
Descriptive Complexity

Neil Immerman

College of Computer and Information Sciences
University of Massachusetts, Amherst

Amherst, MA, USA

people.cs.umass.edu/˜immerman

people.cs.umass.edu/~immerman

P =

∞⋃
k=1

DTIME[nk]

P is a good
mathematical

wrapper for “truly
feasible”.

“truly feasible” is
the informal set of
problems we can

solve exactly on all
reasonably sized

instances.

r.e. completeco-r.e. complete

r.e.co-r.e.
Recursive

NP completeco-NP complete

NPco-NP
NP ∩ co-NP

P complete
P

“truly

feasible”

FO(CFL)

FO(REGULAR)

FO

P =

∞⋃
k=1

DTIME[nk]

P is a good
mathematical

wrapper for “truly
feasible”.

“truly feasible” is
the informal set of
problems we can

solve exactly on all
reasonably sized

instances.

r.e. completeco-r.e. complete

r.e.co-r.e.
Recursive

NP completeco-NP complete

NPco-NP
NP ∩ co-NP

P complete
P

“truly

feasible”

FO(CFL)

FO(REGULAR)

FO

P =

∞⋃
k=1

DTIME[nk]

P is a good
mathematical

wrapper for “truly
feasible”.

“truly feasible” is
the informal set of
problems we can

solve exactly on all
reasonably sized

instances.

r.e. completeco-r.e. complete

r.e.co-r.e.
Recursive

NP completeco-NP complete

NPco-NP
NP ∩ co-NP

P complete
P

“truly

feasible”

FO(CFL)

FO(REGULAR)

FO

NTIME[t(n)]: a mathematical fiction

input w , |w | = n

N accepts w

if at least

one of the 2t(n)

paths accepts.

2s

0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

1

t(n)

t(n)

b1 b2 b3 · · · bt(n)

NP =
∞⋃

k=1

NTIME[nk]

Many optimization
problems we want

to solve are NP
complete.

SAT, TSP,
3-COLOR,

CLIQUE, . . .

As descison
problems, all NP

complete problems
are isomorphic.

r.e. completeco-r.e. complete

r.e.co-r.e.
Recursive

NP complete
SAT

co-NP complete
SAT

NPco-NP
NP ∩ co-NP

P complete
P

“truly

feasible”

FO(CFL)

FO(REGULAR)

FO

NP =
∞⋃

k=1

NTIME[nk]

Many optimization
problems we want

to solve are NP
complete.

SAT, TSP,
3-COLOR,

CLIQUE, . . .

As descison
problems, all NP

complete problems
are isomorphic.

r.e. completeco-r.e. complete

r.e.co-r.e.
Recursive

NP complete
SAT

co-NP complete
SAT

NPco-NP
NP ∩ co-NP

P complete
P

“truly

feasible”

FO(CFL)

FO(REGULAR)

FO

NP =
∞⋃

k=1

NTIME[nk]

Many optimization
problems we want

to solve are NP
complete.

SAT, TSP,
3-COLOR,

CLIQUE, . . .

As descison
problems, all NP

complete problems
are isomorphic.

r.e. completeco-r.e. complete

r.e.co-r.e.
Recursive

NP complete
SAT

co-NP complete
SAT

NPco-NP
NP ∩ co-NP

P complete
P

“truly

feasible”

FO(CFL)

FO(REGULAR)

FO

NP =
∞⋃

k=1

NTIME[nk]

Many optimization
problems we want

to solve are NP
complete.

SAT, TSP,
3-COLOR,

CLIQUE, . . .

As descison
problems, all NP

complete problems
are isomorphic.

r.e. completeco-r.e. complete

r.e.co-r.e.
Recursive

PSPACE

NP complete
SAT

co-NP complete
SAT

NPco-NP
NP ∩ co-NP

P complete
P

“truly

feasible”

FO(CFL)

FO(REGULAR)

FO

NP =
∞⋃

k=1

NTIME[nk]

Many optimization
problems we want

to solve are NP
complete.

SAT, TSP,
3-COLOR,

CLIQUE, . . .

As descison
problems, all NP

complete problems
are isomorphic.

r.e. completeco-r.e. complete

r.e.co-r.e.
Recursive

EXPTIME

PSPACE

NP complete
SAT

co-NP complete
SAT

NPco-NP
NP ∩ co-NP

P complete
P

“truly

feasible”

FO(CFL)

FO(REGULAR)

FO

Descriptive Complexity

Query
q1 q2 · · · qn

7→ Computation 7→ Answer
a1 a2 · · · ai · · · am

· · · S · · ·

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?

There is a constructive isomorphism between these two
approaches.

Descriptive Complexity

Query
q1 q2 · · · qn

7→ Computation 7→ Answer
a1 a2 · · · ai · · · am

· · · S · · ·

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?

There is a constructive isomorphism between these two
approaches.

Descriptive Complexity

Query
q1 q2 · · · qn

7→ Computation 7→ Answer
a1 a2 · · · ai · · · am

· · · S · · ·

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?

There is a constructive isomorphism between these two
approaches.

Descriptive Complexity

Query
q1 q2 · · · qn

7→ Computation 7→ Answer
a1 a2 · · · ai · · · am

· · · S · · ·

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?

There is a constructive isomorphism between these two
approaches.

Descriptive Complexity

Query
q1 q2 · · · qn

7→ Computation 7→ Answer
a1 a2 · · · ai · · · am

· · · S · · ·

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?

