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Abstract
Quantified first-order formulas, often with quantifier alter-
nations, are increasingly used in the verification of complex
systems. While automated theorem provers for first-order
logic are becoming more robust, invariant inference tools
that handle quantifiers are currently restricted to purely uni-
versal formulas. We define and analyze first-order quantified
separators and their application to inferring quantified in-
variants with alternations. A separator for a given set of
positively and negatively labeled structures is a formula that
is true on positive structures and false on negative structures.
We investigate the problem of finding a separator from the
class of formulas in prenex normal form with a bounded
number of quantifiers and show this problem is NP-complete
by reduction to and from SAT. We also give a practical sep-
aration algorithm, which we use to demonstrate the first
invariant inference procedure able to infer invariants with
quantifier alternations.

CCS Concepts: • Theory of computation → Complex-
ity theory and logic; • Software and its engineering→
Formal methods.

Keywords: invariant inference, first-order logic
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∀x,y.∃z. e(x,y) ⇒ e(x, z) ∧ e(y, z)

- - - -
Figure 1. A set of labeled structures represented by graphs,
and a quantified separator between them. The separator
may be interpreted as “every edge is part of a triangle.” The
structures are defined over a signature with a single sort for
vertices and a single symmetric relation e(·, ·) for edges.

1 Introduction
Considerable human effort is currently required to verify
software systems where quantified formulas are necessary to
express invariants. A few systems have support for inferring
universally quantified invariants, but there are no general
approaches to inferring quantified invariants with even one
quantifier alternation (i.e. a formula with nested ∀ and ∃),
even though there are domains in which such invariants are
needed [24]; currently such invariants must be discovered
by hand.
It is well-known that program invariants are separators

of states, evaluating to true on the good (reachable) states
and false on the bad (error) states of a system. A common ap-
proach in invariant inference algorithms for quantifier-free
invariants is to learn a formula that separates good and bad
states (e.g., [26]); with enough of the right sort of examples,
the discovered separator will hopefully be an invariant.

In this paper we introduce the problem of first-order quan-
tified separability, which we believe is a key step towards
improved automation for verification problems requiring
quantified invariants. We give algorithms and complexity
results for inferring separators that are quantified first-order
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formulas. We give experimental results that show our algo-
rithm is practical for learning formulas taken from a corpus
of invariants of distributed protocols. We further show how
to adapt IC3/PDR [4] to use separators, and demonstrate
the first system able to infer invariants with alternations for
challenging distributed protocols.
The separability problem is to compute a separator if it

exists, or report that there is no separator. An example of
a separation query and a solution is given in Figure 1. We
consider separators expressed in classical first-order logic.
The separability problem has some connections to graph
isomorphism [17], Boolean function learning [5], and inter-
polation [21]. If arbitrary first-order formulas are permitted,
then it becomes very easy to separate any two finite sets of
distinct labeled structures, because it is possible to construct
a formula that is true for exactly one structure. Thus, the
disjunction of such formulas for each positive structure (or
the negation of a disjunction of such formulas for each nega-
tive structure) will be a separator. However, such separators
obviously overfit to the examples and fail to generalize, and
the ability to find separators that generalize to examples
of positive and negative structures not previously seen is
clearly important for application to invariant inference.

Thus, we need restrictions on the first-order formulas we
will consider. We focus on restricting the structure of the
quantifiers, including bounding the maximum number of
distinct quantified variables, bounding the depth of quan-
tification, restricting to purely universal formulas, and espe-
cially restricting to prenex normal form, i.e. formulas where
all quantifiers are at the beginning. It is well-known that any
first-order formula can be efficiently transformed into an
equivalent formula with the same number of quantifiers in
prenex form. We will see that prenex form is both expressive
and not prone to overfitting. We propose formulas with at
most k quantifiers in prenex normal form (k-prenex formu-
las) as an interesting class of separators. In particular, the
division into a prefix quantifier structure and a quantifier-
free body (the matrix) enables algorithms that can directly
reuse existing SAT solvers.
We show that some other separability problems, such as

quantifier-depth k formulas, are in P. We show that for fixed
k ≥ 2, the k-prenex separability problem is NP-complete.
The proof reduces a SAT problem to a carefully constructed
set of highly symmetric structures that force the separator
to encode an assignment to the SAT problem in the matrix
(Boolean) part of the formula. By using the two player game
semantics of first-order logic, we show that the separability
of this set of structures is insensitive to permutations of the
quantifiers, and depends only on whether the formula has
the right number of ∀ and ∃ quantifiers.
In the other direction, we give an algorithm for reduc-

ing k-prenex separability to SAT, completing the proof of
NP-completeness. We develop the connection to SAT by

showing that the quantifier structure can be eagerly com-
puted up front, leaving only a SAT problem that corresponds
to a search for the Boolean part of the formula. While this
algorithm is sufficient for solving the decision problem of
separability, it does not in general give good formulas for
practical separation problems. In particular, for a given set of
structures it may not give us theminimumk that allows them
to be separated. We show how to find a separating formula
with the minimum number of quantifiers k . We also give an
optimization algorithm to minimize syntactic measures of
the quantifier-free part of this formula.

Contributions. The contributions of this work are:
1. The identification of k-prenex separation as a natural

and useful problem (Section 3),
2. A proof of NP-completeness of k-prenex separation

(Section 4),
3. An algorithm for solving k-prenex separation along

with an evaluation of its performance and scalability
on human-authored formulas (Sections 5 and 7),

4. Preliminary evidence that separators can be used to
find invariants by adapting IC3/PDR to use separators
and the first demonstration of an approach able to
infer invariants with quantifier alternations (Sections 6
and 7).

2 Background
We give some background on first-order logic (FOL) as used
in this work, and we discuss prior work.

2.1 First-Order Logic
In this work we use first-order, many-sorted logic with equal-
ity. Formulas in this logic are defined relative to some sig-
nature naming the constant, relation, and function symbols
along with their sorts. We consider only finite signatures, i.e.
ones with a finite number of sorts and symbols. Terms are
constants, variables, or function symbols applied to other
terms. Examples include x , f (y), and д(x, f (z)). Atoms are a
relation symbol or equality applied to terms of appropriate
sorts, and literals are atoms or their negation. Examples of
atoms include p(x), x = y, and r (x, f (y)). Finally, formulas
are the closure of literals under conjunction, disjunction and
quantification. An example formula over a signature of two
sorts s1 and s2 is ∀x : s1. ∃y : s2. (p(x) ∧ ¬r (x,y)) ∨ x = f (y).
A standard result in logic is that any formula is logically
equivalent to one in prenex normal form, in which all quanti-
fiers are lifted to the front of the formula. For such prenex
formulas, the quantifier part is called the prefix and the re-
maining Boolean structure is called the matrix (which we
usually denote φ).
A structure M over some signature S , sometimes called a

model, is a set of sorted elements, along with an interpre-
tation for each constant, relation and function symbol of S .
We only consider finite structures, i.e. ones in which the set
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of elements is finite. An assignment is a mapping, σ , from
variables to elements ofM . A structureM may be augmented
with σ to form M ∪ σ by adding the variables as new con-
stants interpreted according to σ . We say that a structureM
satisfies a formula p, writtenM |= p, if p is true inM .

2.2 Game Semantics of Logic
The standard semantics for first-order logic may be defined
via a two player game, with one player as ∀ and one as ∃ [15].
We use a semantics simplified to answerM |= p for prenex
formula p with matrix φ: the two players take turns picking
appropriately sorted elements according to their order in the
prefix, with the game ending in some assignment σ when the
prefix is exhausted. The ∃ player wins if and onlyM ∪ σ |= φ.
The semantics becomes:M |= p if and only if ∃ has a winning
strategy; otherwise ∀ has a winning strategy and we say
M ̸ |= p. The best-known algorithms for deciding M |= p
are exponential in the number of quantifiers of p, as in the
worst case they must explore all the exponentially many
assignments of quantified variables.

