following
algebraic proof system that resembles the Nullstellensatz, but with a wrisnt thet proved
to hwwe important consegquences, A proof in the Idesl Proof System is given os a ﬁgﬁc
polymomial, lending itself quite directly to algebraic cirenit complexity technigques. In what
follows we follow the notetion in [Forbes ef al, 20160

Definition 2.2 (Ideal Proof Systern (TPS), Grochow-Pitass? [Grochow and Pitassi 20040,
Lat fi{Z),....fm(¥) € Flzy....,2,] be a collection of polynomials, An IPS refutation
for showing that the polynomials {f;}; have no common solution in {0, 1}® is an algebraic
cirendt C{F.F,F) € FIF, 41, .- Bms £y - -« 4 2], B0ch that

(1) Ciz,0,0) = 0.
[9; '5{3- HlE), . felE) o =, 28 —Ta) =1

The size of the IPS refutation is the size of the cireuit O If O is of individusl degros
< 1in each y; and z;, then this is o linewr TIPS refutation (ealled basically Hiberf IFS by
Grochow-Pitassi [Grochow and Pitassi 2014)), which is abbreviated as IPSpyy. If C© comes
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from & restricted class of algebraic circuits ©, then this is called & C-IPS refutation, and
further called & C-IPSppy refutation if ¢ is linear in §, 3, The varisbles 7, 7 ame sometimes
called the placeholder variobles since they vse ss o placcholder for the axioms,

Motice that the definition sbove adds the equations {z] — z;}: to the system {f;};. Tt is
nof necessary (for the sake of completeness) to add the equations ¥ — ¥ to the system in
general, but this is the most interesting regime for proof complexity and thus we adopt it as
part of our definition, Also, note that the first equality in the definition of IPS means thet
the polymomisl computed by O is in the ideal generated by 3,3, which in urn, following
the second equaelity, means that ¢ witnesses the fact that 1 is in the ides] generated by
FUEL . flT) 28 — 114 .00 12 — @, (the existence of this witness, for unsatisfinble set of
polynomials, stems from the Nullstellensatz theorem ss discussed abowve],

It is not hard to show that TIPSy is polynomially equivalent to the Nullstellensatz system,
when both are messured by their circuit size. For if we have an IPSpw refutation O(F, 5, )
wa can turn it into & Nullstellensatz refutation by writing it as & sum of producta of the
(linear) variables §, %, with only & quadratic increase in size. For instance, if we write ¥ to
denote ¥ without z,, we have O0F, 3,2 = 0.0, %.2,) = O, 5,2,0) + (2.5, %.1) —
ClE,g. 7,00 - 2, Now, sinee O(F,§.%,0) does not contain the variable x, we can continue
in a similar way to “take out” the rest of the variables in §, 2, one by one, reaching a
MNullstellensatz refutation (when substituting the f's and the boolean sxioms for the T, E,
respectively).

Furthermore, Forbes, Shpilka, Tzameret and Wigderson [Forbes et al. 20160] showed that
IPS [ refutations written as {general) algebraic circuits = polynomially equivalent to IPS
(though for restricted classes O, C-IPS may differ from C-IPSpx).

Considering both the Nollstellensatz and the IPS we can see thet the main inoowtion in
the IPS is the introduction of the plambolder variables §, 2. This idea enables considering
o refutetion as o single polynomial instead of considering o collection of polynomials (that
is, those polynomisl coefficicnts of the initisl axioms, ss is the case of the Nullstellensatz),

Grochow-Pitassd |Grochow and Pitassi 2014] showed thet the IPS system is very powerful
and can simulate Extended Froge (this follows from the fact that [PS is a generalization of
the Nullstallensatz written as algebraic circuits and already [Pitassi 1997) ehowed that the
latter system simulates Extended Frege).

The fact that C-IPS refutations are efficiently checkable [with rendomness) follows from
the fact that we only need to verify the polynomial identities stipulated by the definition.
That iz, it suffices to solve an instance of the polynomdal {dentify testing (PIT) problem
for the class C: given a circuit from the class C decide whether it computes the identically
zero polynomial, This problem ks eolvable in probabilistic polynomial time [BPP) for general
algebraic cirenits, and there are various restricted classes for which deterministic algorithms
are known (see Saction 6).

The Polynomial Caleculus, The Polynomisl Caleulus is an slgebraic proof system in-
troduced by [Clegg et al. 1906]. It can be considered as 8 “dynamic” version of the Nullstal-
lensatz; namely, instead of providing a single certificate that 1 s in the ideal of the initial
(unsatisfiable) polyoomials, in PC we sre allowed to derive the polynomial 1 step by step,
by working in the idesl generated by the initisl polynomials,

Definition 2.3 [ Polynomidal Coalculus {PC)), Let F be o ficld and let F o=
{fiseees fn} be s collection of multivariste polynomisls from Flzy,. .. 3a]. A PO proof
from @ of o polynomind g is 8 finite sequence 7 = (pr,..0, pe] of multivariate polynomials
from Flzy,...,Za], where pr = g and for every 1 < ¢ < £, either p; = f; for some j € [m],
or p; is a boolesn axiom x; - (1 — ;) for some § € [n], or p; wes derived from p;,pe, for
J.& = i, by one of the following inference rules:
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(1) Product rule: from p, derive , - p, for i € [nf;
(i) Addition rule: from p, g, derive ap = by, for a, b € 5.

A PC refutation of F is o proof of 1 (which iz interpreted ss 1= 0, thet is the unsatisfinble
equation stending for false) from F,

Similar to the Mullstellenssts, the standard complexity messures for PC are the degres of
a P'C proof, which is the maximael (totul] degree of o polynomial in the proof and the size
of a PC proof which & the total number of monomials (with nonzero cocfficients] in all the
PC proof lines, However, it is also possible to consider the totel slgebraic cirouit size of all
the PC proofs lines as o complexity measure,

Mon-commutative Algebralc Proof Systems. Motivated by the fact that the clzss
of non-commutative formules sdmits o deterministic PIT algorithm by ez and Shpilks
[Raz and Shpilks 2005a], and even more importantly sdmits exponentisl-size lower bounds
by Misan [Misan 1991], Li, Tewmeret and Wang [Li ¢f al. 2013] considered a variant of the
IPS over non-commutfative polynomials written ss non-commutative formulss, Their non-
commutative IS was shown to constitute s tighter characterization of Frege proofs than
the originel [commutative)] IPS: first, proofs in this system wre checkable in deferministic
polynomisl-time; and second, Frege can simalate (with s quasi-polynomial increases in sise)
nop-commutstive IPS refutations (over the field of two clements). But perhaps most impor-
tantly, the fuct thet we do bave lower bounds on non-commutative formules together with
the churscterization of sny Frege proof ss o single nop-commutetive formula, gives some
hope to progress on the problem of Frege lower bounds. We discuss the non-commutative
IPS in more detwils in Section 4.