There is a constructive isomorphism between these two
approaches.

Think of the Input as a Finite Logical Structure

Graph G = ({v1, . . . , vn},≤, E , s, t)

Σg = (E2, s, t)

r r
r r

r
rr

r�
��
�*

HH
HHj��

��*

HHHHj

HHHHj

��
��*s t

Binary String Aw = ({p1, . . . ,p8},≤ ,S)
S = {p2,p5,p7,p8}

Σs = (S1) w = 01001011

First-Order Logic

input symbols: from Σ
variables: x , y , z, . . .

boolean connectives: ∧,∨,¬
quantifiers: ∀, ∃

numeric symbols: =,≤,+,×,min,max

α ≡ ∀x∃y(E(x , y)) ∈ L(Σg)

β ≡ ∃x∀y(x ≤ y ∧ S(x)) ∈ L(Σs)

β ≡ S(min) ∈ L(Σs)

In this setting, with the structure of interest being the finite
input, FO is a weak, low-level complexity class.

First-Order Logic

input symbols: from Σ
variables: x , y , z, . . .

boolean connectives: ∧,∨,¬
quantifiers: ∀, ∃

numeric symbols: =,≤,+,×,min,max

α ≡ ∀x∃y(E(x , y)) ∈ L(Σg)

β ≡ ∃x∀y(x ≤ y ∧ S(x)) ∈ L(Σs)

β ≡ S(min) ∈ L(Σs)

In this setting, with the structure of interest being the finite
input, FO is a weak, low-level complexity class.

Second-Order Logic: FO plus Relation Variables

Fagin’s Theorem: NP = SO∃

Φ3color ≡ ∃R1 G1 B1 ∀ x y ((R(x) ∨G(x) ∨ B(x)) ∧ (E(x , y)→
(¬(R(x) ∧ R(y)) ∧ ¬(G(x) ∧G(y)) ∧ ¬(B(x) ∧ B(y)))))

a

ds

b

c

g

t

f

e

a

s

b

c

g

d t

f

e

Second-Order Logic: FO plus Relation Variables

Fagin’s Theorem: NP = SO∃

Φ3color ≡ ∃R1 G1 B1 ∀ x y ((R(x) ∨G(x) ∨ B(x)) ∧ (E(x , y)→
(¬(R(x) ∧ R(y)) ∧ ¬(G(x) ∧G(y)) ∧ ¬(B(x) ∧ B(y)))))

a

ds

b

c

g

t

f

e

a

s

b

c

g

d t

f

e

r.e. completeco-r.e. complete

r.e.co-r.e.
Recursive

EXPTIME

PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
P

“truly

feasible”

FO(CFL)

FO(REGULAR)

FO

Addition is First-Order

Q+ : STRUC[ΣAB]→ STRUC[Σs]

A a1 a2 . . . an−1 an
B + b1 b2 . . . bn−1 bn

S s1 s2 . . . sn−1 sn

C(i) ≡ (∃j > i)
(

A(j) ∧ B(j) ∧

(∀k .j > k > i)(A(k) ∨ B(k))
)

Q+(i) ≡ A(i) ⊕ B(i) ⊕ C(i)

Addition is First-Order

Q+ : STRUC[ΣAB]→ STRUC[Σs]

A a1 a2 . . . an−1 an
B + b1 b2 . . . bn−1 bn

S s1 s2 . . . sn−1 sn

C(i) ≡ (∃j > i)
(

A(j) ∧ B(j) ∧

(∀k .j > k > i)(A(k) ∨ B(k))
)

Q+(i) ≡ A(i) ⊕ B(i) ⊕ C(i)

Addition is First-Order

Q+ : STRUC[ΣAB]→ STRUC[Σs]

A a1 a2 . . . an−1 an
B + b1 b2 . . . bn−1 bn

S s1 s2 . . . sn−1 sn

C(i) ≡ (∃j > i)
(

A(j) ∧ B(j) ∧

(∀k .j > k > i)(A(k) ∨ B(k))
)

Q+(i) ≡ A(i) ⊕ B(i) ⊕ C(i)

Parallel Machines:

Quantifiers are Parallel

CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO(1)]

Assume array A[x] : x = 1, . . . , r in memory.

∀x(A(x)) ≡ write(1); proc pi : if (A[i] = 0) then write(0)

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5

10

Parallel Machines: Quantifiers are Parallel

CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO(1)]

Assume array A[x] : x = 1, . . . , r in memory.

∀x(A(x)) ≡ write(1); proc pi : if (A[i] = 0) then write(0)

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5

10

Parallel Machines: Quantifiers are Parallel

CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO(1)]

Assume array A[x] : x = 1, . . . , r in memory.

∀x(A(x)) ≡ write(1);

proc pi : if (A[i] = 0) then write(0)

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5

1

0

Parallel Machines: Quantifiers are Parallel

CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO(1)]

Assume array A[x] : x = 1, . . . , r in memory.