2.3 Quantifier-Free Types
Intuitively, two tuples a1, . . . ,ak ∈ M , b1, . . . ,bk ∈ N of
elements from two structures over the same signature have
the same quantifier-free type, or QF-type, if they cannot be
distinguished by a quantifier-free formula. Formally, the
quantifier-free type of a1, . . . ,ak ∈ M is the set of quantifier-
free formulas with free variables x1, . . . , xk that are satisfied
byM and the assignment [a1/x1, . . . ,ak/xk ]. We also define
the b-bounded QF-type to only allow formulas in which all
function symbols are nested at most b levels deep. In our
evaluation (Section 7) we fix b = 1.

2.4 Prior Work
Our work draws on ideas from logic and machine learning,
and is motivated by applications of quantified formulas in
verification.

2.4.1 Logical Separability. Distinguishability of two
structures with a quantified formula has been investigated
through the study of Ehrenfeucht-Fraïssé (EF) games [16].
These games characterize the structures that may be sep-
arated by a formula with quantifier rank k , which is the
maximal depth of a quantifier in the formula. EF games are
traditionally only defined for a pair of structures, while we
are interested in separating sets of structures. A related usage
is graph isomorphism problems. Determining whether a pair
of structures can be separated by any first-order formula is
the same question as asking if they are isomorphic, which is
a generalization of graph isomorphism.

2.4.2 Interpolants. Separators are related to the concept
of a interpolant, which has been applied to software and
hardware verification [21, 22]. A interpolant can be viewed
as a separator between sets of states described by formulas.

While interpolants separate symbolic sets of states and we
consider finite, concrete sets of states, the two are connected
because one can be used to implement the other (i.e., by
creating a formula that encodes a finite set, or in the other
direction by using counterexample guided refinement of the
concrete sets).

Existing work finds quantified interpolants for alternation-
free formulas [8]. Another existing interpolation technique
[1] is similar to this work in that it reduces to SAT and
minimizes a syntactic measure of complexity, but it considers
quantifier-free interpolants over the theory of linear rational
arithmetic.

2.4.3 Boolean Learnability. The problem of learning a
Boolean function from examples can be seen as a separa-
bility problem where the formula is restricted to proposi-
tional logic. This problem is often investigated in models
like PAC (probably approximately correct) learning from sta-
tistical machine learning theory, where the separator need
only be mostly correct on the examples. In this work we are
interested only in exact separators that label all examples
correctly. For example, [5] shows that in the exact learning
setting, only a polynomial number of examples are required
if the true separator has both a short CNF and DNF repre-
sentation. In contrast the worst case to learn an arbitrary
Boolean function of n inputs requires 2n examples, one for
each input point. Recently, [10] showed that for some classes
of Boolean functions, learning inductive invariants is harder
than exact learning.

2.4.4 VC-dimension. The VC-dimension of a class of clas-
sifier functions F over some domain D is the size of the
largest set C ⊆ D that the class can shatter. A class F shat-
ters a set C if for any labeling of elements of C as positive
and negative, a function from F assigns that labeling. Stated
another way, the VC-dimension is the largest set that can be
separated by F in every possible way. While VC-dimension
was originally defined for statistical learning [30], it has been
applied to study exact learning for program analysis [28].

2.4.5 Quantified Formulas in Verification. Despite
their computational expense and possible undecidability,
quantified formulas are used in many verification tools. In
Ivy [25], Alloy [18], and Dafny [20], quantified formulas
including quantifier alternation are part of the user’s inter-
face to the system. Existing invariant inference techniques
based on IC3/PDR [4, 9] such as PDR∀ [19] are restricted to
universally quantified invariants, and systems that would
be modeled naturally with existential quantifiers must be
manually transformed (if possible) to eliminate existential
quantifiers.

3 The Separability Problem
To define the separability problem, we need to fix a class
of formulas to consider as separators. If we allow arbitrary
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first-order formulas then the problem is trivial: we can write
down a formula that satisfies exactly a given structure and a
disjunction of such formulas for the positive structures will
separate any set provided no structure is both positive and
negative. Such formulas have at least as many quantifiers as
structure elements, so it is natural to limit the quantifiers in
some way.

We focus on the separability problem restricted to prenex
normal formulas with at most k quantifers (k-prenex):

Definition 3.1. k-SEP is the decision problem of determin-
ing whether a given set of positively and negatively labeled
structures is separable by a prenex formula with at most k
quantifiers.

In addition, we can define the separation problem for when
we are given a particular prefix to separate with:

Definition 3.2. fixed-k-SEP is the decision problem of de-
termining whether a given set of positively and negatively
labeled structures is separable by a prenex formula with
exactly a given prefix of size k .

For example, Figure 1 is separable in 3-SEP but not in 2-
SEP. Similarly, it is separable in 3-fixed-SEP for the prefix
∀∀∃ but not for the prefix ∃∃∃.

In the remainder of this section, we will explore the prop-
erties of other classes of formulas, such as those with quan-
tifiers nested up to depth k (k-depth). We will show how
these properties relate to those of k-prenex, and explain why
some theoretical properties indicate that k-prenex might be
a good choice for separation. Sections 4–7 explore k-prenex
separation, and do not depend on the material in the rest of
this section.

3.1 k-Depth Separability is in P
The quantifier-depth of a first-order formula, p, is the max-
imum depth of nesting of quantifiers in p. It is easy to see
from known results [17] that for each fixed k , k-depth sep-
arability is in P by computing the model-theoretic types of
the structures. The C-type, for some class of formula C , is
the set of all formulas from C true of that structure. If two
structures have the same type, they are inseparable. If the
types are different then there is a formula in one set and not
the other that can be the separator.

Proposition 3.3. For a fixed relational signature, given a
positively labeled and b negatively labeled structures where
each is of maximum size n and all have total size s , testing
if they are k-depth separable, and if so, finding a depth k
separator, can be done in time O(s + (a + b)nk ).

The k-dimensional Weisfeiler-Leman algorithm, known
for its applications to graph isomorphism, computes a col-
oring of all k-tuples of vertices in an input graph. As [17]
shows, this coloring of k-tuples is exactly the Ck+1-type of
the k-tuple, where Ck is first-order logic with a fixed set of

k variables x1, . . . xk (which may be arbitrarily requantified)
and counting quantifiers.

The time to compute this coloring is given as follows:

Proposition 3.4. [17] We can compute the Ck types of a
given n-vertex graph in time O(nk logn).

The algorithm in Prop. 3.4 works just as well, in the same
running time, for Lk , first-order logic with at most k vari-
ables but no counting quantifiers. Furthermore, this algo-
rithm works by incrementally computing the Lk or Sk type
of quantifier-depth 0, 1, 2, . . ., until a fixed point is reached.
Stopping after k rounds reduces the time needed to com-
pute the depth k Lk type to just O(nk ). In depth k , having
at most k variables is no restriction. Furthermore, the same
algorithm works for any relational structure with relations
of arity at most k .

Corollary 3.5. Given a relational structure of size s , uni-
verse size n and maximal arity at most k , we can compute
its depth k type in time O(s + nk ).