3. IPS

In this section we show that lower bounds for IPS imply algebraie circuic lower hounds,
namely that the permanent does not have polynomial-size algebraie ciecuits. This implica-
tion s interesting because it s & unique case in proof complexity where & lower bound on a
specific proof syetem [on any tantology] is shown to Imply explicit cireuit lower bounds. We
then compars the strength of TIPS to Extended Frege, We show that TPS, in its full generslity
polynomislly simulstes Extended Frege, and on the other hond, show that Extended Froge
polynomially simulates IPS if PIT has fensible correctness proofs in Extended Frege,®

3.1, Lower Bounds on IPS Imply Algebraic Circuit Lower Bounds

THEOREM 3.1 (GROCHOW-P1TASSI [GROCHOW AND Prrass: 2014]). For ony ring [,
o super-poiyrordad fower bound on TIPS proofs over B of any family of foutologies implics
VMNP R 2 WPR. A super-polynomial lower bound on the number of proof-lines in polynomdal
colewlue proofs fmplics that the permanent {2 not @ p-projection of the determinant.

We will gketeh the proof for the first holf of the theorem which gives the main idea, The
proof of the second half can be found in [Grochow and Pitassi H014].

Lemma 3.2, Fvery fomily of unsatisfioble ONF formulas (w.,] has o fomidly of IFS
certificztes (C.) i WNP g,

FProaf of Theorem 50, asseming Lemma 520 Ouwr proof i taken from
[Grochow and Pitassi 2014], For o given set F of unsatisfiable polynomial equations
Fi =0 =F, =0, bower bound on IPS refutations of F is equivalent to giving the
game cirouit bower bound on all IPS certificates for F, A super-polynomial lower bound

2!"'l'-:|r|:|I.|I:|l'. thot Extended Froge has polyvoomiaksice peocds of the stetement exprossing that the PIT [or
algebrale clrcoits |s decddable by polynomial-siae Boolean circuits.

ACKM SIGELOG Mews 27 July 20148, Val. 3, Mo, 3



on [P8 implies that some function in YNP—emely, the WYNP-IPS certificate guarantoed
by Lemme 3.2—cannot be computed by polynomisl-size algebraic cirouits, and hence thet
VNP WP, O

Progf skeich of Lemmae 3.8 We mimic one of the proofs of completeness for linear IPS
[Pitassi 1887, Theorem 1] and then show that this proof can in fact be carried out in VNP,
We omit any mention of the ground ring, as it will not be relevant.

Let @ l®) = &[T} A --+ A K [T) be an unsatisfiable CNF formula, where each &, I
& disjunction of literals. Let O[T} denote the (negated) polvnomial translation of &; via
=+ E 2 l—rand fvg— J’g, in particular, O (F) = 0 if and nuJ}r if &,{T] = 1, and thus
.pﬂ i= umnl:l&ﬁnble if and only if the system of equations O [(F) = - - = 0 (F) = 11 - =

—on =018 umatdsdiahle In fact, as we will see in the -:nu:aent’the ]:ll.'-l:ll:rf wie will

|:Lr.rt nw?i the equations =7 —; = 0. It will be comvenient to introduce the function ble,z) =
ex+ (1 —eil —z), le b{l z) = z and B0,z) = | — z. For example, the clause #;(%) =
[T W =Z17 W Tas) gctutm.m:lu.m:l into CAE) = (1—z )x17(1—242) = b0, :n]El{l T17)b0, Tz,
and therefore sn wssignment fulsifies s if and ooly if (zy, T17, 242) = (0, 1,0

Just a5 1 = my7a =31l — Ta) + (1 — x2de + (1 — 2=2)(1 — 11), an casy J'n-dul:tiuu shows

that
E Hbfeh ke (1)

EE{D L}~ #=1

We will show how to turn this expression into & WMP cartificate refuting o, . Let o be the
placeholder variable corresponding to O[T,

The idea is to partition the sssignments {0,1}" into m parts A;,..., A, where all
assignments in the i-th part A, falsify clause i This will then allow us to rewrite equation
(1] as

1=EC.1'|:-3:| (Z ]__[ E":‘E,'il::}) 1 [i:l
i=1

Ted; dix; gy

where “r; @ &;" means that neither ; nor its nogation appears in & Equu.t.mn (2} then
becomes the [PS-certificate 37 o - [JE-,E,‘ 1.z, 2x, blesi25)). What remains is to show
that the sum can indesd be rewritten this way, and that there is some partitlon (A, ..., 4]
a5 abowe such that the resulting certificave is in fact in VMNP,

First, let us see why such a partition allows us to rewrite (1) as {2}, The key fact here
is that the clause polynomial €T} divides the term tEij = 1_)[.--1 bile;, z;} if and only if

(8] = 1, if and only if £ falaifies &;. Let Cy(T) = !:u[_f,, where I C [n| is the sat
of indices of the variables appearing in clause i, B_'|. t properties of b discussed abowve,
1= Ci(8) = [l,cpb(fiee) if nnd only if &(f;,e:) = 1 for all ¢ € 1, if and only if fi = e
for all & € 1. In other words, if 1 = Ci(€) then & = [],.; bles, ), which clearly divides £z,
Conversely, suppose C(F) divides $#£{F), Since z(8) = 1 and every factor of ¢z only tekes
on booklean values on boolesn inputs, it follows that every fuctor of £; cvaluates to 1 at &,
in particular CG(E) = 1,

Let Ap,..., A be a partition of {0, 1} such thet every assignment in A; falsifies x;.
Since ©; divides every term ¢z such that 2 falsifies clwose €, O divides every term #z with
t = A;, and thus we can indesd rewrite (1) as [2).

Mext, we show how to construct a partition Ai1,..., 4 85 above so thet the resulting
certificate is in VNP, The partition we will use is 2 greedy one, A; will consist of afl
assignments thet falzify &1, A will consist of all remeinéng assignments thet falzify s2. And
s0 on. In particuler, A; consists of sll assignments that falsify x; and safisfy all A; with
4 =i {If at some clause &; baefore we reach the end, we have used up all the assignments—
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which happens if wnd only if the first ¢ clavses on their own are unsatisfiable—that's okay;
nothing we've done so far nor aoything we do below sssumes that sll A; sre nonempty,)

Equivalently, A; = {g & {0, 1}” |08} = 1 and G (8) = 0 for all j < £}, For any property
I, we write [TI[E]}] for the indicator function of I iH[E]Iﬂ = 1 if and only if [I(E) holds, and
0 otherwise, We thus get the certifiontes

in‘-( Z [E fulsifics ri and satisfes s; for all § < i ]__[ b{ﬂ;.:ﬁ])
L

fa,11n Jimg B

= Ee,.( Z [Ci{E) = 1 and C,(g) = 0 for all j < i] H E:-[E_,,.'z_f])
o

{11 fimyEey

_ if( 5> (r_;fa}l_[[l—qfﬁ‘,ﬂlj 1 m.‘e,,mjl)

e il 1]n A AT

m
Y Y e (Hfl - r:jlifn) ( I1 ﬁfef.fj])
ee{0,L}* =1 A Fradng

Finally, it is readily visible that the polynomial function of 2, €, and Z thet is the summand
of the oatermost sum 3 0 1o i computed by a polynomial-size cirenit of polynomisl
degree, and thus the antire certificate is in WNP. 0O

3.2, IPS Polynomially Simulates Extended Frege

In this section we show that [PS polynomially simulates Extended Froge, For simplicity, we
exemplify this simulation by showing how IPS written as slgebraie formulas polynomially
gimulates the Frege proof system, but the proof for Extended Frege is quite similar. Tt wos
further shown by [Grochow and Pitassi 2004] that restricted subsystems of TIPS can polyno-
mially simulate the corresponding restricted subsystem of Extended Frege, and specifically
this holds for TIPS written se constant-depth algebraic circuits and constent-depth Frege
systems with modulo counting gates (AC”[p|-Frege).

