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NTIME[t(n)]: a mathematical fiction

input w , |w | = n

N accepts w

if at least

one of the 2t(n)

paths accepts.
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Many optimization
problems we want

to solve are NP
complete.

SAT, TSP,
3-COLOR,

CLIQUE, . . .

As descison
problems, all NP

complete problems
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Descriptive Complexity

Query
q1 q2 · · · qn

7→ Computation 7→ Answer
a1 a2 · · · ai · · · am

· · · S · · ·

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?

There is a constructive isomorphism between these two
approaches.
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Think of the Input as a Finite Logical Structure

Graph G = ({v1, . . . , vn},≤, E , s, t)

Σg = (E2, s, t)
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Binary String Aw = ({p1, . . . ,p8},≤ ,S)
S = {p2,p5,p7,p8}

Σs = (S1) w = 01001011



First-Order Logic

input symbols: from Σ
variables: x , y , z, . . .

boolean connectives: ∧,∨,¬
quantifiers: ∀, ∃

numeric symbols: =,≤,+,×,min,max

α ≡ ∀x∃y(E(x , y)) ∈ L(Σg)

β ≡ ∃x∀y(x ≤ y ∧ S(x)) ∈ L(Σs)

β ≡ S(min) ∈ L(Σs)

In this setting, with the structure of interest being the finite
input, FO is a weak, low-level complexity class.
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Second-Order Logic: FO plus Relation Variables

Fagin’s Theorem: NP = SO∃

Φ3color ≡ ∃R1 G1 B1 ∀ x y ((R(x) ∨G(x) ∨ B(x)) ∧ (E(x , y)→
(¬(R(x) ∧ R(y)) ∧ ¬(G(x) ∧G(y)) ∧ ¬(B(x) ∧ B(y)))))
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Addition is First-Order

Q+ : STRUC[ΣAB]→ STRUC[Σs]

A a1 a2 . . . an−1 an
B + b1 b2 . . . bn−1 bn

S s1 s2 . . . sn−1 sn

C(i) ≡ (∃j > i)
(

A(j) ∧ B(j) ∧

(∀k .j > k > i)(A(k) ∨ B(k))
)

Q+(i) ≡ A(i) ⊕ B(i) ⊕ C(i)
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Parallel Machines:

Quantifiers are Parallel

CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[nO(1)]

Assume array A[x ] : x = 1, . . . , r in memory.

∀x(A(x)) ≡ write(1); proc pi : if (A[i] = 0) then write(0)
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Inductive Definitions and Least Fixed Point

E?(x , y)
def
= x = y ∨ E(x , y) ∨ ∃z(E?(x , z) ∧ E?(z, y))

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

ϕG
tc : binRel(G) → binRel(G) is a monotone operator

G ∈ REACH ⇔ G |= (LFPϕtc)(s, t) E? = (LFPϕtc)

REACH =
{

G, s, t
∣∣ s ?→ t

}

REACH 6∈ FO
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Tarski-Knaster Theorem

Thm. If ϕ : Relk (G)→ Relk (G) is monotone, then LFP(ϕ)
exists and can be computed in P.

proof: Monotone means, for all R ⊆ S, ϕ(R) ⊆ ϕ(S).

Let I0 def
= ∅; Ir+1 def

= ϕ(Ir ) Thus, ∅ = I0 ⊆ I1 ⊆ · · · ⊆ I t .

Let t be min such that I t = I t+1. Note that t ≤ nk where
n = |V G|. ϕ(I t ) = I t , so I t is a fixed point of ϕ.

Suppose ϕ(F ) = F . By induction on r , for all r , Ir ⊆ F .

base case: I0 = ∅ ⊆ F .

inductive case: Assume I j ⊆ F

By monotonicity, ϕ(I j) ⊆ ϕ(F ), i.e., I j+1 ⊆ F .

Thus I t ⊆ F and I t = LFP(ϕ). �
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Inductive Definition of Transitive Closure

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

I1 = ϕG
tc(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 1
}

I2 = (ϕG
tc)2(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2
}

I3 = (ϕG
tc)3(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 4
}

... =
...

...

Ir = (ϕG
tc)r (∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ 2r−1}
... =

...
...