Finally, to prove Prop. 3.3, we simultaneously compute the
depth k types of the given structures. They are k-depth sep-
arable iff the set of types occurring in the positive structures
is disjoint from the set of types occurring in the negative
structures. In this case, a depth k separator is just a disjunc-
tion of the types of the positive structures. We can separate
structures over signatures with function symbols as long as
the nesting in the allowed separators is bounded, as fresh re-
lations can be introduced to represent the finite set of atoms
containing function symbols.1

These disjunctive k-depth separators encode the positive
structures they separate directly, and intuitively we do not
expect them to generalize well. In contrast with k-depth
formulas, k-prenex formulas must share the k quantifiers
amongst all the structures, so we might expect these sepa-
rators, when they exist, to find some common property of
the structures. One theoretical tool to analyze this intuitive
overfitting behavior is by calculating the VC-dimension of
these classes.

3.2 VC-Dimension of k-Depth is Exponentially
Larger than k-Prenex

We analyze the VC dimension of k-depth and k-prenex for-
mula classes over a fixed signature which has one binary
relation r and no other symbols (besides equality).

k-Prenex. A bound on the VC-dimension of a class can be
obtained based on the size of the class. Recall that to shatter
a set of size n, we need at least 2n different functions, so the
VC-dimension is bounded above by the logarithm of the size

1For example, introduce fresh relations r ′1(x , y) = r (f (x ), y), r ′2(x , y) =
r (f (x ), д(y)), etc. and remove function symbols. When a separator ex-
ists, these relations can be expanded to obtain a separator of the original
structures.
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Table 1. Summary of important properties of separator
classes. VC-dimension is for the signature with a single bi-
nary relation.

Class Sep. Complexity VC-dim
∧/∨-
closed?

full FOL graph-iso. ∞ ✓
alternation-free graph-iso. ∞ ✓
∀∗/∃∗ NP-complete ∞

∀k /∃k P† ≤ 22k2

k-depth P† ≥ 2 |Gk | ✓

k-prenex NP-complete† ≤ k + 22k2

†for fixed k and signature.

of the class. There are 2k different prefixes, and 2k2 different
atoms (k2 for both the relation and equality). The number of
matrices is then 222k

2
, and the overall number of formulas is

2k+22k
2
. Thus the VC-dimension of k-prenex formulas is at

most k + 22k2 .

k-Depth. We show that k-depth formulas may shatter a
set of structures which encode a large number of disjoint
graphs. Let Gk be the set of all distinct unlabeled directed
graphs without self-loops on k − 1 vertices. For a graph
д ∈ Gk , we construct a graph gadget д′ as follows: Add a
new vertex vд with a self loop, r (vд,vд) plus edges to all the
vertices in д. This new vertex prevents formulas designed to
match one gadget from spuriously matching a subgraph of
another gadget. Now we build a set of structures S with all
2 |Gk | patterns of presence or absence of graph gadgets for
graphs д ∈ G. For each д, we can construct a formula:

∃x0, x1, . . . , xk−1. r (x0, x0) ∧ r (x0, x1) ∧ · · · ∧ r (x0, xk−1)

∧ (xi>0 are related as in д)

This formula is true precisely when the gadget for д appears
in the structure. To isolate a particular structure, we can con-
junct the formulas for the present graphs with the negations
of the formulas of all the absent ones. Then by taking the
disjunction of these formulas for a set of structures, we can
separate any subset of S . Thus the VC-dimension of k-depth
formulas is at least 2 |Gk | which is exponentially larger than
k + 22k2 because |Gk | is exponential in k [13]. These results
can be extended to other signatures as long as they have at
least one non-unary relation (to encode the graph gadgets)
and the function nesting depth is fixed (as in Section 3.1).

3.3 Summary of Separator Classes
In addition to the classes of separators we have already
looked at, we can consider a few more related classes:

1. Alternation-free: Formulas in which ∃ does not appear
inside ∀ and vice versa.

2. ∀∗/∃∗. A pair of classes, each consisting of an arbitrary
number of quantifiers of one kind. These classes are
closely related because swapping the labels on the
structures negates the separator and switches ∀ ↔ ∃.

3. ∀k /∃k . A pair of classes, each with prefixes of at most k
quantifiers of one kind. Each is a subclass of k-prenex
formulas.

If a class of formulas is closed under ∧ and ∨, a separator
of that class exists iff every pair of positive and negative
structures can be separated by possibly different formulas.
Let Φi j separate positive structure i from negative structure j .
Then the formula: ∨

i

(∧
j

Φi j

)
is true for positive structures and false for negative structures.
Thus separator classes closed under ∧/∨ are actually not
desirable, because they allow a separator to be constructed
from pairwise separators.
The pairwise argument allows us to give the complexity

of full FOL and alternation-free separators as equivalent to
graph isomorphism, because a pair of structures are sepa-
rable with these classes iff they are not isomorphic. Isomor-
phism of first-order structures is equivalent to graph isomor-
phism, which is in NP but not known to be NP-complete or in
P. The complexity of ∀∗/∃∗ is equivalent to subgraph isomor-
phism because the structures are separable iff no negative
structure is a substructure of a positive structure. Subgraph
isomorphism is known to be NP-complete [6].
To summarize, for each of these classes we give the

complexity of the separability decision problem, the VC-
dimension, and whether it is closed under ∨ and ∧ in Table 1.
If we adopt the common hypothesis that low VC-dimension
helps avoid overfitting, then desirable candidates are ∀k /∃k
and k-prenex. While ∀k /∃k has desirable properties includ-
ing low computational complexity, purely universal or exis-
tential formulas cannot express invariants of many systems.
We thus propose k-prenex formulas as a separator class k-
SEP, because it is expressive and our evaluation will show
that it is often tractable in practice. One interesting property
of the complexity of these classes is that the complexity of
k-prenex is higher than either k-depth or ∀k /∃k , while in
terms of inclusion it sits between the two.

We now show that k-prenex separation (for fixed k) is NP-
complete, by first showing it is NP-hard and then presenting
an algorithm to reduce k-prenex separation to SAT.

4 NP-Hardness of Separability
We show k-SEP is NP-hard for a fixed k and signature by a
reduction from 3-SAT. We fix k and the signature as this puts
verification of a separator in P.2 Our reduction produces a

2This does not by itself imply the problem is in NP, as the separator could
be exponentially large.
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m0 +

X V1
X = T
V1 T =

m1 −

X V1
X = F
V1 F =

m2 +

X V1 V2 V3
X = A B C
V1 A = T T
V2 B T = T
V3 C T T =

m3 −

X V1 V2 V3
X = D E G
V1 D = F F
V2 E F = F
V3 G F F =

Figure 2. Set of structuresM1,1 for a formula (a ∨ b ∨ c) ∧
(¬d ∨ ¬e ∨ ¬д). Each table specifies a structure, giving its
polarity (+/−), elements (X , V1, etc.) and for each pair of
elements which binary relation holds. For example, the B in
row V2, column X inm2 means that B(X ,V2) holds in that
structure, and necessarily ¬A(X ,V2), ¬T (X ,V2), etc.

set of structuresMk ,ℓ as a function of the SAT formula, the
prefix size k , and the number of universal quantifiers ℓ. We
begin by developing intuition using the case where k = 2,
and then we generalize first to fixed-k-SEP, and then full
k-SEP.

4.1 Preprocessing the SAT Problem
We first transform the 3-SAT problem into uniform-3-SAT. If
any clauses are not uniform, i.e. contain only positive literals
or only negative literals, we introduce a fresh variable x to
split the clause:

(a ∨ ¬b ∨ c) 7→ (a ∨ c ∨ x) ∧ (¬x ∨ ¬b)

In addition, we add fresh variables t and f along with the
clauses (t), (¬f ). We will use t and f to represent truth and
falsehood. The resulting formula ψ is equisatisfiable with
the original problem, and has only uniform clauses with at
most three literals.

