
COM

COMPLEXITY COLUMN
NEIL IMMERMAN, University of Massachusetts Amherst
immerman@cs.umass.edu

Monadic Second-Order Logic (MSO) expresses many natural NP Complete problems
as well as problems complete for all levels of the Polynomial-Time Hierarchy. Thus, it
was surprising when Bruno Courcelle proved that for inputs of any fixed tree width,
all MSO properties are checkable in linear time [Courcelle 1990].

Recently, Michael Elberfeld and his coauthors have refined Courcelle’s Theorem in
several striking ways. In particular, they have characterized the complexity of the rel-
evant decision, optimization and counting problems, for structures of bounded tree
width as well as for more restricted inputs. All of these problems are inside deter-
ministic logspace, L. Some of them are complete for L, and others live in a variety of
smaller classes inside L.

Elberfeld explains these ground-breaking results in the following clear and high-
level exposition.

ACM SIGLOG News 22 January 2016, Vol. 3, No. 1

Variants of Courcelle’s Theorem for Complexity Classes inside P

Michael Elberfeld, RWTH Aachen University

It is well known that monadic-second order logic (MSO) expresses many natural NP-complete problems.
However, a famous theorem of Courcelle states that every problem expressible in MSO can be solved in linear
time for input graphs whose tree width is bounded by a fixed constant [Courcelle 1990]. Courcelle’s Theorem
is the prototypical example of an algorithmic “meta theorem”, which states an algorithmic upper bound for a
whole family of problems. This column reviews a series of meta theorems several of which refine Courcelle’s
Theorem by more precisely classifying the complexity of natural families of problems.

I will describe concepts, results, and applications that appeared in joint works with Andreas Jakoby and
Till Tantau and in my dissertation [Elberfeld et al. 2010; 2012; Elberfeld 2012]. I will also describe some
recent developments and open problems. I would like to thank Neil Immerman for inviting me to write a
column about “Courcelle’s Theorem and Logspace complexity”. I hope you enjoy it.

1. INTRODUCTION
Many computational problems can be defined in monadic second-order logic. For ex-
ample, the 3-COLORABILITY problem is expressed by the following MSO formula,

'3-colorable := 9R 9G 9B 8v((R(v) _G(v) _B(v)) ^ 8w(E(v, w) !
¬(R(v) ^R(w)) ^ ¬(G(v) ^G(w)) ^ ¬(B(v) ^B(w)))) .

A graph G satisfies this formula (G |= '3-colorable) if its vertices may be colored red,
green or blue so that adjacent vertices do not have the same color. For example, |=
'3-colorable but 6|= '3-colorable.

In addition to defining decision problems like 3-COLORABILITY, we can use MSO-
formulas to define counting and optimization problems. Consider the formula,

'dominates(X1) := 8v (X1(v) _ 9w (X1(w) ^ E(v, w))) (1)
which has a free set-variable, X1. A graph G and a subset of its vertices D ✓ V (G) sat-
isfies 'dominates if D is a dominating set in G. We can also use the formula 'dominates(X1)

to express the problem of counting the number of dominating sets, or to compute the
size of a smallest dominating set. The latter is the well known optimization problem
DOMINATING-SET.

The problem 3-COLORABILITY and the decision variant of DOMINATING-SET are well
known NP-complete problems [Garey and Johnson 1979]. However, by Courcelle’s The-
orem, for graphs of bounded tree width, these problems can be solved in polynomial
time.

A graph has tree width w if it can be decomposed into a tree of subgraphs called
bags of size  w + 1. (See Chapter 11 in the book of Flum and Grohe [2006] for formal
definitions and basic properties related to tree decompositions.) The tree structure of
the decomposition captures the global tree-likeness of the input and the small sub-
graphs cover local connectivity patterns that may be far from being trees. A related
notion is the tree depth of a graph; graphs with tree depth d have tree decompositions
where not only the width is bounded in terms of d, but, in addition, the depth of the

ACM SIGLOG News 23 January 2016, Vol. 3, No. 1

underlying trees is bounded in terms of d. While tree width can be seen as measuring
the similarity of graphs to trees (trees have tree width 1 and graphs with cycles have
tree width at least 2), tree depth can be seen as measuring the similarity of graphs to
star graphs (star graphs have tree depth 2, and the tree depth of a graph grows with
the length of paths in it). We say that the tree width (tree depth) of a class of struc-
tures is bounded if there is a constant that upper-bounds their tree width (tree depth).
Solving computational problems on structures of bounded tree width is often done by
a two-step approach that computes a tree decomposition and, then, solves the problem
by using a bottom-up dynamic programming approach along the tree.