∀x(A(x)) ≡ write(1); proc pi : if (A[i] = 0) then write(0)

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5

1

0

FO

=

CRAM[1]

=

AC0

=

Logarithmic-Time
Hierarchy

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

r.e. FO∃(N)co-r.e. FO∀(N)
Recursive

EXPTIME

PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

NP SO∃co-NP SO∀
NP ∩ co-NP

P complete
P

“truly

feasible”

FO(CFL)

FO(REGULAR)

CRAM[1] AC0FO LOGTIME Hierarchy

Inductive Definitions and Least Fixed Point

E?(x , y)
def
= x = y ∨ E(x , y) ∨ ∃z(E?(x , z) ∧ E?(z, y))

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

ϕG
tc : binRel(G) → binRel(G) is a monotone operator

G ∈ REACH ⇔ G |= (LFPϕtc)(s, t) E? = (LFPϕtc)

REACH =
{

G, s, t
∣∣ s ?→ t

}

REACH 6∈ FO

r r
r r

r
rr

r��
��*

HHHHj��
��*

HH
HHj

H
HHHj

��
��*s t

Inductive Definitions and Least Fixed Point

E?(x , y)
def
= x = y ∨ E(x , y) ∨ ∃z(E?(x , z) ∧ E?(z, y))

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

ϕG
tc : binRel(G) → binRel(G) is a monotone operator

G ∈ REACH ⇔ G |= (LFPϕtc)(s, t) E? = (LFPϕtc)

REACH =
{

G, s, t
∣∣ s ?→ t

}
REACH 6∈ FO

r r
r r

r
rr

r��
��*

HHHHj��
��*

HH
HHj

H
HHHj

��
��*s t

Inductive Definitions and Least Fixed Point

E?(x , y)
def
= x = y ∨ E(x , y) ∨ ∃z(E?(x , z) ∧ E?(z, y))

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

ϕG
tc : binRel(G) → binRel(G) is a monotone operator

G ∈ REACH ⇔ G |= (LFPϕtc)(s, t) E? = (LFPϕtc)

REACH =
{

G, s, t
∣∣ s ?→ t

}
REACH 6∈ FO

r r
r r

r
rr

r��
��*

HHHHj��
��*

HH
HHj

H
HHHj

��
��*s t

Inductive Definitions and Least Fixed Point

E?(x , y)
def
= x = y ∨ E(x , y) ∨ ∃z(E?(x , z) ∧ E?(z, y))

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

ϕG
tc : binRel(G) → binRel(G) is a monotone operator

G ∈ REACH ⇔ G |= (LFPϕtc)(s, t) E? = (LFPϕtc)

REACH =
{

G, s, t
∣∣ s ?→ t

}
REACH 6∈ FO

r r
r r

r
rr

r��
��*

HHHHj��
��*

HH
HHj

H
HHHj

��
��*s t

Inductive Definitions and Least Fixed Point

E?(x , y)
def
= x = y ∨ E(x , y) ∨ ∃z(E?(x , z) ∧ E?(z, y))

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

ϕG
tc : binRel(G) → binRel(G) is a monotone operator

G ∈ REACH ⇔ G |= (LFPϕtc)(s, t) E? = (LFPϕtc)

REACH =
{

G, s, t
∣∣ s ?→ t

}
REACH 6∈ FO

r r
r r

r
rr

r��
��*

HHHHj��
��*

HH
HHj

H
HHHj

��
��*s t

Inductive Definitions and Least Fixed Point

E?(x , y)
def
= x = y ∨ E(x , y) ∨ ∃z(E?(x , z) ∧ E?(z, y))

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

ϕG
tc : binRel(G) → binRel(G) is a monotone operator

G ∈ REACH ⇔ G |= (LFPϕtc)(s, t)

E? = (LFPϕtc)

REACH =
{

G, s, t
∣∣ s ?→ t

}
REACH 6∈ FO

r r
r r

r
rr

r��
��*

HHHHj��
��*

HH
HHj

H
HHHj

��
��*s t

Inductive Definitions and Least Fixed Point

E?(x , y)
def
= x = y ∨ E(x , y) ∨ ∃z(E?(x , z) ∧ E?(z, y))

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

ϕG
tc : binRel(G) → binRel(G) is a monotone operator

G ∈ REACH ⇔ G |= (LFPϕtc)(s, t) E? = (LFPϕtc)

REACH =
{

G, s, t
∣∣ s ?→ t

}
REACH 6∈ FO

r r
r r

r
rr

r��
��*

HHHHj��
��*

HH
HHj

H
HHHj

��
��*s t

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir)

Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|.

ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F .

By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �

Inductive Definition of Transitive Closure

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

I1 = ϕG
tc(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 1
}

I2 = (ϕG
tc)2(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2
}

I3 = (ϕG
tc)3(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 4
}

... =
...

...

Ir = (ϕG
tc)r (∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2r−1}
... =

...
...

(ϕG
tc)d1+log ne(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ n
}

LFP(ϕtc) = ϕ
d1+log ne
tc (∅); REACH ∈ IND[log n]

Next we will show that IND[t(n)] = FO[t(n)].

Inductive Definition of Transitive Closure

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

I1 = ϕG
tc(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 1
}

I2 = (ϕG
tc)2(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2
}

I3 = (ϕG
tc)3(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 4
}

... =
...

...

Ir = (ϕG
tc)r (∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2r−1}
... =

...
...

(ϕG
tc)d1+log ne(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ n
}

LFP(ϕtc) = ϕ
d1+log ne
tc (∅); REACH ∈ IND[log n]

Next we will show that IND[t(n)] = FO[t(n)].

Inductive Definition of Transitive Closure

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

I1 = ϕG
tc(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 1
}

I2 = (ϕG
tc)2(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2
}

I3 = (ϕG
tc)3(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 4
}

... =
...

...

Ir = (ϕG
tc)r (∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2r−1}
... =

...
...