4.2 Example Construction for ∀∃
We first show the special case of our reduction for the sim-
plest alternating prefix ∀∃. Our structures are defined over
a signature which includes binary relations Ai , one for each
ai ∈ dom(ψ ). Note t, f ∈ dom(ψ ) so we consider T and F
to be part of the Ai but will also refer to these relations di-
rectly. All structures will ensure that these relations are anti-
reflexive (¬Ai (x, x)) and symmetric (Ai (x,y) ⇔ Ai (y, x)).
Further, for any two distinct elements of the same struc-
ture, exactly one of the defined relations or equality will
hold between those two elements. Thus the defined relations
are total (every non-equal pair satisfies some relation) and
mutually-exclusive (only one relation holds for a pair).

These restrictions mean that for any assignment of x and
y, either x = y and no relations hold, or x , y and for some

i , exactly Ai (x,y) and Ai (y, x) hold. These are the only QF-
types (Section 2.3) ever seen by the matrix φ of a separator,
and there is one QF-type for x = y and one QF-type for
each Ai . Each assignment of x,y determines a QF-type, and
the QF-type determines the truth values for the matrix. If
we have the same QF-types from different assignments of
elements, then the matrix must have the same value. This
justifies constructing an assignment from a separator by
querying the truth value of φ on the QF-type for Ai , which
by abuse of notation we denote φ(Ai ).

We can now describe the actual structures for a particular
input:

ψ = (a ∨ b ∨ c) ∧ (¬d ∨ ¬e ∨ ¬д) ∧ (t) ∧ (¬f )

The construction will be to generate a s + 1 sized struc-
ture with elements {X ,V1, . . . ,Vs } for a clause with s literals.
The polarity of the structure matches that of the literals in
the clause. If we have variables in the clause ai ,aj ,ak , we
will assert Ai (X ,V1) ∧ Ai (V1,X ), Aj (X ,V2) ∧ Aj (V2,X ), and
Ak (X ,V3) ∧Ak (V3,X ). For positive clauses, all other distinct
pairs will assert T and negative clauses will assert F . Note
that we have used pairs including X to encode the Boolean
variables, and those that do not include X get one of T or F
(T and F represent Boolean variables in the structures for
(t) and (¬f )). We can represent these structures in tabular
form, where the rows and columns indicate which structure
element corresponds to x and y, while the cell gives the re-
lation (or equality) that holds for that pair. As previously
noted, these labels indicate the QF-type for that assignment,
and if we have a matrix φ in mind then we can say the cell
itself is true or false by applying φ. We show the structures
forψ in Figure 2.

With these tables in mind, we can now analyze a separator
∀x .∃y. φ. In terms of the table, a ∀∃ formula satisfies the
structure when every row has a true cell.3 Similarly, for a
negative structure, the separator not satisfying the structure
means some row is entirely false. Fromm1, we conclude both
¬φ(=) and ¬φ(F ). Inm0, we need one of (=) or T to be true,
but since it cannot be (=), we know φ(T ).
Now we inspect m2, the structure for (a ∨ b ∨ c). The

bottom three rows all have a T , and so are trivially satisfied.
The first row needs a true cell, and therefore one of φ(A),
φ(B), or φ(C) holds which is exactly the same constraint as
the original clause. Inm3, the structure for (¬d ∨ ¬e ∨ ¬д),
one of the rows must be entirely false. Regardless of which
row is picked, one of φ(D), φ(E), or φ(G) must be false and
the negative clause constraint is enforced.

We now see that if a separator exists, then its matrix must
produce a pattern of truth values on the QF-types which
gives rise to an assignment satisfying each clause. In the
other direction, we can easily construct a separator from
a satisfying assignment by letting φ = T (x,y) ∨ Ai (x,y) ∨

3Due to symmetry, the tables in Figure 2 are symmetric and so we can
reason about either rows or columns.
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Aj (x,y) . . . where Ai is included if ai is true in the assign-
ment. This shows that ∀∃ separation is NP-hard.

4.3 Example Construction is the Same for ∃∀
A somewhat surprising fact is the same construction of struc-
tures in Figure 2 is also separable by the ∃∀ prefix iff ψ is
satisfiable. Positive structures must have an entirely true row
and negative structures must have a false value in every row.
When we look atm0,m1, this means that (=) is true while
as before T is true and F is false. We can see this change to
(=) interacts with the change in prefix so thatm2,m3 still
correspond to their clauses. For example, inm3, the last three
rows are trivially satisfied due to the F ’s, but the first row
must now select one of D, E, or G to be false.
These two prefixes give us a taste of a property of our

general construction: the set of structures does not depend on
the exact prefix. For k = 2, there are only two prefixes with
alternation and one set of structures. When we generalize,
the structures will depend on the parameter ℓ, the number
of universal quantifiers.

4.4 General Construction
We define structuresMk ,ℓ(ψ ) over onek-ary relation symbol
Ai , for each Boolean variable ai ∈ dom(ψ ). In all structures,
the relations Ai are (1) symmetric, (2) anti-reflexive, (3) total,
and (4) mutually-exclusive.
Each structure M ∈ Mk ,ℓ(ψ ) will be constructed by a

function Ck ,ℓ(c) of a clause c ∈ ψ . The polarity ofM is that
of the literals in c . Let s be the number of literals in c , so
1 ≤ s ≤ 3. The domain dom(M) = X ∪ Y ∪ V will have
k − 1 + s elements, labeled Xi , Yi , and Vj , with cardinality of
each depending on the polarity as follows:

|X | |Y | |V |

+ ℓ k − 1 − ℓ s
- ℓ − 1 k − ℓ s

There will always be exactly k − 1 total X and Y elements,
collectively the auxiliary elements, and one Vj element for
each literal, the variable elements.4 Depending on k and ℓ,
it is possible that |X | = 0 or |Y | = 0. We use the clause to
associate both a Boolean variable and thus a relation with
each Vj , and we label the Vj with the j of this corresponding
relation Aj . We then use the following function to assign
a relation Ai (or one of T ,F ) to sets of exactly k elements
(k-sets) S :

R(S) =


Aj if S = X ∪ Y ∪ {Vj }

F else if X ⊆ S

T otherwise
(1)

4Note that the positive structure has the same number of Xi as the uni-
versal quantifiers and negative structures have the same number of Yi as
existentials.

These rules say if a k-set contains all X and Y , and thus
necessarily exactly one Vi , then the set will be assigned a Aj
that matches that Vj . If they are not one of these variable
k-sets, they will be F if they contain all Xi and T otherwise.
This completes our specification ofMk ,ℓ(ψ ).

4.5 Extracting a Satisfying Assignment from a
Separator

We assume Mk ,ℓ is separable by some formula Φ, which
in prenex normal form is written with the given prefix of
k quantifiers and ℓ universals and has matrix φ. We will
construct our assignmentA byA[ai ] = φ(Ai ), and our goal
is to show that this assignment satisfiesψ .