For structures of bounded tree width, the polynomial-time bound of solving MSO-
definable problems has been refined from the algorithmic point of view: sequential
algorithms running in linear time [Courcelle 1990] and parallel algorithms running in
log time [Bodlaender and Hagerup 1998] are known to solve MSO-definable decision
problems for structures of bounded tree width and similar results hold for counting
and optimization problems whose definition is based on MSO-formulas. A variety of
results of a similar flavor have been developed during the last years and are commonly
called algorithmic meta theorems [Grohe and Kreutzer 2011]: Instead of presenting an
algorithmic result for some particular problem, these theorems state that “all problems
of a certain kind on structures of a certain kind are solvable by an efficient algorithm
of a certain kind”. Courcelle’s Theorem falls into this category since it shows that all
MSO-definable problems for structures whose tree width is bounded are solvable in
linear time.

Since many important problems are MSO-definable, Courcelle’s Theorem and its
variants yield unified frameworks for showing that numerous problems on structures
of bounded tree width are efficiently solvable. Moreover, often algorithmic meta theo-
rems show their real power when used as subroutines in algorithms solving problems
that are normally (1) not MSO-definable, or (2) whose inputs are not tree-decomposable
in an algorithmically useful way. A problem of the first kind is computing the chromatic
number of a graph, the least number of colors needed for a valid coloring of a graph.
Since graphs of tree width w have chromatic number at most w + 1, we can use mod-
ifications of the formula for 3-COLORABILITY to test whether the graph is c-colorable
for a c  w + 1. A problem of the second kind is EVEN-CYCLE—deciding whether an
undirected loop-free graph has a cycle of even length. This problem can be solved by
first testing whether the tree width of the graph is higher than some constant. If this
is the case, we can use a graph-theoretic insight of Thomassen [1988] showing that
there is always an even cycle in such graphs and we answer “yes”. If the tree width is
bounded by a constant, we use Courcelle’s Theorem to solve the problem via an MSO-
formula that defines even-length cycles on the incidence representation of graphs (that
means, logical structures for graphs where both vertices and edges are represented as
individual elements and they are related by a binary incidence relation).

The algorithmic meta theorems mentioned above provide a unified framework for
finding fast sequential and parallel algorithms to solve MSO-definable problems on
tree-decomposable structures. I will describe some results that exactly characterize the
complexity of families of MSO-definable problems. We already know that MSO-definable
decision problems on structures of bounded tree width lie in P, but how deep inside P
can we place them? Bodlaender [1989] and Wanke [1994] contributed important steps
to clarify this question: Bodlaender showed that all problems that are covered by Cour-
celle’s Theorem lie in NC (they can be solved by families of polylog-depth circuits) and
Wanke showed that in fact they lie in LOGCFL = SAC1 (they can be solved by fami-
lies of log-depth circuits with unbounded fan-in _ gates but bounded fan-in ^-gates).
This complexity class is sandwiched between NL (problems decidable by nondetermin-
istic logspace Turing machines) and AC1 (problems decidable by families of log-depth

ACM SIGLOG News 24 January 2016, Vol. 3, No. 1

circuits over Boolean gates of unbounded fan-in); that means, NL ✓ SAC1 ✓ AC1. We
review results that refine these insights in terms of complexity classes inside L (deter-
ministic logspace).

Section 2 reviews results and techniques from [Elberfeld et al. 2010] that are re-
lated to algorithmic meta theorems for logspace DTMs. Sections 3 and 4 review results
and techniques from [Elberfeld et al. 2012] about algorithmic meta theorems for cir-
cuit complexity classes that lie inside L. Section 5 concludes with a summary and an
outlook on current and possible future work.