THEOREM 3.3 (GROCHOW-PITASSI [GROCHOW AND Prrasst 2014]). Letw be g JCNF
formula. If there is an Extended Frege proof (Frege proof) that ¢ is unsafisfiable in size-s,
then there s an [PS refutation of chreudt (formuls, reap.) size poly|el. &)

Proaf sketch. One way of thinking of this simulation {and similar simulations of propositional
gyatems by IPS-variants) is to consider a two-step conversion of propositional proofs into
IS refutations as follows. Firet, turn the Frege proof into a tree-like Frege proof and conwvert
apch proof-ling in the tree-like Frege proof into an equivalent algebraic formula, obtaining
a tree-like PC proof. Secondly, convert the tree-like PC proof into & single formula, whoes
underlying formula-tree is precisely the underlying tree of the PC proof.

MNote that & Frege proof can be converted into a tree-like proof with only & polynomial
increase in size, that is, & prood in which every proof-line can be used at most once in
modus ponens [cf. [Krajifek 1996]). Therefore, we start from a tree-like Frege proof of a
propositional formula [possibly from assumptions), and show how to obtain from this an
IPS proof of the arithmetic version (see below) of the same formulas, Thus, a Frege proof of
false from a given CNF o is trapslated into an IPS proof of 1 from the initial {srithmetic
version of) g2, viclding an TIPS refutation of .

Step I This step invobees the arithmetization of Frege proofs, nemely, converting each
Frege proof-line to an algebraic formula. MNote that every Frege proof-line {e.g, in the Schoen-
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field’s system) is a boolean fautological formula. The transformation converts a boolean
tautology into a corresponding algebraic formula {over the rationals, or Fy, for a prime g;
the simulation uses only the fact that the field has 1,0 and —1) that evaluates to D for all
0-1 assignments. This is done in the same way as in the proof of Lermma 3.2 true becomes 0,
false baconves 1, a variable z; becomes 1 —x;, A becomes 1 —te{ A), where tr|A)] denotes the
translation of A, 4w B becomes the product of the corresponding translations tr(d)] -tef 5],
and A A B becomes 1 — {1 —tr(A)] - [1 — e B)) [Schoenfield’s system uses the — logical
connective, but we can simply treat A — 5 a5 an abbreviation of -4 v B). It is easy to
check that indeed 4 is a tautology iff tr{A) = 0 for every (-1 assignment.

Omcs we converted every Frege proof-line into ite cormesponding algebraie formula, we get
something thet resembles o sequential algebraic proof, pamely a PC proof, However, it & not
precisely & legitimate PO proof because, e.g., every application of modus ponens (from A
and A = B derive B) is translated into the purported rule “from to{A) and {1 —tr(A))-tro( 5]
derive tr{ 8", which is not & formel rube in PC, Nevertheless, we can make this arithmetized
Frege proof into o legitimate PC proof, except that our PC proof will have a generolized
product rule: instead of being able to multiply a proof-line only by & single variable we
will enable & product by & podgnomial, namely, from § derive g« f, for some polynomial
q = F:I]1 vea I'IM]'

To form our (generslized) PC proof we simply simadate Schoenfield's system rales and
axioms. Considering the example above, we need to construct a short PO proof of o 5]
from tr{A) and {1 — &c{A)} - £r{ B fret derive tr(A) - to(B) by the generalized PC product
rile and then add this to (1 —tr(A]] - (B}, to obtain tr{5), Similarly, Frege axioms sre
translated into algebraic formalas, that we then need to derdve in PO, and this s possible
to do efficiently,

Step £; Here we transform the (generalized ) PPC proof from step 1, whose underlyving proof-
gru.ﬁ is a tres (gince we assomed without loss of generality thet our initisl Frege proof is
a tree-like . Into a single formula whose underlying graph is essentially the same tree.
This formula constitutes the IS proof of the arithmetic translation of . The transformation
from a PC proof 1o a formuola i quite straightforward. For example, assume that in the
PC proof we derived g - f from f. And suppose that we already built the IPS proof of f,
namely C(T, fy(F). ... fm(E) 28 —2;,..., 28 —2,) = f. Then, g-C(Z, fi(Z),. . ., fn(Z), 2=
Fy,..., T8 —2, ) = g f 18 the IPS proof of g« f. Simulating the addition rule of PC is done in
& similar manner. [Formally, the (T s should be substituted by the placsholder variables
#, and the boolean axioms by the placeholder variables 5.}

It i3 easy to eee that the resulted IPH is of slze polynomial in the size of the PO proof,
which in turn is of size polynomial in the size of the original Frege proof. 0

3.3, PIT as a Bridge Batwean Circuit Complaxity and Proof Complaxity

In this gaction we sketch the argument that Extended Frega (EF) I8 polynomially equivalent
to IPS if there are polynomdal-slze elreudts for PIT whose correctness—euitably formulated—
can be efficiently proved in EF. More precisely, we identify a small set of natural axiorms for
PIT and show that if these axioms can be proven efficlently in EF, then EF is p-equivalent
to IPS.

The high-lewel idea is to formalize soundness of TIPS as a sequence of propositional state-
ments and then to show!

(1} if EF has efficient proofs of IPS soundness then EF can polyoomially simulate IPS;
(2} Show theat EF hes efficient proofs of IPS soundness if o small set of netural axioms for
PIT are efficiently provable in EF.

The idew behind (1) is not new and traces back to Hilbert; its counterpart for propositional
proof systems was first formalized by Cook [Cook 1975 We explain the ides for proposi-
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tional refutation systems here, Soundness of s propositions] proof system states thet any
formula that hes o proof (in the system) is o tautology, Pormalizing soundness proposition-
ally involves studying parficl soundness, where we hove o different propositional formula for
ench proof length, In more detail, for o propositions] proof system ), Soundnesss o0 > 0
will be u fumily of propositional statements, The underlying variables of Soundnesss . are
T, 7 and T, where we think of T ss an encoding of some Q-proof of length n, 7 as an encoding
of a k-DNF formuls with n° < n underlying variables, and 7 as o boolean assignment to the
n' underlying variables. Soundnessg . (T, §, F) {8 of the form Proofg . (F,§) — Truth(F, )
where Proofo nlE, Ir% expresses that T is an encoding of & Q-proof of the formula encoded
by ¥, and Truth(y, ¥) expresses that ¥ satisfies the formula encoded by ¥ (Le., the formula
encoded by § is a tautolozy].