(ϕG
tc)d1+log ne(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ n
}

LFP(ϕtc) = ϕ
d1+log ne
tc (∅); REACH ∈ IND[log n]

Next we will show that IND[t(n)] = FO[t(n)].

Inductive Definition of Transitive Closure

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

I1 = ϕG
tc(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 1
}

I2 = (ϕG
tc)2(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2
}

I3 = (ϕG
tc)3(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 4
}

... =
...

...

Ir = (ϕG
tc)r (∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2r−1}
... =

...
...

(ϕG
tc)d1+log ne(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ n
}

LFP(ϕtc) = ϕ
d1+log ne
tc (∅); REACH ∈ IND[log n]

Next we will show that IND[t(n)] = FO[t(n)].

Inductive Definition of Transitive Closure

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

I1 = ϕG
tc(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 1
}

I2 = (ϕG
tc)2(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2
}

I3 = (ϕG
tc)3(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 4
}

... =
...

...

Ir = (ϕG
tc)r (∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2r−1}
... =

...
...

(ϕG
tc)d1+log ne(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ n
}

LFP(ϕtc) = ϕ
d1+log ne
tc (∅); REACH ∈ IND[log n]

Next we will show that IND[t(n)] = FO[t(n)].

Inductive Definition of Transitive Closure

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

I1 = ϕG
tc(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 1
}

I2 = (ϕG
tc)2(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2
}

I3 = (ϕG
tc)3(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 4
}

... =
...

...

Ir = (ϕG
tc)r (∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2r−1}
... =

...
...

(ϕG
tc)d1+log ne(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ n
}

LFP(ϕtc) = ϕ
d1+log ne
tc (∅); REACH ∈ IND[log n]

Next we will show that IND[t(n)] = FO[t(n)].

Inductive Definition of Transitive Closure

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

I1 = ϕG
tc(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 1
}

I2 = (ϕG
tc)2(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2
}

I3 = (ϕG
tc)3(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 4
}

... =
...

...

Ir = (ϕG
tc)r (∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2r−1}
... =

...
...

(ϕG
tc)d1+log ne(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ n
}

LFP(ϕtc) = ϕ
d1+log ne
tc (∅); REACH ∈ IND[log n]

Next we will show that IND[t(n)] = FO[t(n)].

Inductive Definition of Transitive Closure

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

I1 = ϕG
tc(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 1
}

I2 = (ϕG
tc)2(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2
}

I3 = (ϕG
tc)3(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 4
}

... =
...

...

Ir = (ϕG
tc)r (∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2r−1}
... =

...
...

(ϕG
tc)d1+log ne(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ n
}

LFP(ϕtc) = ϕ
d1+log ne
tc (∅); REACH ∈ IND[log n]

Next we will show that IND[t(n)] = FO[t(n)].

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z (R(x , z)∧R(z, y))

1. Dummy universal quantification for base case:

ϕtc(R, x , y) ≡ (∀z.M1)(∃z)(R(x , z) ∧ R(z, y))

M1 ≡ ¬(x = y ∨ E(x , y))

2. Using ∀, replace two occurrences of R with one:

ϕtc(R, x , y) ≡ (∀z.M1)(∃z)(∀uv .M2)R(u, v)

M2 ≡ (u = x ∧ v = z) ∨ (u = z ∧ v = y)

3. Requantify x and y .

M3 ≡ (x = u ∧ y = v)

ϕtc(R, x , y) ≡ [(∀z.M1)(∃z)(∀uv .M2)(∃xy .M3)] R(x , y)

Every FO inductive definition is equivalent to a quantifier block.

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z (R(x , z)∧R(z, y))

1. Dummy universal quantification for base case:

ϕtc(R, x , y) ≡ (∀z.M1)(∃z)(R(x , z) ∧ R(z, y))

M1 ≡ ¬(x = y ∨ E(x , y))

2. Using ∀, replace two occurrences of R with one:

ϕtc(R, x , y) ≡ (∀z.M1)(∃z)(∀uv .M2)R(u, v)

M2 ≡ (u = x ∧ v = z) ∨ (u = z ∧ v = y)

3. Requantify x and y .

M3 ≡ (x = u ∧ y = v)

ϕtc(R, x , y) ≡ [(∀z.M1)(∃z)(∀uv .M2)(∃xy .M3)] R(x , y)

Every FO inductive definition is equivalent to a quantifier block.

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z (R(x , z)∧R(z, y))

1. Dummy universal quantification for base case:

ϕtc(R, x , y) ≡ (∀z.M1)(∃z)(R(x , z) ∧ R(z, y))

M1 ≡ ¬(x = y ∨ E(x , y))

2. Using ∀, replace two occurrences of R with one:

ϕtc(R, x , y) ≡ (∀z.M1)(∃z)(∀uv .M2)R(u, v)

M2 ≡ (u = x ∧ v = z) ∨ (u = z ∧ v = y)

3. Requantify x and y .

M3 ≡ (x = u ∧ y = v)

ϕtc(R, x , y) ≡ [(∀z.M1)(∃z)(∀uv .M2)(∃xy .M3)] R(x , y)

Every FO inductive definition is equivalent to a quantifier block.