2. VARIANTS OF COURCELLE’S THEOREM FOR LOGARITHMIC SPACE
A key problem in the study of logspace DTMs is REACHABILITY, detecting whether
there is a path from some start to some target vertex in a directed graph. While
REACHABILITY was identified to be NL-complete for general directed graphs [Jones
1975], Reingold gave an L upper bound for the case of undirected graphs [Reingold
2008]. Paths and thus, reachability, are MSO-definable on the incidence representa-
tion of directed graphs. Questions about the complexity of reachability for classes of
directed graphs motivated us to prove Theorem 2.1.

THEOREM 2.1. For every w 2 N, and every MSO-formula ', there is a logspace DTM
that, on input a structure A of tree width at most w, decides whether A |= '.

Since reachability is expressible in MSO, it follows from Theorem 2.1 that it is also
in L for graphs of bounded tree width.

Another problem of great interest is PERFECT-MATCHING, detecting whether an
undirected graph has a perfect matching. PERFECT-MATCHING is known to be in P
and in fact even in Random NC (RNC), but it is not known to be in NC. In addition
to deciding whether a graph has a perfect matching, counting the number of perfect
matchings was identified as an important complexity problem by Valiant [1979].

To move from decision problems to counting and optimization problems, Elberfeld
et al. [2012] developed the following methodology. Let '(X1, . . . , Xk, Y1, . . . , Y`) be an
MSO-formula with two sets of free set-variables, namely the Xi and the Yj , and let A
be a structure with universe A. The solution histogram of A and ' (histogram(A,')),
is a k-dimensional integer array that tells us how many solutions of a certain size
exist. In detail, let s = (s1, . . . , sk) 2 {0, . . . , |A|}k be an index vector of sizes for
the sets that are substituted for the Xi. Then histogram(A,')[s] equals the num-
ber of (S1, . . . , Sk, S

0
1, . . . , S

0
`) 2 POW(A)

k+`, such that |S1| = s1, . . . , |Sk| = sk and
A |= '(S1, . . . , Sk, S

0
1, . . . , S

0
`) hold. In other words, we count how often ' can be satisfied

when the sets assigned to the Xi-variables have the specified sizes. (No restrictions are
imposed on the sizes of the Yj .)

For example, recall the formula 'dominates(X1) (Eqn. 1), with k = 1 and ` = 0.
histogram(G,'dominates)[s] is the number of dominating sets of size s in the graph G.
For example, the histogram for the graph G = with respect to the formula
'dominates(X1) is the following.

of dominating sets 0 0 3 8 5 1
of size 0 1 2 3 4 5

.

(For example, G has no dominating sets of size 1, and 3 of size 2.)
As another example, consider an MSO-formula 'is-matching(Y1) with k = 0 and ` = 1

over the incidence representation of graphs that defines sets of edges that are match-
ings. That means, it states that every vertex in the graph is incident to at most one
edge in Y1. Then histogram(G,'is-matching) is just a scalar value that tells us how many
matchings G contains. Similarly, one can state a formula 'is-perfect-matching(Y1) that helps

ACM SIGLOG News 25 January 2016, Vol. 3, No. 1

to count the number of perfect matchings; that means, matchings that cover all ver-
tices.

The following result generalizes Thm. 2.1 showing that not only are MSO decision
problems in L for structures of bounded tree width, but the same is true for MSO count-
ing problems:

THEOREM 2.2. For every w 2 N, and every MSO-formula '(X1, . . . , Xk, Y1, . . . , Y`),
there is a logspace DTM that, on input a structure A of tree width at most w, outputs
histogram(A,').

Theorem 2.2 has various applications. First of all, it can be applied to
'is-perfect-matching(Y1) to show that counting the number of perfect matchings can be
done in logspace for graphs of bounded tree width. Moreover, it follows that for graphs
of bounded tree width, the optimization problem DOMINATING-SET is in L: on input,
graph G, we compute histogram(G,'dominates) and output the smallest nonzero position.
Furthermore, we can determine, in logspace, whether there is a dominating set of a
given size and we can determine the number of dominating sets of a given size.