For sufficiently strong propositional proof systems P oand @, it is well-knoawn that P
polynomially simulates § if and only if there are polynomial-sized P-proofs of Soundnessg
for all m = (). The intnitive argument is as follows: Suppose that £) has & short proof of some
formula g; let afyg) be the encoding of g, and let 3(g) be the encoding of the short Q-proof
of g. Then since P has short proofs of Soundnessg . we instantiate this with g to give
a short P-proof of Soundnessq o(G(g), alg).E). Since Proofq .(0(g), o(g)) is a tautology
and involves no propositional wariables, it has & short P-proof and thus by modus ponens,
there i a short P-proof of Truth{a{g), 2). The last step ks to demonstrate short P-proofs
of Truthialg).2) — 5.

We will take P to be EF and ) to be IPS. Then EF can polynomially sirmulate € if and
only if EF can efficiently prove the soundness tautologies for IFS. Proving the soundness
tawtologies for IPS amounts to stating snd proving (in Extended Frege) that if © s an
algehraic circuit such that: (1) O0F, 0,00 = 0 and (2) CF, fi(E),. ... fu(®)) = 1, then
Fuveees frn i5 unsatisfiable, In order to state (1) and (2] cfficicntly, we need polynomisl-sized
cireuits for polynomisl identity testing, Then in order to prove that (1] and {2} imply that
Froeee frn 18 unsatisfinble, we will need to use bagic properties of our PIT circuits, We omit
the proof here, but will informelly state the axioms that will be required in order to cammy
ot the above plan,

3.4. Axioms for Circuits for Polynomial ldentity Testing
Fix some standard hoolean encoding of algebrale circuita, so that the eneoding of any size-
m algebraic circuit has size poly{m). We use “[C]" to denota the encoding of the algebraic
cireuit . Let K = (K, ,) denote & family of boolean circnits for solving polynomial
identity testing. That is, K., , I& & boolean function that takes as input the encoding of a
glge m algebrale cirenic, O, over variables 2y, ..., z,. and if £’ has polynomial degree, then
K putputs 1 if and only if the polynomial computed by O 1= the 0 polynomial.

The firet axiom states that if O {2 & cirenit over variables ¥ computing the identically 0
polynomial, then the eircuit O where we plug in & particnlar boolean Input §, still compuates

the identically 0 polynomial:
K{[CE)]) —+ K(|C{p)]).

The second axiom states thet if O is a cireuit over varisbles ¥ computing the zero polynomial,
then the cireuit 1 — 2 does oot compute the sero polynomial;

K{[C(z)]) = ~K([1 - Cz)]).

The third sxiom stetes that if the polynomial computed by cirewit & is 0, then & can be
substituted for the constant 0:

K{[e(z)]) A Ki[C{z, 0)]) — K(|0(z, GiE))).

Finally, the last sxiom states thet PIT is closed under permutetions of the varisbles, More
epecifically if C[F) is identically 0, then so e C[w(T)] for all permutations T
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Mote that the isswe is not the existence of small circuits for PIT since we would be happy
with noouniform polynomisl-size PIT cireuits, which do exist, Unfortunstely the known
constructions are highly nonuniform—they involve picking random points—and we do not
st how to prove the sbove axioms for these constructions. On the other hand, it is widely
comjectured that there exist aniform polynomial-sized circuits for PIT, snd it is therefore
very intrigning question whether or not the proofs of correctness of such uniform algorithms
(assuming that they exizt) can be carried out in a feasible {polynomial-time) proof system,

4. THE NON-COMMUTATIVE IPS

In this section we discuss the non-commutative IPS, introdweed by Li, Teameret and Wang
[Li et al. 2015], which is o variant of the [PS over non-commutative polynomials, The msin
result is that the non-commutative IPS completely coptures [wp to qusi-polynomdal factors)
the Frege proof system when the non-commutative IPS refotations are written as non-
commutative formulas,

Since the cluss of pon-commutative formulss are well understood, namely, it admits
exponentisl-gize lower bounds by Nisan [Nisan 1991], and deterministic PIT algorithm by
Huz-Shpilka [Haz and Shpilka 2005a], this churscterization of a Frege proof by a single non-
commuistive formula gives some hope for better understanding of specific Frege proofs and
specifically for the eventusl possibility of providing lower bounds on Frege proofs,

We need to deseribe first the basie setup before giving the precise definition. A non-
commutative polynomdal 5 a pelynomial in which products are non-commuting, namely,
zyx; iz not the same polynomial as x;x, whenever i # j. In other words, z,z; — 2, is not
the zero polynomial. Thus, we can {reat & non-commutative polynomial a3 a formal sum
of non-commutative monomials, We denote by Fiz,,...,z,} the ring of non-commutative
polynomials ower the variables =, .. z,. A non-commudative formule s the same
a5 & [commutative) algebraic formula only that the children of product gates have order,
a0 that we can record the order of multiplieation. Therefore, the polynomial that a non-
comnmmitative formule computes ie the polynomial achiewed by first multiplying out brackets
whereby we get a sum of monomials in which the order of multiplication matters (without
performing still woy cancelations of monomials), and then performing monomial cancelation
(and grouping) only when fwo monomials hove the same varisbles with the same powers
and the same order of multiplication.

It helps to think of nop-commutative polynomials {and formulas) ss & mesns to compuate
functions owver non-comoutative domains such as mesrix algebras (in which matrix produoct
is non-commuting in genersl],

Definition 4.1 [ Non-commautative TIPS, Li- Teamneret-Wang [Li of al, 20050, Lot F be
o field. Let fi[ZT),....f =T} € FE be a system of nop-commutative poly-
nomials. A non-commutative-IP8 refutation that the polynomisls {f;}; have
no common solution in {0,1}%7 is a non-commutstive formuls F(E.§ E.E) €
F{EI y:h---1I|':m-¥11---1Iu|wlu---1w|:;:|}1 !'ul:'h thﬂ-t

il) #(z0,0,0) =0. .
(2) FE FZ) o fmlE) T — T2y — 290y, By B — ZnZn-y) = L

The T¢ — ¥ denotes the boolean axioms @2 — zy, for all § € [n)], and &z — oz, for all § <
i € |n|, are called the commutator ariems. The size of a non-commutative IPS refutation
iz the minimal size of & nok-commutative formule computing the non-commutative-IPS
refutation.