QBtc ≡ [(∀z.M1)(∃z)(∀uv .M2)(∀xy .M3)]

ϕtc(R, x , y) ≡ [(∀z.M1)(∃z)(∀uv .M2)(∃xy .M3)]R(x , y)

ϕtc(R, x , y) ≡ [QBtc]R(x , y)

ϕr
tc(∅) ≡ [QBtc]r (false)

Thus, for any structure A ∈ STRUC[Σg],

A ∈ REACH ⇔ A |= (LFPϕtc)(s, t)

⇔ A |= ([QBtc]d1+log ||A||e false)(s, t)

QBtc ≡ [(∀z.M1)(∃z)(∀uv .M2)(∀xy .M3)]

ϕtc(R, x , y) ≡ [(∀z.M1)(∃z)(∀uv .M2)(∃xy .M3)]R(x , y)

ϕtc(R, x , y) ≡ [QBtc]R(x , y)

ϕr
tc(∅) ≡ [QBtc]r (false)

Thus, for any structure A ∈ STRUC[Σg],

A ∈ REACH ⇔ A |= (LFPϕtc)(s, t)

⇔ A |= ([QBtc]d1+log ||A||e false)(s, t)

QBtc ≡ [(∀z.M1)(∃z)(∀uv .M2)(∀xy .M3)]

ϕtc(R, x , y) ≡ [(∀z.M1)(∃z)(∀uv .M2)(∃xy .M3)]R(x , y)

ϕtc(R, x , y) ≡ [QBtc]R(x , y)

ϕr
tc(∅) ≡ [QBtc]r (false)

Thus, for any structure A ∈ STRUC[Σg],

A ∈ REACH ⇔ A |= (LFPϕtc)(s, t)

⇔ A |= ([QBtc]d1+log ||A||e false)(s, t)

QBtc ≡ [(∀z.M1)(∃z)(∀uv .M2)(∀xy .M3)]

ϕtc(R, x , y) ≡ [(∀z.M1)(∃z)(∀uv .M2)(∃xy .M3)]R(x , y)

ϕtc(R, x , y) ≡ [QBtc]R(x , y)

ϕr
tc(∅) ≡ [QBtc]r (false)

Thus, for any structure A ∈ STRUC[Σg],

A ∈ REACH ⇔ A |= (LFPϕtc)(s, t)

⇔ A |= ([QBtc]d1+log ||A||e false)(s, t)

CRAM[t(n)] = concurrent parallel random access machine;
polynomial hardware, parallel time O(t(n))

IND[t(n)] = first-order, depth t(n) inductive definitions

FO[t(n)] = t(n) repetitions of a block of restricted quantifiers:

QB = [(Q1x1.M1) · · · (Qkxk .Mk)]; Mi quantifier-free

ϕn = [QB][QB] · · · [QB]︸ ︷︷ ︸
t(n)

M0

parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] ⊇ FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using nk bits of global memory.
Simulate each next quantifier in constant parallel time.

CRAM[t(n)] ⊆ FO[t(n)]: Inductively define new state of every
bit of every register of every processor in terms of this global
state at the previous time step. �

Thm. For all t(n), even beyond polynomial,

CRAM[t(n)] = FO[t(n)]

parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] ⊇ FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using nk bits of global memory.

Simulate each next quantifier in constant parallel time.

CRAM[t(n)] ⊆ FO[t(n)]: Inductively define new state of every
bit of every register of every processor in terms of this global
state at the previous time step. �

Thm. For all t(n), even beyond polynomial,

CRAM[t(n)] = FO[t(n)]

parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] ⊇ FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using nk bits of global memory.
Simulate each next quantifier in constant parallel time.

CRAM[t(n)] ⊆ FO[t(n)]: Inductively define new state of every
bit of every register of every processor in terms of this global
state at the previous time step. �

Thm. For all t(n), even beyond polynomial,

CRAM[t(n)] = FO[t(n)]

parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] ⊇ FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using nk bits of global memory.
Simulate each next quantifier in constant parallel time.

CRAM[t(n)] ⊆ FO[t(n)]: Inductively define new state of every
bit of every register of every processor in terms of this global
state at the previous time step. �

Thm. For all t(n), even beyond polynomial,

CRAM[t(n)] = FO[t(n)]

parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] ⊇ FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using nk bits of global memory.
Simulate each next quantifier in constant parallel time.

CRAM[t(n)] ⊆ FO[t(n)]: Inductively define new state of every
bit of every register of every processor in terms of this global
state at the previous time step. �

Thm. For all t(n), even beyond polynomial,

CRAM[t(n)] = FO[t(n)]

For t(n) poly bdd,

CRAM[t(n)]

=

IND[t(n)]

=

FO[t(n)]

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.co-r.e.

FO∀(N)
Recursive

EXPTIME

FO[2n
O(1)

]
CRAM[2n

O(1)

] PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

NPco-NP
NP ∩ co-NP

P complete
Horn-
SAT CRAM[nO(1)] P

FO[nO(1)]

FO(LFP)

FO[logO(1) n] CRAM[logO(1) n] NC“truly

feasible”FO[log n] CRAM[log n] AC1

FO(CFL)

FO(REGULAR)

CRAM[1] AC0FO LOGTIME Hierarchy

Remember that

for all t(n),

CRAM[t(n)]

=

FO[t(n)]

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.

FO∀(N)
co-r.e.

Recursive

EXPTIME

FO[2n
O(1)

] PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP)

FO[logO(1) n] NC“truly

feasible”FO[log n] AC1

FO(CFL)

FO(REGULAR)

AC0FO LOGTIME Hierarchy

Number of Variables Determines Amount of Hardware

Thm. For k = 1,2, . . . , DSPACE[nk] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

A bounded number, k , of variables, is k log n bits and
corresponds to nk gates, i.e., polynomially much hardware.