Tree decompositions of approximate width in logspace. A technique developed for
proving the theorems related to tree-width-bounded structures and logspace is the
computation of tree decompositions of an approximate bounded width. That means,
tree decompositions whose width is bounded by a linear function in the (exact) tree
width of the given graph. Once such tree decompositions are constructed, one can
use a translation from MSO-formulas on structures to automata on node-labeled trees
and an arithmetic simulation approach for the automata to prove the above theorems.
Computing tree decompositions of approximate width is also a step for removing the
witness on the tree width bound from both theorems stated above, and test the tree
width bound together with the MSO-defined property. That means, it is used to prove
the following formal statement in [Elberfeld et al. 2010]:

LEMMA 2.3. For every w 2 N, there is a logspace DTM that, on input a structure A,
either (1) outputs a width-w tree decomposition of A, or (2) outputs “no” and the tree
width of A exceeds w in this case.

The proof of this combines techniques developed for computing approximate tree de-
composition with calling MSO-definable problems, which are logspace-solvable due to
the above theorems, as subroutines. As a consequence, we also know the following:

PROPOSITION 2.4. For every w � 1, deciding whether a given graph has tree width
at most w is L-complete.

A different application of the approximate-width tree decompositions was recently
developed in a work [Elberfeld and Schweitzer 2015] that studies the complexity of the
isomorphism problem for graphs of bounded tree width. This problem was known to be
in P due to a result of [Bodlaender 1990], but since then it remained an open question
to completely classify the complexity with respect to circuit or space complexity classes
(see the introduction of [Elberfeld and Schweitzer 2015] for details on the problem’s
motivation and history). The above mentioned work uses the framework for computing
approximate tree decompositions as part of a logspace procedure for graphs of bounded
tree width with the final consequence that the graph isomorphism problem restricted
to graphs of tree width w is proven to be L-complete for each w � 1.

3. VARIANTS OF COURCELLE’S THEOREM FOR LOG-DEPTH CIRCUITS
Restricted to trees, reachability is complete for L [Cook and McKenzie 1987]. In fact,
many MSO-definable problems on structures of bounded tree width are complete for L.

ACM SIGLOG News 26 January 2016, Vol. 3, No. 1

The following meta theorem shows that when the input is given via an explicit width-w
tree decomposition in a format we call “term representation”, MSO problems are doable
in the circuit complexity class NC1.

THEOREM 3.1 ([Elberfeld et al. 2012]). For every w 2 N, and every MSO-formula
', there is an NC1-circuit family accepting the set of structures satisfying ', when the
inputs are given with a width-w tree decomposition in term-representation form.

In order to to prove a histogram-based theorem for log-depth circuits, we use arith-
metic circuits instead of Boolean circuits. The inputs to these circuits are (binary)
strings, while their inner gates (of bounded fan-in) compute addition and multiplica-
tion and the outputs are integers. Families of log-depth circuits of this kind define the
counting complexity class #NC1. (A good source for information about #NC1 is [Vollmer
1999].) In order to represent the output histogram h using a single number num(h) 2 N,
consider h to be stored in consecutive memory cells with each cell being large enough
to store a single entry. Then num(h) is the single number that equals the content of all
cells when reading them from left to right. Theorem 3.1 is a corollary of the following
theorem since testing whether a function from #NC1 outputs a value greater than 0 is
an NC1-computable property (this can be seen by replacing addition and multiplication
gates of the arithmetic circuits with Boolean _- and ^-gates, respectively).

THEOREM 3.2 ([Elberfeld et al. 2012]). For every w 2 N, and every MSO-formula
'(X1, . . . , Xk, Y1, . . . , Y`), there is a #NC1-circuit family that, on input a struc-
ture A with its width-w tree decomposition in term-representation form, outputs
histogram(A,').

The above two theorems can be applied when inputs are already accompanied by tree
decompositions, or when these decompositions can be automatically derived. Many
evaluation and simulation tasks are of the later kind, e.g., evaluating Boolean and
arithmetic sentences, as well as simulating the acceptance behavior and counting the
number of accepting computations of visibly pushdown automata. By encoding the
problems of evaluating Boolean and arithmetic sentences as MSO-defined decision and
counting problems, respectively, we see that Theorems 3.1 and 3.2 apply to problems
that are complete for NC1 and #NC1, respectively.