0w cam chock that the FilF1% have no common 01 solutions in F of they do oot bave a commen 0-1
solution In every Foalgehra.
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The novelty in the non-commutative IPS in comparison to the original [commutative] IPS
is glmply that a single refutation is a8 non-commutative polynomial instead of & commutative
TR,

One way of thinking about a non-cormmuotative IPS refutation 1= as & commautative IPS for-
mula augmented with addifienal progfs for demonstrating that all the moromials computed
along the way in this formula are indeed commuting. Maore precisely, consider a commutative
IPS refutation written as a formula F(E,§, ), such that F{T, f; (T), ..., fm(E)L 2" —F) =1
as a commufative formula but F(T, f (F), ..., fu(E)L 2 — 2) # 1 a5 & non-commutative
formula. In the commutative version of FIE, f1{T),..., fnlT], 2° — ¥, two monomials com-
puted by this refutation, say Tirors and zexgrs, will be considered the same monomial.
However, in the oon-commutative version these two monomials wee considered distinet, so
we nead to add an explicit proof thet zyzars 18 equal to xerirs—in this case the proof
added is simply (z132 — 2z31) - T3 which is & right product of & commutstor sxiom.

Mot that to achieve the complefeness of the system we must sdd the commutator sxioms.
Indeed, the non-commutative polynomial 1+ ;25 — 255, for example, is unsatisfinble over
(-1 solations, but it cannot be proven unsstisfisble without wsing the commutetor axioms,
becwuse it i satisfable over some non-commutative matrix algebra (so by soundness of the
non-commutative IFS there cannot be & proof of its unsatisfinbility],

The gist of Li-Tenmeret-Wang's simualation of Frege by the non-commutative IP3 is that
even when we add the commutator sxioms, snd by that (informally speaking) force each
refutation to explicitly witness any cancelation befween {commuting) monomialg, we are
gtill oot weskening the system too muoch, nemely, we still koep the system as strong as the
Frege system. And the reason for this is that in Frege we consider propositional formnlas as
purcly synfackic terms. For exemple, if Flz] s o propositional formule, then F[[A A B)/z]
and F[[BaA)/z (which are the results of substituting A4 B and B A for 2 in F, resp.) are
two different formulas and the tautology F{(A A B)/z) = F|(B n A)/z] requires an explicit
Frege proof.

Li et al. showed that non-commutative IPS characterizes Frage proofs: non-commutative
IPS polynomially simulates Frege, and conversely, Frege quask-polynomially simulates non-
commutative IPS over GF(2] (for the latter see next section):

THEOREM 4.2 (LI-TZAMERET-WANG [LI ET AL. 20156]). Let @ be on unsatisfiable
propositional formula. If Frege can prove that » 3 unasatizfiabls in size-s, then there is
a non-cominutfative IPY refulation of formula size poly[|), 8) compubing e polimomidal of
degree poly( ||, ). Further, this refutabion iz checkabls #n defermdnistic poly(|ys], 2} Hme.

The idea to consider non-commutative formulas in algebraic proofe ag wall as adding tha
commutator axioms was considerad first by Teameret [Teameret 2011], though in that work
the proof syetem was built on the polynomial calenlus and not the IPS, and therefore did
not obtain the characterization of a Frege proof as a single non-commutative formula.

Lot us skevch the proof of 4.2, We begin with the simulation of Frege by non-commutative
IPS. The idea here is quite similar to the simulation of Frege by (formula) IPS | Theorem
3.3}

Non-commutabive TIPS polymomially simnulates Frege [proof skefch), Let us consider, as in
the proof of Theorem 3.3, o two-gtep simulation of Frege by non-commutative [PS, We
start from a Froge proof, that we assome without loss of generality is o toee-like proof, of o
tawtology .

Step I; Here we convert esch proof-line into an slgebraic formula in the same way we
did in the proof of Theorem 3.3, using the same translation function tri:), coly now let
£ri:) return o non-commutadive formula, Bo, for instence, sssuming A and B are unequal,
tr{ AV B) = tr{A) -t B) # tr(B)-tr{A) = tr[ BV A) (note that oy slgebraic formula can rep-
resent either & commutative or a non-commutative polynomizal; namely, a non-commuatative
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formuls computes a non-commutstive poelynomial by taking into account the order in which
children of product gates sppear in the formuls),

Mow, as before, we get a purported proof of tr(y) that only resembles o PC proof and
in addition the polynomisls sre non-commutative, We wish to complement this purported
proof into s legitimabe algebraic proof operating with non-commutative polynomisls; this
will be in fact the non-commutative PO system defimed by Teameret [Teameret 2001]; it is
similar to the PC proof system, only thet polynomisls are considered as non-commutative
polynomials, the addition rule is the same as in PC, and the generalized product rule can
be applicd cither from the right or from the keft, namely, from f derive cither - for fr g,
for some g; further, in addition to the boolean axioms, we add the commutator axioms
¥y — T,;x, for every pair of variables, to the system. The commuiator axioms are crocial
for completeness (over -1 assignments).

We consider the case of simulating the first axiom of Schoenfield’s system 4 — (B — 4)
in this non-commutative PC system. This will exemplify why we need to use the commutator
axioms. Thus, consider the translation of this exiom under tr{-}. Recall that — is just an
abbreviation, Then, tr{A — (B — A))] = te{—Av{—=Bv A = {(1—tr[ AN {1 —tr{ 8 }-tr[A]).
Chur goal i8 to construct & non-commutative PO proof of the following non-commutative

palynomial:
{1 —trlA)) - ({1 —er(B)) - tr(A4]). (3)

For this purpose, we first derive the polynomial tr[4) — eriA)? = (1 — te(A)) - tr{A). This
is doable efficiently using only the boolean axioms r; — 22 (by induction on the size of A).
Then, we wish to derive (3] from (1 —to{A)) tr(A), We can multiply the latter by (1—¢tc(5])
from the right, to get (1 — $e(A)) - tofA) - (1 — to( B8]}, Now we must wse the commutator
OTOME E5E; — &% b0 commute the rightmest product in order to derive (3).

Indeed, given the product of fwo formules f - g, it is possible fo show by induction on
the gize of f, g, thet using the commutator sxioms one can derive with o size |f + 9| non-
commutstive PC proof the formuls g f,

Step & Here we repest almost precisely the same idea a2 in Step 2 of the proof of The-
orem 3.5, We have a tree-like non-commutative PC proof of tr{w] (that possibly uses the
commutstor axioms) and we wish to turn it inbo & Don-commutative formols that consti-
tutes an [PS proof of triy). We do this by constructing o non-commutative formals whose
underlying graph is the sume underlying proof-graph, as we did before. 0O

4.1, Frege Quasi-Polynomially Simulates the Non-Commutative IPS

THEOREM 4.3 (LI-TZAMERET-WaNG [L1 ET AL. 2015]). Let ¢ be an unsatisfiahie
CNF formule and fi...., fn be the non-commutative formules corresponding to {fa clouaes
wa tri-]. If there i3 a non-commutative IPF refutation of size & of fy, ..., fm over GF{Z],

then there is a Frege proof of size 87098 2) of the tautology —.

For low-degree non-commutative [PS refutations, the proof of Theorem 4.3 achieves in
fact a slightly stronger simulation than stated, Specifically, when the degree of the non-
commutetive IPS refutation is logarithmic in s, the Frege proof i= of polynomial-size in s
(e [Li et al. 2013) for details).