A first observation is that the QF-type for any assignment
of k variables to distinct elements in any structure is one of
the Ai . A second is that if the winning player plays with the
winning strategy, the game always ends in an assignment
and QF-type, on which the matrix φ assigns polarity of the
structure itself. For example, in positive structures Φ being
a separator implies ∃ plays so the matrix is always true.
By carefully constructing a strategy for ∀, we will show the
gamemust always end in thek-set for a variable in the clause,
showing a variable from the clause must be true in A.
First we need to show that we can force the game to end

in a k-set, using the following definition and lemma:

Definition 4.1. A strategy for a prenex formula is unique-
ness-preserving if, when it plays xn+1 in position (x1, . . . , xn),
distinct(x1, . . . , xn) ⇒ distinct(x1, . . . , xn, xn+1)

Another way to state this is that a strategy is uniqueness-
preserving if it is never the first to play a repeated element.
Winning strategies for separators of our structures must be
uniqueness-preserving:5

Lemma 4.2. If M+,M− ∈ Mk ,ℓ , Φ is a prenex formula with
k quantifiers, M+ |= Φ, and M− |= ¬Φ, then all winning
strategies for ∃ inM+ and ∀ inM− are uniqueness-preserving.

Proof. Consider any pair of positive and negative structures
M+ and M−, and logical games played on both simultane-
ously, with ∃ inM+ and∀ inM− playing with winning strate-
gies. On each move of this combined game, the winning
player plays in one subgame and the losing player then plays
in the other according to the prefix. Assume the losing player
alwaysmirrors the equality of the winning player: either both
play new, distinct elements, or both play elements in their
respective structure that repeat the same prior variable. If
either winning strategy is not uniqueness-preserving, then
the games end with the same equalities between variables,
and thus the same QF type. But a winning strategy means
that this common QF-type must be false inM− and true in
M+, which is a contradiction. □
5Note that it is always possible for a strategy to play distinct elements
because our games have at most k moves and there are always at least k
elements.
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We present a lemmawhich characterizesT and F , followed
by lemmas that show the clause structures constrain φ like
ψ constrains A:

Lemma 4.3. If Φ = Q1x1. · · ·Qkxk .φ is a k-prenex formula
separatingMk ,ℓ , then φ(T ) and ¬φ(F ).

Proof. Consider the structures C(t) and C(¬f ). Each has ex-
actlyk elements, so if∀ (or respectively∃) picks any available
distinct element on its turn, then by Lemma 4.2, the game
will end on the only k-set in each structure. But this set
corresponds to T in the positive structure and to F in the
negative structure, so the lemma holds. □

Lemma 4.4. If Φ separates Mk ,ℓ and positive clause c ∈ ψ ,
then φ(Aa) holds, for some a ∈ c .

Proof. Consider the positive structure C(c). ∃ must have a
winning strategy, and consider the ∀ strategy: “play any Xi
if not played, otherwise any remaining unplayed element.”
Both of these strategies are uniqueness-preserving, so by
Lemma 4.2 the game will end in a k-set. ∀ has ℓ moves, and
thus all X will be played. By equation 1, the resulting k-
set is either a variable set for some Aa or is assigned F . By
Lemma 4.3, it will not end in F because this would make the
matrix false, and so φ(Aa) holds. □

Lemma 4.5. If Φ separates Mk ,ℓ and negative clause c ∈ ψ ,
then ¬φ(Aa) holds, for some ¬a ∈ c .

Proof. Consider the negative structure C(c) and the strategy
for ∃: “play any Yi if not played, otherwise any unplayed
element.” ∃ has k − l moves, and so all Y will be played. If
not all X are played by some player, then the game ends on
T , which is a contradiction. Thus all of X and Y are played,
and so the games ends on some variable set, say that of Aa ,
and thus ¬φ(Aa). □

We can now state and prove our desired result:

Theorem 4.6. If Φ separates Mk ,ℓ , then there exists assign-
ment A which satisfiesψ .

Proof. Let A[ai ] = φ(Ai ) for all Boolean variables ai . By
Lemma 4.3,A[t] = ⊤ andA[f ] = ⊥, so clauses (t) and (¬f )
are satisfied. By Lemma 4.4, all other positive clauses have a
true variable and by Lemma 4.5, remaining negative clauses
have a false variable. Thus A satisfiesψ . □

4.6 Constructing a Separator from a Satisfying
Assignment

We assume thatψ has satisfying assignment A, and we are
given a prefix P = Q0x0. . . .Qk−1xk−1 with k quantifiers and
ℓ universals. We then construct a formula Φ = P . φ that
separatesMk ,ℓ(ψ ).
Because the prefix P is given, we need only specify the

matrix φ, which will be a disjunction of cases. We add a
disjunct A(x0, . . . , xk−1) for each Boolean variable a where

A[a] is true. Note due to the clauses t and ¬f in ψ , T (. . .)
will always be a disjunct and F (. . .) will never be. To cover
the case when two bound variables are the same element,
we add a subset of the formula:

Ei = distinct(x0, . . . , xi−1) ∧
(x0 = xi ∨ x1 = xi ∨ · · · ∨ xi−1 = xi )

Ei expresses the fact that the variables bound before xi are all
distinct, but xi is equal to one of them. Equivalently, Ei says
that xi is the first repeated bound variable. We let E0 ≡ ⊥ and
note the Ei are mutually exclusive with each other and the
relations Ai (. . .). We add Ei as a disjunct ifQi = ∀, and omit
Ei otherwise. This completes the specification of φ, which
consists of a disjunction of some of the Ei and the relations
of variables A assigns true.

We now show that Φ is true for positive structures inMk ,ℓ
and false for negative structures. We do so by giving strate-
gies for ∃ in positive structures and ∀ in negative structures
such that the game ends with a matrix of the correct polarity.

Lemma 4.7. C(c) |= Φ for a positive structure C(c) ∈ Mk ,ℓ

Proof. We know A satisfiesψ , so one of the variables a ∈ c
satisfies A[a] and thus A(. . .) ∈ φ. To show Φ is true we
make the game end in A or T . Let the element of C(c) which
represents a be Va . Our ∃ strategy will be: “play the first
unplayed element from Va , any Y , or any X , in that order.”
Note that our strategy is uniqueness-preserving. If ∀ plays
a repeated element, then the corresponding Ei in φ is true
regardless of the rest of the played elements, and the matrix
is true.

If all played elements are distinct, then note as ∃with k−ℓ
moves we have ensured that Va and all Y are played. If all
X are played, then we end on A. If not, we end on T . Both
relations are in φ, and so the matrix is true. Thus, we can
always force the game to end with a true matrix, and so our
strategy is winning for ∃ and the formula is true. □

Lemma 4.8. C(c) ̸|= Φ for a negative structure C(c) ∈ Mk ,ℓ

Proof. A assigns one of the variables ¬a ∈ c false, so Φ is
false if as ∀ we can force the game to end in A or F , because
neither will be in φ. Now if ∃ plays a repeated element then
one of the Ei will be true, but now this time that Ei is omitted
from φ. But because all Ei and A are mutually exclusive, no
disjunct will be true and the matrix is false regardless of
future moves. Now we give a strategy for ∀ as: “play the
first unplayed ofVa , any X , or any Y , in that order.” Now our
strategy ensures, due to our ℓ moves, that all of X and Va
will be played. Thus the game ends either in A or F , both of
which are absent from φ, and so the matrix will always be
false and thus the formula is not true. □

Theorem 4.9. Ifψ has satisfying assignmentA, Φ as defined
above separatesMk ,ℓ(ψ )

Proof. Follows from Lemmas 4.7 and 4.8. □
8



First-Order Quantified Separators PLDI ’20, June 15–20, 2020, London, UK

4.7 Extending to k-SEP
We have shown that given a particular prefix, we can reduce
SAT to separability. However, this does not immediately im-
ply that k-SEP is also difficult, because now the prefix is not
given and the extra flexibility might make the problem easier.
We extend our construction slightly by adding structures for
the trivially satisfied clauses (t ∨ f ) and (¬t ∨ ¬f ). Then we
can prove the following lemmas.