An interesting application of the above theorems is to show how
to evaluate any fixed tree automaton for unranked ordered trees
in NC1, and count the number of accepting runs in #NC1. Automata
on such trees, like the one shown on the right, determine a state for
each node based (1) on the label of the node, and (2) the outcome of
the computation of a finite automaton that works on the sequence
of states assigned to the children of the node. Such tree automata are used to model
specifications of XML documents [Gottlob et al. 2005] and, hence, the input is actually
a string like [[[] [] []] [] []], which encodes our example tree. The NC1-upper
bound for deciding the acceptance behavior of any fixed tree automaton on such inputs
was originally shown by Gottlob et al. [2005]. This result can also be obtained from
the above theorems by translating the input string into a logical structure along with
a tree decomposition in term representations, and using an MSO-formula to define the
automaton’s behavior. This also gives a #NC1-upper bound for counting the number of
accepting computations.

Balancing Tree Decompositions Using Constant-Depth Circuits. For proving Theo-
rems 3.1, 3.2, no tree decompositions are constructed, but the given tree decomposi-
tions are balanced: The processed tree may have a linear depth and, thus, may contain
data dependencies whose direct resolution would need the same linear circuit depth.

ACM SIGLOG News 27 January 2016, Vol. 3, No. 1

In the case of Theorem 3.1, we can translate the MSO-formula that defines the prob-
lem into a tree automaton and plug in a result showing that the acceptance behavior
of tree automata can be simulated using log-depth Boolean circuits [Lohrey 2001]. To
prove Theorem 3.2, we proceed as follows: Before translating the formula on the struc-
ture into a tree automaton, an extra layer is inserted into the proof that transforms
the given tree decomposition into a tree decomposition whose underlying tree is bi-
nary and balanced and, thus, has log depth. Interestingly, for this step constant-depth
Boolean circuits with threshold gates are enough to balance the tree decomposition.
Evaluating tree automata can then be done with log-depth circuits for the resulting
log-depth decomposition.

4. VARIANTS OF COURCELLE’S THEOREM FOR CONSTANT-DEPTH CIRCUITS
For structures of bounded tree depth, the complexity of MSO-definable problems drops
to constant-depth circuit classes. In order to solve MSO-definable decision, count-
ing, and optimization problems on tree-depth-bounded structures, different kinds of
constant-depth circuits are used: Boolean circuits for solving decision problems, arith-
metic circuits for solving counting problems, and Boolean circuits with threshold gates
for solving optimization problems. Depending on its type, a problem lies in one of the
unbounded-fanin, bounded-depth circuit classes: AC0 (Boolean gates), GapAC0 (arith-
metic {+,�, ·}-gates) or TC0 (threshold gates). We start with MSO-definable decision
problems.

THEOREM 4.1. For every d 2 N, and every MSO-formula ', there is an AC0-circuit
family that, on input a structure A of tree depth at most d, decides whether A |= '.

An example application of Theorem 4.1 is to put the MSO-definable decision problem
of whether a graph of bounded tree depth has a perfect matching, into AC0. In contrast,
the same problem for graphs of bounded tree width is L-complete. In case of input
structures of bounded tree depth, we can state the following theorem for counting
problems:

THEOREM 4.2 ([Elberfeld et al. 2010]). For every d 2 N, and every MSO-formula
'(X1, . . . , Xk, Y1, . . . , Y`), there is a GapAC0-circuit family that, on input a structure A
of tree depth at most d, outputs histogram(A,') as a sequence of numbers.

Applying Theorem 4.2 to a formula that defines perfect matchings on the incidence
representation of graphs (as described above) proves that we can count the number of
perfect matchings of tree-depth-bounded graphs in GapAC0. As in the logspace case,
the solution histogram subsumes many optimization problems that ask for the exis-
tence of a solution of a certain size. For this, we need to look up individual bits in
the string representation of the solution histogram. Using the result of Hesse et al.
[2002] that DLOGTIME-uniform GapAC0-circuit families, which compute numbers, can
be simulated by DLOGTIME-uniform functional TC0-circuit families that compute the
binary string representations of these numbers, we derive the following as a corollary
of Theorem 4.2.

THEOREM 4.3. For every d 2 N, and every MSO-formula '(X1, . . . , Xk, Y1, . . . , Y`),
there is a TC0-circuit family that, on input a structure A of tree depth at most d, outputs
histogram(A,') as a string.