A second-order variable of arity r is nr bits, corresponding to
2nr

gates.

Number of Variables Determines Amount of Hardware

Thm. For k = 1,2, . . . , DSPACE[nk] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

A bounded number, k , of variables, is k log n bits and
corresponds to nk gates, i.e., polynomially much hardware.

A second-order variable of arity r is nr bits, corresponding to
2nr

gates.

Number of Variables Determines Amount of Hardware

Thm. For k = 1,2, . . . , DSPACE[nk] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

A bounded number, k , of variables, is k log n bits and
corresponds to nk gates, i.e., polynomially much hardware.

A second-order variable of arity r is nr bits, corresponding to
2nr

gates.

Number of Variables Determines Amount of Hardware

Thm. For k = 1,2, . . . , DSPACE[nk] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

A bounded number, k , of variables, is k log n bits and
corresponds to nk gates, i.e., polynomially much hardware.

A second-order variable of arity r is nr bits, corresponding to
2nr

gates.

Number of Variables Determines Amount of Hardware

Thm. For k = 1,2, . . . , DSPACE[nk] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

A bounded number, k , of variables, is k log n bits and
corresponds to nk gates, i.e., polynomially much hardware.

A second-order variable of arity r is nr bits, corresponding to
2nr

gates.

SO: Parallel Machines with Exponential Hardware

Given ϕ with n variables and m clauses, is ϕ ∈ 3-SAT?

With r = m2n processors, recognize 3-SAT in constant time!

Let S be the first n bits of our processor number.
If processors S1, . . .Sm notice that truth assignment S makes
all m clauses of ϕ true, then ϕ ∈ 3-SAT, so S1 writes a 1.

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5

0

1

SO: Parallel Machines with Exponential Hardware

Given ϕ with n variables and m clauses, is ϕ ∈ 3-SAT?

With r = m2n processors, recognize 3-SAT in constant time!

Let S be the first n bits of our processor number.
If processors S1, . . .Sm notice that truth assignment S makes
all m clauses of ϕ true, then ϕ ∈ 3-SAT, so S1 writes a 1.

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5

0

1

SO: Parallel Machines with Exponential Hardware

Given ϕ with n variables and m clauses, is ϕ ∈ 3-SAT?

With r = m2n processors, recognize 3-SAT in constant time!

Let S be the first n bits of our processor number.

If processors S1, . . .Sm notice that truth assignment S makes
all m clauses of ϕ true, then ϕ ∈ 3-SAT, so S1 writes a 1.

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5

0

1

SO: Parallel Machines with Exponential Hardware

Given ϕ with n variables and m clauses, is ϕ ∈ 3-SAT?

With r = m2n processors, recognize 3-SAT in constant time!

Let S be the first n bits of our processor number.
If processors S1, . . .Sm notice that truth assignment S makes
all m clauses of ϕ true, then ϕ ∈ 3-SAT,

so S1 writes a 1.

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5

0

1

SO: Parallel Machines with Exponential Hardware

Given ϕ with n variables and m clauses, is ϕ ∈ 3-SAT?

With r = m2n processors, recognize 3-SAT in constant time!

Let S be the first n bits of our processor number.
If processors S1, . . .Sm notice that truth assignment S makes
all m clauses of ϕ true, then ϕ ∈ 3-SAT, so S1 writes a 1.

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5

0

1

SO: Parallel Machines with Exponential Hardware

Thm. SO[t(n)] = CRAM[t(n)]-HARD[2nO(1)
] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.
The proof is similar to FO[t(n)] = CRAM[t(n)]. �

Cor.

SO = PTIME Hierarchy = CRAM[1]-HARD[2nO(1)
]

SO[nO(1)] = PSPACE = CRAM[nO(1)]-HARD[2nO(1)
]

SO[2nO(1)
] = EXPTIME = CRAM[2nO(1)

]-HARD[2nO(1)
]

SO: Parallel Machines with Exponential Hardware

Thm. SO[t(n)] = CRAM[t(n)]-HARD[2nO(1)
] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.
The proof is similar to FO[t(n)] = CRAM[t(n)]. �

Cor.

SO = PTIME Hierarchy = CRAM[1]-HARD[2nO(1)
]

SO[nO(1)] = PSPACE = CRAM[nO(1)]-HARD[2nO(1)
]

SO[2nO(1)
] = EXPTIME = CRAM[2nO(1)

]-HARD[2nO(1)
]

SO: Parallel Machines with Exponential Hardware

Thm. SO[t(n)] = CRAM[t(n)]-HARD[2nO(1)
] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.
The proof is similar to FO[t(n)] = CRAM[t(n)]. �

Cor.

SO = PTIME Hierarchy = CRAM[1]-HARD[2nO(1)
]

SO[nO(1)] = PSPACE = CRAM[nO(1)]-HARD[2nO(1)
]

SO[2nO(1)
] = EXPTIME = CRAM[2nO(1)

]-HARD[2nO(1)
]

SO: Parallel Machines with Exponential Hardware

Thm. SO[t(n)] = CRAM[t(n)]-HARD[2nO(1)
] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.
The proof is similar to FO[t(n)] = CRAM[t(n)]. �

Cor.