Lemma 4.10. If Φ is a prenex formula with at most k quan-
tifiers and Φ separatesMk ,ℓ , then Φ has exactly k quantifiers.

Proof. Assume for sake of contradiction that Φ has fewer
than k quantifiers. Then it does not have k distinct terms,
so all defined predicates are false in the matrix φ. Thus the
matrix φ is logically equivalent to one which only uses equal-
ity, and such a formula cannot distinguish two structures
of opposite polarity but equal cardinality, such as C(t) and
C(¬f ). Thus, Φ cannot be a separator and we have a contra-
diction. □

Lemma 4.11. If Φ is a k-prenex formula separating Mk ,ℓ ,
then Φ must have ℓ universals.

Proof. Assume for sake of contradiction Φ has u > ℓ univer-
sals. Consider the positive structure C(t ∨ f ) and ∀ strategy
“pick Vf if available, then any Xi , then any Yi .” ∀ has at least
ℓ + 1 moves, and so the element Vf as well as all X will be
picked. If all k − 1 auxiliary elements are picked, then the
variable set corresponding to F will have been picked. If not
all k − 1 auxiliary elements are picked, then because all Xi
were, the k-set will still be that of F . Thus the game will
always end in F , which is a contradiction.
Assume for sake of contradiction Φ has u < ℓ universals.

Consider the negative structure C(¬t ∨ ¬f ) and ∃ strategy
“pick Vt if available, then any Yi , and finally Xi .” Because
this is a negative structure, ∃ has k − u ≥ k − ℓ + 1 moves
and element Vt and all Y are picked. If all the X are picked
by some player then the game ends in the variable set for
T . Otherwise one of the X is missing, and so the k-set is
assigned T . The game always ending in T is a contradiction
for a negative structure. □

Together, these lemmas establish that any separator must
have the same number of universal and existential quantifiers
as suggested by k and ℓ. Note the only assumption about the
prefix in Lemmas 4.4 and 4.5 was that there were ℓ universals
and k − ℓ existentials, which we have now established. This
means that Theorem 4.6 is also true for k-SEP. Note that the
separator Φ can have any prefix with the right number of
existentials. For the other direction, we do not need tomodify
any reasoning because the construction of a formula already
made no assumptions about the prefix, and we can use that
reasoning to construct separators with any permutation of
quantifiers in the prefix.

1 def separate(structures):
2 prefix ← ""
3 while size of prefix ≤ k do
4 if check_prefix(prefix, structures) then
5 return build_matrix(prefix, structures)
6 prefix ← next_prefix(prefix)
7 return ⊥
8 def check_prefix(prefix, structures):
9 F ←

{ifm is positive then sat_formula(prefix, [],m)
else¬sat_formula(prefix, [],m)

form ∈ structures}
10 return

∧
F is SAT?

// For prefix p, assignment σ, structure m

11 def sat_formula(p, σ ,m):
12 if p is empty then
13 return SAT variable of QF-type of σ inm
14 (Q v : S . rest) ← p

15 f ← {sat_formula(rest,σ ∪ [e/v],m)
for e ∈m of sort S}

16 return if Q = ∀ then (
∧

f ) else (
∨

f )

Figure 3. Pseudocode for the separation algorithm including
supporting functions.

4.8 Complexity Results
With Theorems 4.6 and 4.9, we have now shown there is
a construction Mk ,ℓ(ψ ) that shows fixed-k-SEP as well as
k-SEP are NP-hard. We will shortly give an algorithm for
solving k-SEP with an oracle for SAT, which will show that
k-SEP is in NP, and thus NP-complete. In our separation
algorithm, we will actually be solving many fixed-k-SEP
instances to solve k-SEP.

5 Separation Algorithm
We now give an algorithm for separation that reduces to
SAT, shown in Figure 3. The algorithm enumerates prefixes
by size up to size k , and checks whether the given structures
can be separated by each one, exiting early if one is found. To
check a prefix, the algorithm relies on the fact that the truth
of M |= p for a candidate k-prefix separator p is a function
of the truth values of the matrix of p for the QF-types of all
assignments of the quantified variables to elements ofM . To
determine if a separator exists, it is sufficient to ask whether
there is a propositional assignment to QF-type variables ai
such that the separator has the correct polarity on each
structure. A key observation here is that the same QF-type
may appear in different structures, and that the matrix of
any separator must have a consistent truth value for these
QF-types, as encoded in the variables ai .

9
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The sat_formula function recursively constructs a propo-
sitional formula which is true precisely whenM |= p, given
the variables ai . For each quantifier we compute all pos-
sible assignments of its variable, and recursively compute
the formula with that assignment and the remaining suffix
of the formula prefix. When we reach the matrix, we com-
pute and return the QF-type variable ai for that assignment.
We compute a b-bounded QF-type forM,σ by enumerating
all finitely many well-sorted atoms a, and record whether
M ∪ σ |= a. The number of such atoms is a constant given
the signature, b, and k . We then combine the recursive re-
sults with ∧ if the quantifier is ∀ and ∨ if the quantifier is
∃. For example, if we have a structure with one sort and
two elements x,y, we are checking the prefix ∀∀∃, and q
computes the QF-type index, then we get:( (

aq(x ,x ,x ) ∨ aq(x ,x ,y)
)
∧

(
aq(x ,y,x ) ∨ aq(x ,y,y)

) )
∧

( (
aq(y,x ,x ) ∨ aq(y,x ,y)

)
∧

(
aq(y,y,x ) ∨ aq(y,y,y)

) )
With such formulas, we construct a SAT query as the

conjunction of all the positive formulas and negation of the
negative formulas. This reduction shows that k-SEP is in NP.
The remainder of this section discusses how to produce a
concrete separator from this reduction, as well as practical
heuristics and optimizations.

5.1 Building a Matrix
Given that a particular prefix admits a separator, we show
how to build amatrix in conjunctive normal form. Ourmatrix
will consist of some number of clauses of literals, and we can
introduce variables yj ,k to mean literal j appears in clause k .
We require that each atom appears at most once per clause,
i.e. ¬yj ,k ∨¬yj′,k for j, j ′ of the same atom. If we letTi , j mean
that literal j is true in QF-type i , then we can construct a
formula which constrains the QF-type variable to have the
same truth value as the matrix in any assignment with that
QF-type:

ai ↔ (Ti ,0 ∧ y0,0 ∨Ti ,1 ∧ y1,0 ∨ . . .)

∧ (Ti ,0 ∧ y0,1 ∨Ti ,1 ∧ y1,1 ∨ . . .)

∧ . . .

Because the T ’s are constants, this formula will simplify
by effectively dropping some of the y terms in each clause,
which will be the same between clauses of ai but different
in another ai′ . If we have an assignment to ai , we can use
this to give us an assignment to yj ,k , but this can result in
overly complex matrices. Instead, we can then add these
constraints along with F , and ask for an assignment with a
minimal number of yj ,k . We can also attempt this process
with one clause, only increasing it if we get UNSAT, which
has the effect of minimizing the number of clauses.

5.2 Limiting Matrix Complexity
We extend this algorithm by introducing a boundw on the
number of clauses in the matrix. Even if the SAT query in
check_prefix indicates a matrix exists, we eliminate a prefix
if the resulting matrix would have too many clauses. As a
heuristic, we explore parameters k,w diagonally by increas-
ing their sumk+w whenever we can’t separate. This strategy
introduces a tradeoff between the number of quantifiers and
the number of clauses, rather than considering formulas only
by number of quantifiers.