Like Theorem 2.2, which concerns computing histograms in logspace, Theorem 4.3
can be used to solve a wide range of problems: Elberfeld et al. [2012] apply it to show
that the problems SUBSETSUM and KNAPSACK with input numbers that are encoded
in unary lie in TC0. The quest to determine the complexity of this kind of problem
has a long history: If the input numbers are encoded in binary, SUBSETSUM is known

ACM SIGLOG News 28 January 2016, Vol. 3, No. 1

to be NP-complete. It becomes polynomial-time solvable if the numbers are encoded in
unary; in fact, it can be shown to lie in NL in this setting via solving a reachability prob-
lem related to dynamic programming tables. Inspired by a conjecture of Cook [1985]
that “a problem in NL which is probably not complete is the knapsack problem with
unary weights,” a line of research began to capture the complexity of SUBSETSUM and
KNAPSACK with unary weights using specialized complexity classes lying between L
and NL [Monien 1980; Ibarra et al. 1988; Cho and Huynh 1988; Jenner 1995]. Us-
ing Theorem 4.3 it is possible to show that SUBSETSUM is TC0-complete: map an in-
stance with input numbers a1 to an and b encoded in unary as 1

a1
0 1

a2
0 . . . 1an

00 1

b of
SUBSETSUM to a forest F = (V,EF

) consisting of n stars where the ith star has ai ver-
tices, and use an MSO-formula '(S) that forces solution sets S ✓ V to cover each star ei-
ther completely or not at all. Since such forests have bounded tree depth, applying The-
orem 4.3 puts SUBSETSUM with unary weights into TC0; the input 1a1

0 1

a1
0 . . . 1an

00 1

b

has a solution exactly if histogram(F ,')[b] > 0. A similar idea applies to KNAPSACK
with unary weights and related number problems.

Arithmetic-Circuit-Based Evaluation of Automata for Unbounded Degree Trees. For
the proof of Theorem 4.3, tree decompositions of bounded width, whose underlying
trees have bounded depth, are constructed. Once such tree decompositions are avail-
able, the proof of Theorem 4.2 proceeds to evaluate the MSO-formula from the problem
definition along the tree decomposition, which is done by (1) transforming the formula
on the input structure into an equivalent tree automaton on the tree decomposition,
and (2) evaluating the tree automaton using an arithmetic circuit. This basic struc-
ture is often used to prove Courcelle’s Theorem and its variants, but for implementing
it in constant-depth, additional techniques needed to be developed. Commonly, proofs
of Courcelle’s Theorem and its variants are based on translations into automata on
degree-bounded trees. The nodes of the depth-bounded trees underlying the tree de-
compositions that are involved in the proof of Theorem 4.2 necessarily have an un-
bounded degree since, otherwise, they would only be able to cover constant-size struc-
tures. The main step in proving Theorem 4.2 is the development of an automaton
model for unbounded-degree labeled trees that can simulate MSO-formulas and whose
computations can be represented algebraically using arithmetic circuits.

5. CONCLUSION
Summary. This column reviewed variants of Courcelle’s theorem for complexity

classes inside P. That means, variants where the “linear-time” resource bound is re-
placed by other bounds (like logspace or bounds on circuit families) and “bounded
tree width” is kept or replaced by other conditions (like given tree decompositions
of bounded width in term representation or bounded tree depth). In each case, we
reviewed results that can be seen as tailoring Courcelle’s theorem to be used for a cer-
tain complexity class. Figure 1 gives an overview of the theorems, the ideas for their
proofs, and their range of applications.

Outlook. Theorem 2.1 shows that all MSO problems are in logspace for inputs of
bounded tree width. This contrasts with Courcelle’s Theorem which says that these
problems are in linear time, but potentially requiring linear space. The runtime for the
logspace algorithms provided by Theorem 2.1 is typically far from linear (the current
proof provides a polynomial runtime where the polynomial degree grows with a linear
function in the tree width). It would be extremely interesting to find algorithms that
have both a low memory footprint and a polynomial runtime with a low (maybe even
fixed) polynomial degree; the main motivation for this question comes from the wide
range of applications of MSO-definable problems.