The higher-leve] argument is o short Frege proof of the correctness of the Raz-Shpilka
[Fu and Shpilka 2005s] deterministic PIT algorithm, This resembles the discussion in Sec-
tiom 3.3 about PIT for (commutative) cirewits. Indesd, the argument can be viewed as a
realization—for the non-commutative case—of Grochow-Pitassi [Grochow and Pitassi 2014]
PIT-sxioms framework (Section 3.4), The actusl proof of Theorem 4.3 is rather technical
and long because one needs to prove properties of the Rez-Shpilka PIT algorithm for non-
commutetive formules within the restrictive frsmework of propositional bogic (thet is, Froge
proofs]. Let us sketch the main ideas in the proof.
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Our gosl is to prove = in Frege, given a non-commutative IPS refutation = of .
The proof uses the following maein five steps. Ficst, we bidonce the nop-commutstive
IP8 w, so that its depth is logarithmic in its size, This follows Hrube# and Wigderson's
[Hrubses and Wigderson 2014] construction, Second, consider the balanced =, which is o
non-commutative polynomial identity over GF[2), ns & boolean touwtology, by replacing plus
gates with XORs and product getes with ANDs, Third, we use the so-celled refeckion
principle to reduce the task of efficiently proving = in Frege to the following task: show
that any non-commutative formula identity over GF(2), considered as & boolean tautology,
hes & short Frege proof (this part wes discussed—for the commutative case—in Section
3.3). Fourth, for technical reasons we turn our non-commutative polynomial identities over
7F (2] [considered as boolean tautological formulas) into & sum of Aemogenous identities.
Thizs is the only step that is responsible for the guasi-polimomidal size fncrease in Theorem
4.3. For this step we use an efficient Frege simulation of a result by Raz [Raz 2013) who
ehowed how to transform an arithmetic formula into (& sum of) homogenous formulas in an
afficlent manner.

The fifth and final step is to actually construct ehort Frege proofs for homogenous non-
commutative identities. To this end we construct an efficient Frege proof of the correctness
of the Raz-Shpilka PIT algorithm for non-commutative formulas [Raz and Shpilka 20050].

In conclusion, the fact that [PS written as a non-comemutative formula [with the addi-
tional commutator axioms) characterizes Frege proofs, naturally motivates studying C-IFS
for varlous restricted classes O of algebraic cirenits. Lower bounds for such proofs intuitively
correspond to lower bounds for restrictions of the Extended Frege proof system. This is the
content of the next section, using the recent bowar bounds of Forbes, Bhpilka, Teameret and
Wigderson [Forbes et al. 20016k,

5. LOWER BOUNDS ON FRAGMENTS OF IPS

In Section 3.1 we hawve seen that proving super-polynomisl lower bounds on the size of
IPS certificates (written as algebmaic cirenits) would imply o separation of WP from VNP,
On the other band, in Section 4 we have seen that already proving lower bounds on IPS
certificabes when they are written as pon-commutative formulss and augmented with the
commutator axioms would imply Frege lower bounds, It is then natural to attempt to obbain
lower bounds on [P5 refutations where the certificates are written as an algebraic circuit
from o restricted circuit class C, Reoall the notation C-IPS from Definition 2.2, denoting
that the IPS certificate CZ,§, %) is taken from the class O If the “placeholder™ variables
B, in L7 are linear we call the certificate a C-IPSp [y certificate. Super-polynomial lower
bounda an the size of C-IP5) x refutations wers recently shown by Forbes, Shpilka, Teamearet
and Wigderson [Forbes et al. 2016b] when C i the class of read onee (oblivious) algebraic
branching programs (roABPs), multilinear formulas and diagonal circults. We now survey
eome of thesa lower bounds.

Let us deseribe the main strategy behind the proofs, which is new, and exemplifies the po-
tential of the algebraie complexdty-based approach in proof complexity. One feature of thesa
proof-size lower bounds B8 that they stem almost directly from clrcuit-slze lower bounds.

Azume that f{Z) = 0 has no (-1 solutions over some feld F, and let

glZ) - FIE)+ D _MiE)-(af —m)=1, (4)

iml
be the Nullstellensatz {equivalently, IPSp ] refutation of f{Z) = 0. We are going to lower
bound the size of circuits computing g(F). If we restrict our attention in (4) to only (-1

“Mote that there ls 2 slight techndeal difference betwoen requiring that O, §, 2] is taken from O and requiring
that &, F(T), 2% — 25,..., 22 — 2q) Is taken fram C. In C-1IPS we requise the former.
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assignments, then the boolesn axioms vanigh, and we have
gz} fiz)=1, forze {01}, (5)

where [3) is now o funchionad identify (in contrast to s formad identity between polynominls],
That is, we consider g{T] - F[T) as a function from {0, 1}" to F, and conclude that this is
the constant 1 function. Henee

1
T = —— forze {0,117

Therafore, to lower bound the algebraic circuit size of Nullstellensatz refutations of F{T)
it suffices to lower bound the algebrale cirouit slze of every polynomial that computes
the fumction 1/f(T) over 0-1 assignments. Since we wish to prove a lower bound for a
family of polynomials computing & certain function over 0-1, instead of & lower bound for a
specific formal polynomial, this kind of lower bound s called & functional lower bound (zoe
also [Grigoriev and Ragborov 2000; Forbes et al. 2016a]). Forbes et al. [Forbes et al. 2016h]
showed that for f(T) being a variant of the subset-sum principle 37" | oyzy —m, for o, € F
and m & {3, oz + T € {0,1}"}, one can obtain strong funetional lower bounds on the
algebraic cirenit size of 1/ f{T), for certain cireuit classes, and thus conclude IPS refutations
lower bounds for these cirenit classes.

The lowar bounds obtained in E‘u:be& at al. 2016h], stated below, are for IPS over multi-
lincar formules and resd once (oblivious) algebraic branching programs (roABP), A mulb-
Iinear formude is simply an algebraic formula [Section 2.3) in which every node computes a
muliilinear polynomisl, For the definition or roABPs and the proof of the lower bounds we
refer the reader to [Forbes et sl 20165],

THEOREM 5.1 (FORBES-SHPILKA-TZAMERET-WIGDERSON [FoRBES ET AL. 20168]). |
et m 2> 1 and F be o fleld with chomcteristic bgger than I':T] Suppase  that
FIZE) = Ficiepn 5% — m is o polynomial pver F that hes no 0-1 roots. Then,
any C-IPSpp refutation of FIE,E) reguires:
(1) n00em) _aixe when C 45 the class of multilinesr formulas;
(8} 2" size when C is the class of constant-depth multilinear formulas; and
(8) 2900 _gize when O iz the class of roABPs fin every variable order).

6. PIT AND PROOF COMPLEXITY

We already discussed the polynomisl identity testing {PIT) problem in the contecct of both
IPS and the non-commutative [PS. There, we were interested in the following gquestion:

Can propositionel proofs gfficlently prove the correctness of a PIT algorithm for
4 given circudf closs?