(ϕG
tc)d1+log ne(∅) =

{
(a,b) ∈ V G × V G

∣∣ dist(a,b) ≤ n
}

LFP(ϕtc) = ϕ
d1+log ne
tc (∅); REACH ∈ IND[log n]

Next we will show that IND[t(n)] = FO[t(n)].
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ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z (R(x , z)∧R(z, y))

1. Dummy universal quantification for base case:

ϕtc(R, x , y) ≡ (∀z.M1)(∃z)(R(x , z) ∧ R(z, y))

M1 ≡ ¬(x = y ∨ E(x , y))

2. Using ∀, replace two occurrences of R with one:

ϕtc(R, x , y) ≡ (∀z.M1)(∃z)(∀uv .M2)R(u, v)

M2 ≡ (u = x ∧ v = z) ∨ (u = z ∧ v = y)

3. Requantify x and y .

M3 ≡ (x = u ∧ y = v)

ϕtc(R, x , y) ≡ [ (∀z.M1)(∃z)(∀uv .M2)(∃xy .M3) ] R(x , y)

Every FO inductive definition is equivalent to a quantifier block.
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QBtc ≡ [(∀z.M1)(∃z)(∀uv .M2)(∀xy .M3)]

ϕtc(R, x , y) ≡ [(∀z.M1)(∃z)(∀uv .M2)(∃xy .M3)]R(x , y)

ϕtc(R, x , y) ≡ [QBtc]R(x , y)

ϕr
tc(∅) ≡ [QBtc]r (false)

Thus, for any structure A ∈ STRUC[Σg],

A ∈ REACH ⇔ A |= (LFPϕtc)(s, t)

⇔ A |= ([QBtc]d1+log ||A||e false)(s, t)
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CRAM[t(n)] = concurrent parallel random access machine;
polynomial hardware, parallel time O(t(n))

IND[t(n)] = first-order, depth t(n) inductive definitions

FO[t(n)] = t(n) repetitions of a block of restricted quantifiers:

QB = [(Q1x1.M1) · · · (Qkxk .Mk )]; Mi quantifier-free

ϕn = [QB][QB] · · · [QB]︸ ︷︷ ︸
t(n)

M0



parallel time = inductive depth = QB iteration

Thm. For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] ⊇ FO[t(n)]: For QB with k variables,
keep in memory current value of formula on all possible
assignments, using nk bits of global memory.
Simulate each next quantifier in constant parallel time.

CRAM[t(n)] ⊆ FO[t(n)]: Inductively define new state of every
bit of every register of every processor in terms of this global
state at the previous time step. �

Thm. For all t(n), even beyond polynomial,

CRAM[t(n)] = FO[t(n)]
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For t(n) poly bdd,

CRAM[t(n)]

=

IND[t(n)]

=

FO[t(n)]

Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.co-r.e.

FO∀(N)
Recursive

EXPTIME

FO[2n
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]
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PTIME Hierarchy SO NP complete
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co-NP complete
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NP ∩ co-NP

P complete
Horn-
SAT CRAM[nO(1)] P

FO[nO(1)]
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FO[logO(1) n] CRAM[logO(1) n] NC“truly

feasible”FO[log n] CRAM[log n] AC1
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FO(REGULAR)
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for all t(n),
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=
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Number of Variables Determines Amount of Hardware

Thm. For k = 1,2, . . . , DSPACE[nk ] = VAR[k + 1]

Since variables range over a universe of size n, a constant
number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

A bounded number, k , of variables, is k log n bits and
corresponds to nk gates, i.e., polynomially much hardware.

A second-order variable of arity r is nr bits, corresponding to
2nr

gates.
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SO: Parallel Machines with Exponential Hardware

Given ϕ with n variables and m clauses, is ϕ ∈ 3-SAT?

With r = m2n processors, recognize 3-SAT in constant time!

Let S be the first n bits of our processor number.
If processors S1, . . .Sm notice that truth assignment S makes
all m clauses of ϕ true, then ϕ ∈ 3-SAT, so S1 writes a 1.
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SO: Parallel Machines with Exponential Hardware

Thm. SO[t(n)] = CRAM[t(n)]-HARD[2nO(1)
] .

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block
containing both first-order and second-order quantifiers.
The proof is similar to FO[t(n)] = CRAM[t(n)]. �

Cor.