ACM SIGLOG News 29 January 2016, Vol. 3, No. 1

NP

P

L

MSO-histograms for bounded tree width structures
Applies to graph problems
Proof via constructing decompositions

#NC1 MSO-counting on structures with decompositions as terms
Applies to evaluation problems
Proof via balancing decompositions

NC1

MSO-decisions on structures with decompositions as terms

TC0
MSO-histograms for bounded tree depth structures
Applies to number problems
Proof via evaluating tree automata

AC0 MSO-decisions on bounded tree depth structures

Fig. 1. The algorithmic meta theorems described apply to MSO-definable decision problems (MSO-decisions)
or to MSO-definable histograms (MSO-histograms). For the latter it is important to observe the difference
between histograms encoded as strings and histograms encoded as number.

One of the applications of the algorithmic meta theorem for logspace is constructing
tree decompositions of every constant width w 2 N in logspace, which implies that the
problem of deciding whether a graph has tree width at most w is L-complete for every
w � 1. A similar result was recently obtained for the related question of finding graph
embeddings with a constant Euler genus. It thus follows that the problem of deciding
whether a graph has Euler genus at most g is L-complete for every g 2 N [Elberfeld
and Kawarabayashi 2014]. It would be interesting to generalize these insights to more
general classes of graphs, for example, graphs that exclude a fixed minor. It is known
that the problem of deciding whether a graph does not contain H as a minor can be
solved in polynomial time for every fixed H [Robertson and Seymour 1995]. In the light
of the above results, it seems plausible that this upper bound might be lowered to a
complexity class inside P; perhaps even L.

REFERENCES
Hans L. Bodlaender. 1989. NC-algorithms for graphs with small treewidth. In Proceedings of the 14th In-

ternational Workshop on Graph-Theoretic Concepts in Computer Science (WG 1988) (Lecture Notes in
Computer Science), Vol. 344. Springer, 1–10. DOI:http://dx.doi.org/10.1007/3-540-50728-0 32

Hans L. Bodlaender. 1990. Polynomial algorithms for graph isomorphism and chromatic index on partial k-
trees. Journal of Algorithms 11, 4 (1990), 631–643. DOI:http://dx.doi.org/10.1016/0196-6774(90)90013-5

Hans L. Bodlaender and Torben Hagerup. 1998. Parallel Algorithms with Opti-
mal Speedup for Bounded Treewidth. SIAM J. Comput. 27, 6 (1998), 1725–1746.
DOI:http://dx.doi.org/10.1137/S0097539795289859

Sang Cho and Dung T. Huynh. 1988. On a complexity hierarchy between L and NL. Inform. Process. Lett.
29, 4 (1988), 177–182. DOI:http://dx.doi.org/10.1016/0020-0190(88)90057-9

Stephen A. Cook. 1985. A taxonomy of problems with fast parallel algorithms. Information and Control 64,
1–3 (1985), 2–22. DOI:http://dx.doi.org/10.1016/S0019-9958(85)80041-3

ACM SIGLOG News 30 January 2016, Vol. 3, No. 1

Stephen A. Cook and Pierre McKenzie. 1987. Problems complete for deterministic logarithmic space. Journal
of Algorithms 8, 5 (1987), 385–394. DOI:http://dx.doi.org/10.1016/0196-6774(87)90018-6

Bruno Courcelle. 1990. Graph rewriting: An algebraic and logic approach. In Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Semantics, Jan van Leeuwen (Ed.). Elsevier and MIT
Press, 193–242.

Michael Elberfeld. 2012. Space and Circuit Complexity of Monadic Second-Order Definable Problems on
Tree-Decomposable Structures. Universitt zu Lübeck. Dissertation.

Michael Elberfeld, Andreas Jakoby, and Till Tantau. 2010. Logspace Versions of the Theorems of Bodlaender
and Courcelle. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2010). IEEE, 143–152. DOI:http://dx.doi.org/10.1109/FOCS.2010.21

Michael Elberfeld, Andreas Jakoby, and Till Tantau. 2012. Algorithmic Meta Theorems for Cir-
cuit Classes of Constant and Logarithmic Depth. In Proceedings of the 29th International Sym-
posium on Theoretical Aspects of Computer Science (STACS 2012) (Leibniz International Pro-
ceedings in Informatics), Vol. 14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 66–77.
DOI:http://dx.doi.org/10.4230/LIPIcs.STACS.2012.66

Michael Elberfeld and Ken-ichi Kawarabayashi. 2014. Embedding and Canonizing Graphs of Bounded
Genus in Logspace. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC
2014). ACM, New York, NY, USA, 383–392. DOI:http://dx.doi.org/10.1145/2591796.2591865

Michael Elberfeld and Pascal Schweitzer. 2015. Canonizing Graphs of Bounded Tree Width in Logspace. In
Proceedings of the 33nd International Symposium on Theoretical Aspects of Computer Science (STACS
2016) (Leibniz International Proceedings in Informatics). Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. to appear.

Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer, Berlin Heidelberg.
DOI:http://dx.doi.org/10.1007/3-540-29953-X

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman.

Georg Gottlob, Christoph Koch, Reinhard Pichler, and Luc Segoufin. 2005. The complexity of
XPath query evaluation and XML typing. Journal of the ACM 52, 2 (2005), 284–335.
DOI:http://dx.doi.org/10.1145/1059513.1059520

Martin Grohe and Stephan Kreutzer. 2011. Methods for Algorithmic Meta Theorems. In Model Theoretic
Methods in Finite Combinatorics. Contemporary Mathematics, Vol. 558. American Mathematical Soci-
ety, 181–206. https://www.lii.rwth-aachen.de/images/Mitarbeiter/pub/grohe/grokre11.pdf

William Hesse, Eric Allender, and David A. Mix Barrington. 2002. Uniform constant-depth thresh-
old circuits for division and iterated multiplication. J. Comput. System Sci. 65, 4 (2002), 695–716.
DOI:http://dx.doi.org/10.1016/S0022-0000(02)00025-9

Oscar H. Ibarra, Tao Jiang, Bala Ravikumar, and Jik H. Chang. 1988. On some languages in NC1.
In Proceedings of the Aegean Workshop on Computing: 3rd International Workshop on Parallel
Computation and VLSI Theory. Lecture Notes in Computer Science, Vol. 319. Springer, 64–73.
DOI:http://dx.doi.org/10.1007/BFb0040374

Birgit Jenner. 1995. Knapsack problems for NL. Inform. Process. Lett. 54, 3 (1995), 169–174.
DOI:http://dx.doi.org/10.1016/0020-0190(95)00017-7

Neil D. Jones. 1975. Space-bounded reducibility among combinatorial problems. J. Comput. System Sci. 11,
1 (1975), 68–85. DOI:http://dx.doi.org/10.1016/S0022-0000(75)80050-X

Markus Lohrey. 2001. On the Parallel Complexity of Tree Automata. In Proceedings of 12th International
Conference on Rewriting Techniques and Applications (RTA 2001) (Lecture Notes in Computer Science),
Vol. 2051. Springer, 201–215. DOI:http://dx.doi.org/10.1007/3-540-45127-7 16

Burkhard Monien. 1980. On a subclass of pseudopolynomial problems. In Proceedings of the 9th Symposium
on Mathematical Foundations of Computer Science (MFCS 1980) (Lecture Notes in Computer Science),
Vol. 88. Springer, 414–425. DOI:http://dx.doi.org/10.1007/BFb0022521

Omer Reingold. 2008. Undirected connectivity in log-space. Journal of the ACM 55, 4 (2008), 1–24.
DOI:http://dx.doi.org/10.1145/1391289.1391291

N. Robertson and P. D. Seymour. 1995. Graph Minors. XIII. The Disjoint Paths Problem. Journal of Combi-
natorial Theory, Series B 63, 1 (1995), 65–110. DOI:http://dx.doi.org/10.1006/jctb.1995.1006

Carsten Thomassen. 1988. On the presence of disjoint subgraphs of a specified type. Journal of Graph Theory
12, 1 (1988), 101–111. DOI:http://dx.doi.org/10.1002/jgt.3190120111

Leslie G. Valiant. 1979. The complexity of computing the permanent. Theoretical Computer Science 8, 2
(1979), 189–201. DOI:http://dx.doi.org/10.1016/0304-3975(79)90044-6

ACM SIGLOG News 31 January 2016, Vol. 3, No. 1

Heribert Vollmer. 1999. Introduction to Circuit Complexity: A Uniform Approach. Springer, Berlin Heidel-
berg.

Egon Wanke. 1994. Bounded tree-width and LOGCFL. Journal of Algorithms 16, 3 (1994), 470–491.
DOI:http://dx.doi.org/10.1006/jagm.1994.1022

ACM SIGLOG News 32 January 2016, Vol. 3, No. 1