We have seen in Section 5.4 that the PIT axioms capture the stetements that express the
correctiness of & PIT algorithm (formally, & circuit for PIT). In other words, providing
short Extended Frege proofs for the PIT axioms would de facto mean that Extended Frege
efficiently proves the correctness of {some) polynomial-size circuits for PIT; from which
it follows that Extended Frege polynomislly simulates TIPS, Subsequently, in Section 4.3,
wo showed thut Frege dess sdmit efficient (guasi-polynomisl] proofs of the correctness of
the Raz-Shpilka decerministic PIT algorithm for non-commuatative formulas, This, in furn,
implies that Frege quasi-polynomially simulates the non-commutative IPS {over GF(Z]].

6.1, Proof Systems for Polynomial Identities

Hrubes snd Teameret [Hrubes and Teameret 2009 asked the following question concerning
the connection between proof complexity and the PIT problemo:
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Con we efficiently prove polyromiad idenbifics? And specifically, is there o sequen-
tiad proof systern admifting pelynomial-size proofs for all pelynoemial identities ¥

In other words, this gquestion asks whether the PIT problem admits short proofs, snd specif-
ically, whether there is a simple eeguential proof system to witness that PIT has short
proofs.

We koow that sn efficient probabifistic algorithm for PIT exists, due to Schwartz and
Zippel [Schwartz 1980; Zippel 1979); when the ficld is sufficiently large, with high probabil-
ity, twor different polynomials will differ on & rendomly chosen field sssignment, However,
whether the PIT problem is in P, namely is golvable in deferministic polynomisl-time, is
of course 8 mejor open problem in complexity and derandomizetion theory. In fact, it is
not even known whether there are sub-exponentisl-size witnesses thet two slgebraic for-
mulas compute the swme polymomisl; namely, whether there is & non-deterministic sub-
exponentisl-time algorithm for PIT, and in yet other words, whether PIT is in NP {note
that PIT is known to be in coRPCooNP),

Hrubes-Teamerat’s work [Hrube# and Teameret 2000] investigated the PITETNP guestion
from the proof-complexity perspective; assuming that PIT does posses short witnesses, is it
the case that a proof system using only symbolic manipulation (resembling & Frege proof)
is enough to provide these short witnesses? And if not, can we prove lower bounds on such
proods? Buch lower bounds would at least delineate the methods that will work for efficlently
proving polvnomial identities and those that will not.

The work in [Hrubef and Teameret 2009), as well as the subsequent work
[Hrubef and Teameret 2012], set out to define the analogs of Frege and Extended
Frege for the PIT problem that we shall call PI' progfe (for Polynomial Tdentity Proofs;
originally these svstems were called arithmetic proafs): just as Frege and Extended Frege
prove boolean tautologies by deriving new tautological formulas (and cirenits, resp.), PI
proofs prove polynomial identities by deriving new identities between algebraic formmulas
{and circuits, resp.).

Lot us first describe the analog of Froge for PIT, namely the PI proof operating with
algebraic formulas, denoted simply Py (where f stands for “formules®). Br is o sequential
proof system whose axioms are the polymomisl-ring sxioms snd whose derivation rules
express the properties of the equality symbol, Esch proof-ling in the system is an equation
betwoen two algebraic formulss (or cireuits; see below] F, & computing polynomials owver s
given field F written as F' = &, The proof system is sound and complete for true polynomial
identities:

THeoreM 6.1 {[HRUBES AND Tzamerer 2000]). Let F be a field. For any poir F, G of
algebraic formalas, there iv o PI proof in the system Py of F =G f F and & compute the
same polgromiad,

The specific description of the rules and axioms of the PI proof system Py are gquite natural.
The inference rules of Py are [with F, 7, H formulas; where an equation below a line can
be inferred from the one above the line);

F=G F=G G=H F|_=G1 F2=G:
ff=F F=Y FLQ.F3=G.|_|?S=

And the pxioms of F. express reflexivity of equality (F = F), commutativity and sssociativ-
ity of addition and product (Foe G =GoF, and Fo(Go H) = (FaeG)o K, for o £ {+,}),
distritmtivity (F - (G + H) = F -G+ F H), zero element (F +0 = F, F-0 =0}, unit
glement (F -1 = F) and true identitics in the ficld (geb=1¢, for o € {+,-}}.

A Pl proof Py iz thus s sequence of equations Fy = Gy, F; = Ga,..., Fp = Gy, with
F, 7 formulas, such that every equetion is cither an sxiom or was obtained from previous
equations by one of the inference rules. The size of & proof 1= the total size of all formulas

for o € {+,}.
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appearing in the proof, It is casy to sec thet, just like o Frege proof, a PI proof can be
verified for correctness in polynomial-time (assuming the ficld bas efficient representation;
g, the field of rational numbers),

It Iz imporcant to notice the distincetion between PI proofs and propositional proofs: PI
proofs prove polynomial identities (a language in coRP) while propositional proofs prove
boolean tantologies (& language in coMP). See more on this in Section 6.1 below.

The analog of Extended Frege for PIT, denoted Py, is identical to Py, except that it
operates with equations between algebraic cércudts instead of algebraic formulas [similar
to Jafabek's Cirenit Frege [Jafdbek 2004), formally, one needs to add another rule to such
o systom to be able to symbolicelly manipulate cirewits, nomely &0 merge fwo scparate
but identical sub-circuits into o single sub-circuit; see [Hrubes and Teameret 3012] for the
details. )

It turns out that PI proofs are in fact very strong. First, [Hrubed and Teamerct 000
only demonstrated lower bounds on very restricted fragments of PI proofs, and appareotly
it is guite hard to go beyond these restricted frogments of PT proof systems [assuming
any nontrivisl lower bound even existz). Furthermore, PI proofs were found to admit short
proofs for muny non-trivisl polynomial idetitics (like identitics based on symmetcic poly-
nomials). Moreover, PI proofs are able to “simulate™ PIT slgorithms for restricted alge-
braic circuit classes; specifically, Dvir and Shpilka's PIT slgorithm for restricted depth-3
algebraic circuits [Dhwvir and Shpilka 2006]. But more importantly, PI proofs were shown in
[Hrubes and Trameret 2012 to efficiently simulate many of the classical structural results
on algebraic circuits,

In particular, PI proofs P, operating with equations between algebraic ciecuita, efficiently
slmulate the following constructions: (i} kemogenization of algebraic circuits [implicit in
[Strassen 1973]); (i) Strassen’'s technique for eliminating division gates over large enough
fields (also in [Jﬁt.raaa-en 1973]); (i) eliminating division gates over small fields—this is done
by simulating large fields in small ones; and (iv) bafancing algebrade circwits [Valianc et
al. [Valiant et al. 1983); see also [Hyafil 1878]). Most notahbly, the latter result glves a strong
depth reduction for polynomial-size P. proofs to polynominl-size O(log” n)-depth B, proofs
[for proving identitics of a polynomial “syotactic degrees") and o quesi-polynomial simula-
tion of P by Py, This i# one important point where the PI proof systems differ from Frege
and extended Frege, for which no non-trivial such simulation is knowmn.