5.3 Lazy Exploration Optimization
One problem with the algorithm as described is that it al-
ways computes every assignment to quantified variables,
even if not all expansions are necessary. For example, sup-
pose we know that our matrixM satisfies p(x) ⇒ M . Then if
our prefix is ∀x∀y∀z, in a positive structure once we assign
x to an element e that satisfies p(e), we know the formula
will be true without considering the assignments of y and
z. We modify the algorithm to take advantage of this fact
by lazily expanding the set of assignments: every time we
get a new proposed matrix that does not actually separate
due to unconstrained assignments, we add the constraints
which show why that matrix does not work. The SAT query
starts with no restrictions and is updated incrementally un-
til either UNSAT is produced, or a correct matrix is found.
This optimization is particularly effective if the separation
problem can be solved by exploring a small fraction of all
assignments.

6 Invariant Inference with Separators
We show how separators can be applied to invariant in-
ference by adapting the IC3/PDR algorithm [4, 9] to use
separators and infer general quantified formulas. We first
introduce the invariant inference problem, describe a simple
ICE learning [14] algorithm and the more advanced IC3/PDR
based algorithm, and then discuss the results on a selection
of distributed protocols in Section 7.2.

6.1 Invariant Inference
For our purposes a transition system consists of states, a for-
mula init describing initial states, a formula bad describing
bad states, and a transition relation TR between pre- and
post-states. We say that if B holds in every post-state of every
transition where A holds in the pre-state, then A⇒ wp(B).
Further, the system as a whole is safe if the set of bad states is
not reachable from the initial states. The invariant inference
problem is the problem of establishing safety by inferring a
formula I for a given transition system such that:

10
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init⇒ I (2)
I ⇒ wp(I ) (3)
I ⇒ ¬bad (4)

We say that I is inductive if it satisfies equations (2),(3).
The invariant inference problem is then to find an inductive
formula that implies safety. For simplicity, we assume the
system is safe.

6.2 ICE Learning with Separators
The simplest invariant inference algorithm using separators
is ICE learning. The algorithm works by refining a candidate
invariant I by incrementally adding constraints derived from
counterexamples to equations (2),(3),(4). Positive counterex-
amples arise from a first-order SAT query of the negation of
(2), and negative examples likewise come from (4). Equation
(3) is interesting because as observed in [14, 27], counterex-
amples are implication constraints: I only must be true on
the post-state if it is true for the pre-state. We note that it
is trivial to extend the separation algorithm of Section 5 to
support such implication constraints by directly encoding
the implication between the formulas for each pair of struc-
tures and allowing the SAT solver to handle the disjunction.
After a new constraint is added, the separation procedure
produces a new I satisfying all known constraints. When no
counterexamples exist, the candidate I satisfies equations
(2),(3),(4) and the algorithm succeeds.

This algorithm requires learning the invariant monolith-
ically — it is not possible to learn conjuncts of a larger in-
variant piece by piece. Nevertheless, this algorithm is able
to correctly infer the invariant for a few of the the smallest
examples from our evaluation (Section 7, Table 2), includ-
ing ring-id and firewall. The firewall example is notable for
requiring an invariant with quantifier alternation.

6.3 IC3/PDR Learning with Separators
To infer the invariants for more complex examples, we need
an invariant inference procedure that allows the invariant
to be learned incrementally. We describe a version of the
IC3/PDR algorithm that uses separators to infer more com-
plex invariants.
The IC3/PDR [4, 9] algorithm maintains a series of con-

junctions of formulas F0 . . . Fn known as frames. These
frames satisfy the following frame conditions:

F0 = init (5)
Fi ⇒ Fi+1 (6)
Fi ⇒ wp(Fi+1) (7)
Fi ⇒ ¬bad (for i < n) (8)

Together, these conditions ensure that each frame Fi is an
over-approximation of the states reachable in at most i steps
from the initial states. Additionally, all frames but the last

frame Fn exclude all bad states. As the algorithm runs, new
formulas may be added to strengthen a frame, and the algo-
rithm ends when any Fi , i < n is inductive.6

To add a new formula, IC3/PDR queries whether there is
a bad state in Fn . If there is, that state is blocked in frame Fn .
If there are no bad states in Fn , then a new frame is opened,
initialized to true.

To block a state s in a frame Fi , first we recursively block
all TR-predecessors of s in the prior frame Fi−1 that are not
already excluded from Fi−1.7 Then we inductively generalize
by searching for a formula p satisfying:

s ̸ |= p (9)
init ⇒ p (10)
Fi−1 ∧ p ⇒ wp(p) (11)

Such a p will satisfy initial states, not satisfy s , and be in-
ductive relative to Fi−1. Adding p to the current frame and
all previous ones (Fj , 1 ≤ j ≤ i) will preserve the frame
conditions. To find p we can use a very similar procedure to
the ICE learning from Section 6.2: we start with true , and
add constraints that arise from counterexamples to these
conditions until we converge to an acceptable p.8 Because
our separation algorithm gives the smallest formula in some
sense, the resulting p will be the smallest formula that satis-
fies the constraints. After a formula is added to some frame,
we can apply the standard pushing optimization, attempting
to move formulas to subsequent frames as long as the frame
conditions are still be satisfied. Pushing is important because
it prevents the need to rediscover properties in each frame.

7 Evaluation
We evaluate our technique in two ways: first by learning
formulas directly from positive and negative examples pro-
duced by an oracle, and the second uses separation-based
IC3/PDR to infer invariants for distributed protocols.
Our implementation of the separation algorithm uses

Z3 [7] to discharge SAT queries, and our adaptation of
IC3/PDR is based on the mypyvy framework [12]. Our im-
plementation and benchmarks are publicly available in the
artifact of this paper.

7.1 Learning Golden Formulas
To evaluate separation independently of any particular in-
variant inference procedure, we use a process that learns
some golden formula G from labeled structures. We start
with an empty set of structures, and ask for a separator p.
6The algorithm may also end by discovering a concrete sequence of transi-
tions that shows that the system is not safe.
7Because all blocked states are either bad states or are known to reach a
bad state, if the algorithm tries to block a state in the initial frame F0 then
it can conclude the system is unsafe.
8As an optimization, we can add all initial states and transitions with pre-
state satisfying Fi−1 initially rather then requiring them to be inferred
again.
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Figure 4. Stacked histogram of learning success (light) and
failure (dark) by number of quantifiers in the golden formula.

Then we ask whether (p ⇒ G) ∧ (G ⇒ p), by querying
whether its negation is satisfiable using CVC4 [2], a SMT
solver that supports quantifiers and producing models. If the
query is UNSAT, then p and G are equivalent, and we have
learned G. Otherwise, the solver returns a model M of the
query, which is a structure on which p and G differ. We add
M to our set of structures labeled according toM |= G and
repeat with a new candidate p.

We first describe howwe obtained a set of golden formulas,
and then discuss the results of running the learning process.

7.1.1 Corpus of Quantified Formulas. We obtained our
corpus of golden formulas from the human authored induc-
tive invariants of 27 distributed protocols from previous
works [3, 11, 12, 23–25, 29]. Our benchmark examples were
chosen to evaluate whether quantified separation is a useful
primitive for building invariant inference algorithms, with
a focus on examples requiring invariants with quantifier
alternations. We present some examples for which our tech-
niques are successful, and some examples that are currently
beyond our reach. The protocols are specified in the Ivy and
mypyvy systems. Each invariant is manually decomposed
into a number of conjuncts, each of which became a golden
formulaG . The golden formulas are not necessarily in prenex
normal form and have anywhere from no quantifiers to 7
quantifiers. We had a total of 306 formulas, and a histogram
of formula count by the number of quantifiers can be seen
in the total heights of bars in Figure 4.