SO = PTIME Hierarchy = CRAM[1]-HARD[2nO(1)
]

SO[nO(1)] = PSPACE = CRAM[nO(1)]-HARD[2nO(1)
]

SO[2nO(1)
] = EXPTIME = CRAM[2nO(1)

]-HARD[2nO(1)
]

SO: Parallel Machines with Exponential Hardware

Thm. SO[t(n)] = CRAM[t(n)]-HARD[2nO(1)
] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.
The proof is similar to FO[t(n)] = CRAM[t(n)]. �

Cor.

SO = PTIME Hierarchy = CRAM[1]-HARD[2nO(1)
]

SO[nO(1)] = PSPACE = CRAM[nO(1)]-HARD[2nO(1)
]

SO[2nO(1)
] = EXPTIME = CRAM[2nO(1)

]-HARD[2nO(1)
]

Parallel Time versus Amount of Hardware

PSPACE = FO[2nO(1)
] = CRAM[2nO(1)

]-HARD[nO(1)]

= SO[nO(1)] = CRAM[nO(1)]-HARD[2nO(1)
]

I We would love to understand this tradeoff.

I Is there such a thing as an inherently sequential problem?,
i.e., is NC 6= P?

I Same tradeoff as number of variables vs. number of
iterations of a quantifier block.

Parallel Time versus Amount of Hardware

PSPACE = FO[2nO(1)
] = CRAM[2nO(1)

]-HARD[nO(1)]

= SO[nO(1)] = CRAM[nO(1)]-HARD[2nO(1)
]

I We would love to understand this tradeoff.

I Is there such a thing as an inherently sequential problem?,
i.e., is NC 6= P?

I Same tradeoff as number of variables vs. number of
iterations of a quantifier block.

Parallel Time versus Amount of Hardware

PSPACE = FO[2nO(1)
] = CRAM[2nO(1)

]-HARD[nO(1)]

= SO[nO(1)] = CRAM[nO(1)]-HARD[2nO(1)
]

I We would love to understand this tradeoff.

I Is there such a thing as an inherently sequential problem?,
i.e., is NC 6= P?

I Same tradeoff as number of variables vs. number of
iterations of a quantifier block.

Parallel Time versus Amount of Hardware

PSPACE = FO[2nO(1)
] = CRAM[2nO(1)

]-HARD[nO(1)]

= SO[nO(1)] = CRAM[nO(1)]-HARD[2nO(1)
]

I We would love to understand this tradeoff.

I Is there such a thing as an inherently sequential problem?,
i.e., is NC 6= P?

I Same tradeoff as number of variables vs. number of
iterations of a quantifier block.

SO[t(n)]

=

CRAM[t(n)]-

HARD-[2nO(1)
]

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.

FO∀(N)
co-r.e.

Recursive

SO[2n
O(1)

] EXPTIME

FO[2n
O(1)

] SO[nO(1)] PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP)

FO[logO(1) n] NC“truly

feasible”FO[log n] AC1

FO(CFL)

FO(REGULAR)

AC0FO LOGTIME Hierarchy

Recent Breakthroughs in Descriptive Complexity

Theorem [Ben Rossman] Any first-order formula with any
numeric relations (≤,+,×, . . .) that means “I have a clique of
size k ” must have at least k/4 variables.

Creative new proof idea using Håstad’s Switching Lemma gives
the essentially optimal bound.

This lower bound is for a fixed formula, if it were for a sequence
of polynomially-sized formulas, i.e., a fixed-point formula, it
would follow that CLIQUE 6∈ P and thus P 6= NP.

Best previous bounds:

I k variables necessary and sufficient without ordering or
other numeric relations [I 1980].

I Nothing was known with ordering except for the trivial fact
that 2 variables are not enough.

Recent Breakthroughs in Descriptive Complexity

Theorem [Martin Grohe] Fixed-Point Logic with Counting
captures Polynomial Time on all classes of graphs with
excluded minors.

Grohe proves that for every class of graphs with excluded
minors, there is a constant k such that two graphs of the class
are isomorphic iff they agree on all k -variable formulas in
fixed-point logic with counting.

Using Ehrenfeucht-Fraı̈ssé games, this can be checked in
polynomial time, (O(nk (log n))). In the same time we can give a
canonical description of the isomorphism type of any graph in
the class. Thus every class of graphs with excluded minors
admits the same general polynomial time canonization
algorithm: we’re isomorphic iff we agree on all formulas in Ck
and in particular, you are isomorphic to me iff your Ck canonical
description is equal to mine.

What We Know

I Diagonalization: more of the same resource gives us
more:

DTIME[n] ⊂6= DTIME[n2],

same for DSPACE, NTIME, NSPACE, . . .

I Natural Complexity Classes have Natural Complete
Problems

SAT: NP; HORN-SAT: P; QSAT: PSPACE; . . .

I Only One Complete Problem per Complexity Class

If A and B are complete for C via ≤fo then A ∼=fo B.

What We Know

I Diagonalization: more of the same resource gives us
more:

DTIME[n] ⊂6= DTIME[n2],

same for DSPACE, NTIME, NSPACE, . . .

I Natural Complexity Classes have Natural Complete
Problems

SAT: NP; HORN-SAT: P; QSAT: PSPACE; . . .

I Only One Complete Problem per Complexity Class

If A and B are complete for C via ≤fo then A ∼=fo B.

What We Know

I Diagonalization: more of the same resource gives us
more:

DTIME[n] ⊂6= DTIME[n2],

same for DSPACE, NTIME, NSPACE, . . .