Since depth reductlon i& the most important of these resulte, lot ws state this more for-
mally:

THEOREM 6.2 (DEPTH REDUCTION FOR PI PROOFS [HRUBES AND TZAMERET 2012]}
Assume that FLG ore circudts of (syndactic] degree < d and depth <&, If F =0 has a F.

proof of size s then 1t has a B, prosf of size poly(s, d) end depth Ot + log & - logd + log® d).

Intuitively, one can think of this theorem as showing that WYNCEPI proofs are equal
in strength to WP-PI proofs, similar to the strong depth collapse manifested for algebraic
circuits by Valiant ot al. [Valiant et al. 1985 who showed that YNC? = VP (where VNC? is
dv;:EDI;.? gimilar to WP except that the depth of the circuits computing £ is required to be
Cilog nll.

As we now dizcuss, this also had implications for understanding proposifional proafs,

Algebraic Fragmoents of Propositional Proofs. HRecsll the Frege proof system de-
seribed in Section 2.1, Each Frege proofline is a propesitional tautological formuls, which
is either a [substitution instance of an) sxiom or was derived by the modus ponens rule. Az
mentioned before, Reckbow [Reckhow 1976 proved that it does not matter which derivation
rules and axioms we use, nor even the specific logical connectives [gates) usad: as long as
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we use & finite number of rules and axioms® and the rules and axioms are (implicationally)
complete, every two Frege syetems are polynomially equivalent.

Now, consider the PI proof system Pr, and sssume the underlying field is GF(2), In this
case, epery P proof-line becomes a boolean tawtology, where "+7 becomes the logical gate
XOR, %" beeomes AND and ¥=" becomes the logical equivalence gate = (indeed, note
that over GF(2) the wxioms become propositional teutologies), This then means that PI
proods over GF(2) are by fhemseloes propositione! Frege proofs, The converse, on the other
hand, is not true; not sll Frege proofs are srithmetic proofs over GF(2), because PI proofs
over GF(2) are nof complete for the set of tautologies. For instance, =7 + x; = 0 is, over
G2} the boolesn tautology (z; Az} 8 o = false over GF{2), but it iz not o true identity
betwoen (formal) polynomisls and thus cannot be proved by o PI proof, In fact, Frege
gystem is equivalent to the Plsystem Pr over GF(2) oupmented with the boolean axioms
x? + z;; and similarly for Extended Frege and B, over GF(2).

Considering PI proofs as the "algebraic fragment” of propositionel proofs gives us o new
understanding of propositional proofs, and should hopefully shed more light on the com-
plexity of Frege proofs. As mentioned above, it shows for instance a strong depth collapee,
namely, that additional depth (beyond Oflog® n)) does not help to decrease the complexdty
of proofs. It is specifically useful for wpper bounds questions on propositional proofs: if we
can efichently prove an algebraic identity over &F(2) with a PI proof we can do the same
for propositional proofs. This observation was used in [Hrubed and Teameret 2012 to give
a polynomial-size and depth-O{kog” n) Extended Frege proof of the determinant identities
Det{A) - Det(B) = Det[AB) and other linear-algebraic statements such as the matrix in-
verse principle AR = I, — BA = I, By, essentially, unwinding depth-t}{log” =) circuits
into quesi-polynomial-size fermales, one can obtain quesi-polyoomial-sise Frege proofs of
the same statements, These results give presumably tight upper bounds for the proof com-
plexity of lincar algebra, beopose, for exsmple, Bonet, Buss and Pitassi conjectured that
Frege does not admit polynomial-size proofs of these identities [Bonet et al, 1965].

7. CONCLUSION AND OPEN PROBLEMS

In this survey we demonstrated the emerging algebraic complexity approach to proof com-
plexity. It is natural to expect thet this close intersction between slgebraic snd proof com-
plexity will continue to contribute new Insighta to the fundamental open problems in proof
complexity. Already now very interesting and sometimes surprising new ideas came out
from this interaction. In particular, we have seen that proof complexity lower bounds {for
IPS restricted subsystems) are drawn almost directly from algebraic clreuit lower bounds;
new connections between computation and proofs, showing that some proof complesdty
lower bounds (IPS) mply computational lower bounds and complexity class separations
(VPEVNF); and conversely, proving that certain lower bounds on weak computational mod-
als [non-commutative formualas) would imply etrong Frege lower bounds; characterizing the
“algebraic fragments" of Frege and Extended Frege systems and using structural properties
of algebraic circuits yield & befter understanding of the power of these gystems through
{apparently] tight short proofe for basic statements in linear algebra. All of these resulis
have bean achieved veing methods from algebrale complesdty.

The big challenge abead is of course to find out whether the algebraic approsch can
eventually lead to lower bounds on Frege and Extended Frege, or conversely help to at least
establish a formal (unconditionsl) so-called "barrier’ against proving such lower bounds (o8,
by ghowing thet Extended Frege lower bounds imply strong explicit cirenit lower bounds).
But before this seemingly formidable challenge, there are many important intermediate

SThe mumber of axivms sl ruhs is limite, but they chviously isduce iolinite many s=ubatitution nstanoes
of axioms and rubs, since the ssgeme pnd ruls ace clossd umler subetitation of the wocisbles in the axicams
and rales by formulos
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problems which seem relatively feasible st the moment, and whose solution will adwnee
the frontiers of our understanding, We end by listing some of these problems,

— Can we obtain size lower bounds on constant-depth Frege with moduoler gates proofs
{AC"[p]-Frege proofs)? This problem has been open for decades, despite the known
AC"[p]-circuits lower bounds, Tt is quite conceivable that algebraic technigues may be of
help on this.

— Can we establish size kower bounds on C-1PS (linear or not] refutations for netural encod-
ings of CNFs, for restricted circuit classes &7 The lower bounds from [Forbes ef al. 2016h0]
hold only for a single herd sxiom, and not CINFs,

— Can we extend the C-IPS bower bounds to "dynamic” versions of C-IPS7 For instance,
can we prove lower bounds on PC refutstions operating with multilinesr formulas or
mABPs as in [Raz and Teameret 20060 Trameret 2001]7

— Lower bounds on PI proofs of polynomisl identities? Almost oo kower bound is known
for these “slgebraic frogments" of Frege and Extended Frege,

— Just like PI proofs are proofs for the (slgebraic) langusge of polynomial identities, it is
very interesting to study the complexity of proof systems for other algebraic languages,
Two examples of such proof systems are the proof system for matrix identities inves-
tigated in [Li and Teameret 2003], and the proof system for non-commutative rationel
identities defined in [GGarg et al. 2015]. Can we prove strong proof-size lower bounds on
these systems? Can we connect these svetems further to propositional proof complecity !
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