7.1.2 Results. We ran the learning process with function
symbol depth bound b = 1 and overall timeout of 1 CPU-
core hour for each formula, including the time to explore
prefixes, construct minimal matrices, solve for equivalence,
and construct counterexamples. Because the constraints only
grow, each prefix is eliminated at most once, but multiple
formulas of the same prefix are often generated with various
matrices before the correct formula is found. The overall

0 100 200 300
Formula (ordinal)

100

101

102

103

Ti
m
e
to

le
ar
n
(s
ec
)

Figure 5. Cactus plot of time to learn formulas. Formulas
are ordered by time to learn, and timeouts (>3600 sec) are
the blank area on the right.

success rate of this process is 77.1%, and success rate by
number of quantifiers in the golden formula can be seen in
Figure 4.
Our results show that separation is successful for most

of the formulas up to 5 quantifiers, and less successful for
larger sizes. It should be expected that larger prefixes are
more difficult to learn. In addition to the exponential scaling
caused by quantifier depth, each new quantified variable
creates more possible literals that can appear in the matrix.
We can observe that 3 quantifiers have a lower failure rate
than 1 or 2 quantifiers, which we attribute to other factors
affecting the difficulty of learning (e.g. complexity of Boolean
matrix or signature) and their distribution in our corpus.

We give a cactus plot of the time to learn formulas in Fig-
ure 5. In this chart, examples are sorted by their time to learn
along the x-axis, while the logarithmic y-axis shows the
time to learn that formula. The shape of the chart depends
on both the distribution of difficulty in the problems and the
performance of the algorithm, so only general trends can be
observed. The steep increase around formula 175 suggests
additional work is required to handle the most difficult sepa-
rability problems. As shown by the gap on the right of this
chart, our algorithm did not learn about 23% of the corpus,
which we analyze next.

7.1.3 Failure Analysis. Closer investigation of the for-
mulas which did not succeed reveals two primary reasons
for failure: exponentially many prefixes and the matrix being
difficult to infer. Additionally, we observed a single failure
because the SMT solver was unable to provide a counterex-
ample. The rarity of this problem, despite generating for-
mulas in first-order logic, is encouraging but it needs to be
addressed in any robust system that uses separators.
Some formulas had too many prefixes to explore. This is

particularly problematic for some of the 6 and 7 quantifier
formulas with several sorts, where a vast majority of the
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Table 2. Invariant inference results on examples. Size is the
number of conjuncts in the human written invariant. Our
solve rate is the percent of 10 runs which were successful
within one hour, and the time is the mean of successful runs.
PDR∀ was successful in every run.

Example ∃? Size

Our
solve
rate

Our
sec

PDR∀
sec

ring-id - 4 100% 38 162
toy-consensus-forall - 4 100% 10 5
consensus-wo-decide - 5 100% 63 88
sharded-kv - 5 100% 20 6
learning-switch - 6 0% - 126
consensus-forall - 7 90% 2341 333
lockserv - 9 100% 7 13
ticket - 14 100% 196 224
firewall Y 2 100% 5
sharded-kv-no-lost-keys Y 2 100% 4
client-server-ae Y 2 100% 720
toy-consensus-epr Y 4 100% 51
client-server-db-ae Y 5 0% -
ring-id-not-dead Y 6 70% 612
consensus-epr Y 7 90% 890
hybrid-reliable-broadcast Y 8 90% 2002

time was spent eliminating possible prefixes. This difficulty
is inherent in the problem, but with more careful engineering
or by exploiting the embarrassingly parallel search within a
given k , it may be possible to extend our solution to larger
prefixes without new algorithmic insights.
A more subtle failure occurs for formulas with matrices

with more than one clause. Recall our algorithm finds sep-
arators with the minimal sum of the depth and number of
clauses, exploring them in a diagonal fashion. For some prob-
lems, adding even just one extra quantifier or clause can
substantially expand the space of formulas. For one of the
examples in our corpus, the algorithm fails because it spends
most of the time separating with 5 quantifiers, 1 clause, when
the correct solution has 4 quantifiers and 2 clauses. This
example finishes quickly if we manually skip 5 quantifier
formulas. Solving this problem in general may require bet-
ter heuristics or a more precise understanding of how the
complexity of separation depends on the depth, clauses, and
logical signature of the problem.

7.2 IC3/PDR with Separators
We evaluated our implementation of IC3/PDR on the 16 dis-
tributed protocols from Section 7.1.1 for which all conjuncts
could be individually learned, which ranged from simple
(ring-id, lockserv, firewall), to challenging (consensus-epr,
hybrid-reliable-broadcast [31]). For comparison, we ran an
implementation of the PDR∀ algorithm for the examples with
only universal quantified invariants. We ran each algorithm

10 times to account for randomness in the underlying solvers,
and summarize the results in Table 1.

7.2.1 Discussion. On the universal examples, we ran the
separators restricted to only universal prefixes, which al-
lows us to do a more direct comparison with the existing
PDR∀ algorithm. We see that the performance of the two
algorithms is mostly comparable except for consensus-forall
and learning-switch. Unsurprisingly, there is a cost to the
generality of our approach. In particular, our algorithm finds
formulas with the smallest number of quantifiers first, so
consensus-forall it will first find:

∀n. votes(n, n) ⇒ votemsg(n, n)

when it should find:

∀n,n′. votes(n′, n) ⇒ votemsg(n, n′)

This behavior can waste time discovering formulas that will
need to be generalized later.
For the learning-switch example, our algorithm fails to

find any invariants. This may be due to the fact this protocol
has 3-ary and 4-ary relations with a single sort. Even with
just two quantified variables, there are 8 different atoms
that a 3-ary relation can generate, and then the matrix can
be any of the 228 different Boolean functions on this many
atoms—and we have not even counted the 4-ary relation.
While we don’t necessarily need to explore every possible
matrix, the extra possibilities slow down separation. This
problem would not occur if the arguments of the relation
have three different sorts: the same number of atoms requires
6 quantifiers to generate two variables for each sort.
On the examples with quantifier alternation, there is no

existing algorithm to compare against. In this case we are
able to infer invariants for 7 out of 8 examples. The exam-
ples which we are able to infer include both simple (firewall,
sharded-kv-no-lost-keys) and complex (consensus-epr) ex-
amples. The toy-consensus-epr example is a good example of
how protocols require alternation: the core of the invariant
is a ∀∃∀ formula expressing that every final consensus value
has a quorum of nodes which all voted for that value:

∀v . decided(v) ⇒ ∃q.∀n.member(n, q) ⇒ vote(n, v)

For the client-server-db-ae, there are a few separation
queries that dominate the runtime, indicating that our heuris-
tic of minimizing the number of quantifiers and clauses may
not be a good fit for this problem. The failures of the ring-id-
not-dead example are due to the SMT solver being unable
to find a counterexample to equations (10),(11) in the time
limit. Although checking if a first-order formula separates
a finite set of structures is in fixed-parameter P, checking
inductiveness is not decidable in general. A possible solu-
tion we leave to future work is to generate separators in a
decidable logic fragment.
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8 Conclusion
We show that first-order quantified separators are a useful
building block in enabling advanced reasoning about quan-
tified formulas. We survey various classes of formulas that
could be used as separators, and show that k-prenex normal
form has desirable generalization properties. We show that
unlike other nearby classes, this class is NP-complete for
fixed k by reducing it to and from SAT. Our reduction to
SAT results in a practical algorithm for constructing sepa-
rators from positive and negative examples. We apply our
algorithm on a corpus of human authored formulas, which
shows that the algorithm is capable of discovering non-trivial
formulas. We present the first invariant inference procedure
capable of finding invariants with quantifier alternations.
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