I Natural Complexity Classes have Natural Complete
Problems

SAT: NP; HORN-SAT: P; QSAT: PSPACE; . . .

I Only One Complete Problem per Complexity Class

If A and B are complete for C via ≤fo then A ∼=fo B.

Major Missing Idea

I We have no concept of work or conservation of energy in
computation;

I i.e, in order to solve SAT or other hard problem we must
do a certain amount of computational work.

Major Missing Idea

I We have no concept of work or conservation of energy in
computation;

I i.e, in order to solve SAT or other hard problem we must
do a certain amount of computational work.

Strong Lower Bounds on FO[t(n)] for small t(n)

I [Sipser]: strict first-order alternation hierarchy: FO.

I [Beame-Håstad]: hierarchy remains strict up to
FO[log n/ log log n].

I NC1 ⊆ FO[log n/ log log n] and this is tight.

I Does REACH require FO[log n]? This would imply
NC1 6= NL.

Strong Lower Bounds on FO[t(n)] for small t(n)

I [Sipser]: strict first-order alternation hierarchy: FO.

I [Beame-Håstad]: hierarchy remains strict up to
FO[log n/ log log n].

I NC1 ⊆ FO[log n/ log log n] and this is tight.

I Does REACH require FO[log n]? This would imply
NC1 6= NL.

Strong Lower Bounds on FO[t(n)] for small t(n)

I [Sipser]: strict first-order alternation hierarchy: FO.

I [Beame-Håstad]: hierarchy remains strict up to
FO[log n/ log log n].

I NC1 ⊆ FO[log n/ log log n] and this is tight.

I Does REACH require FO[log n]? This would imply
NC1 6= NL.

Strong Lower Bounds on FO[t(n)] for small t(n)

I [Sipser]: strict first-order alternation hierarchy: FO.

I [Beame-Håstad]: hierarchy remains strict up to
FO[log n/ log log n].

I NC1 ⊆ FO[log n/ log log n] and this is tight.

I Does REACH require FO[log n]? This would imply
NC1 6= NL.

Does It Matter? How important is P 6= NP?

I Much is known about approximation, e.g., some NP
complete problems, e.g., Knapsack, Euclidean TSP, can be
approximated as closely as we want, others, e.g., Clique,
can’t be.

I We conjecture that SAT requires DTIME[Ω(2εn)] for some
ε > 0, but no one has yet proved that it requires more than
DTIME[n].

I Basic trade-offs are not understood, e.g., trade-off between
time and number of processors. Are any problems
inherently sequential? How can we best use mulitcores?

I SAT solvers are impressive new general purpose problem
solvers, e.g., used in model checking, AI planning, code
synthesis. How good are current SAT solvers? How much
can they be improved?

Does It Matter? How important is P 6= NP?

I Much is known about approximation, e.g., some NP
complete problems, e.g., Knapsack, Euclidean TSP, can be
approximated as closely as we want, others, e.g., Clique,
can’t be.

I We conjecture that SAT requires DTIME[Ω(2εn)] for some
ε > 0, but no one has yet proved that it requires more than
DTIME[n].

I Basic trade-offs are not understood, e.g., trade-off between
time and number of processors. Are any problems
inherently sequential? How can we best use mulitcores?

I SAT solvers are impressive new general purpose problem
solvers, e.g., used in model checking, AI planning, code
synthesis. How good are current SAT solvers? How much
can they be improved?

Does It Matter? How important is P 6= NP?

I Much is known about approximation, e.g., some NP
complete problems, e.g., Knapsack, Euclidean TSP, can be
approximated as closely as we want, others, e.g., Clique,
can’t be.

I We conjecture that SAT requires DTIME[Ω(2εn)] for some
ε > 0, but no one has yet proved that it requires more than
DTIME[n].

I Basic trade-offs are not understood, e.g., trade-off between
time and number of processors. Are any problems
inherently sequential? How can we best use mulitcores?

I SAT solvers are impressive new general purpose problem
solvers, e.g., used in model checking, AI planning, code
synthesis. How good are current SAT solvers? How much
can they be improved?

Does It Matter? How important is P 6= NP?

I Much is known about approximation, e.g., some NP
complete problems, e.g., Knapsack, Euclidean TSP, can be
approximated as closely as we want, others, e.g., Clique,
can’t be.

I We conjecture that SAT requires DTIME[Ω(2εn)] for some
ε > 0, but no one has yet proved that it requires more than
DTIME[n].

I Basic trade-offs are not understood, e.g., trade-off between
time and number of processors. Are any problems
inherently sequential? How can we best use mulitcores?

I SAT solvers are impressive new general purpose problem
solvers, e.g., used in model checking, AI planning, code
synthesis. How good are current SAT solvers? How much
can they be improved?

Descriptive Complexity

Fact: For constructible t(n), FO[t(n)] = CRAM[t(n)]

Fact: For k = 1,2, . . . , VAR[k + 1] = DSPACE[nk]

The complexity of computing a query is closely tied to the
complexity of describing the query.

(P = NP) ⇔ (FO(LFP) = SO)

(ThC0 = NP) ⇔ (FO(COUNT) = SO)

(P = PSPACE) ⇔ (FO[nO(1)] = FO[2nO(1)
])

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.

FO∀(N)
co-r.e.

Recursive

Primitive Recursive

SO[2n
O(1)

] EXPTIME

QSAT PSPACE complete
FO[2n

O(1)

] SO[nO(1)] PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP)

FO[logO(1) n] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