SO = PTIME Hierarchy = CRAM[1]-HARD[2nO(1)
]

SO[nO(1)] = PSPACE = CRAM[nO(1)]-HARD[2nO(1)
]

SO[2nO(1)
] = EXPTIME = CRAM[2nO(1)

]-HARD[2nO(1)
]
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Parallel Time versus Amount of Hardware

PSPACE = FO[2nO(1)
] = CRAM[2nO(1)

]-HARD[nO(1)]

= SO[nO(1)] = CRAM[nO(1)]-HARD[2nO(1)
]

I We would love to understand this tradeoff.

I Is there such a thing as an inherently sequential problem?,
i.e., is NC 6= P?

I Same tradeoff as number of variables vs. number of
iterations of a quantifier block.
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SO[t(n)]

=

CRAM[t(n)]-

HARD-[2nO(1)
]
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FO∀(N)
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] SO[nO(1)] PSPACE

PTIME Hierarchy SO NP complete
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Recent Breakthroughs in Descriptive Complexity

Theorem [Ben Rossman] Any first-order formula with any
numeric relations (≤,+,×, . . .) that means “I have a clique of
size k ” must have at least k/4 variables.

Creative new proof idea using Håstad’s Switching Lemma gives
the essentially optimal bound.

This lower bound is for a fixed formula, if it were for a sequence
of polynomially-sized formulas, i.e., a fixed-point formula, it
would follow that CLIQUE 6∈ P and thus P 6= NP.

Best previous bounds:

I k variables necessary and sufficient without ordering or
other numeric relations [I 1980].

I Nothing was known with ordering except for the trivial fact
that 2 variables are not enough.



Recent Breakthroughs in Descriptive Complexity

Theorem [Martin Grohe] Fixed-Point Logic with Counting
captures Polynomial Time on all classes of graphs with
excluded minors.

Grohe proves that for every class of graphs with excluded
minors, there is a constant k such that two graphs of the class
are isomorphic iff they agree on all k -variable formulas in
fixed-point logic with counting.

Using Ehrenfeucht-Fraı̈ssé games, this can be checked in
polynomial time, (O(nk (log n))). In the same time we can give a
canonical description of the isomorphism type of any graph in
the class. Thus every class of graphs with excluded minors
admits the same general polynomial time canonization
algorithm: we’re isomorphic iff we agree on all formulas in Ck
and in particular, you are isomorphic to me iff your Ck canonical
description is equal to mine.



What We Know

I Diagonalization: more of the same resource gives us
more:

DTIME[n] ⊂6= DTIME[n2],

same for DSPACE, NTIME, NSPACE, . . .

I Natural Complexity Classes have Natural Complete
Problems

SAT: NP; HORN-SAT: P; QSAT: PSPACE; . . .

I Only One Complete Problem per Complexity Class

If A and B are complete for C via ≤fo then A ∼=fo B.
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Major Missing Idea

I We have no concept of work or conservation of energy in
computation;

I i.e, in order to solve SAT or other hard problem we must
do a certain amount of computational work.
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Strong Lower Bounds on FO[t(n)] for small t(n)

I [Sipser]: strict first-order alternation hierarchy: FO.

I [Beame-Håstad]: hierarchy remains strict up to
FO[log n/ log log n].

I NC1 ⊆ FO[log n/ log log n] and this is tight.

I Does REACH require FO[log n]? This would imply
NC1 6= NL.
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Does It Matter? How important is P 6= NP?

I Much is known about approximation, e.g., some NP
complete problems, e.g., Knapsack, Euclidean TSP, can be
approximated as closely as we want, others, e.g., Clique,
can’t be.

I We conjecture that SAT requires DTIME[Ω(2εn)] for some
ε > 0, but no one has yet proved that it requires more than
DTIME[n].

I Basic trade-offs are not understood, e.g., trade-off between
time and number of processors. Are any problems
inherently sequential? How can we best use mulitcores?

I SAT solvers are impressive new general purpose problem
solvers, e.g., used in model checking, AI planning, code
synthesis. How good are current SAT solvers? How much
can they be improved?
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Descriptive Complexity

Fact: For constructible t(n), FO[t(n)] = CRAM[t(n)]

Fact: For k = 1,2, . . . , VAR[k + 1] = DSPACE[nk ]

The complexity of computing a query is closely tied to the
complexity of describing the query.

(P = NP) ⇔ (FO(LFP) = SO)

(ThC0 = NP) ⇔ (FO(COUNT) = SO)

(P = PSPACE) ⇔ (FO[nO(1)] = FO[2nO(1)
])
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