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In the 1980’s Eric Lander, Jin-Yi Cai, Martin Fürer and I began to explore the power
of fixed point logic with counting (FPC). This natural class is deeply entwined with the
challenge of capturing the class of polynomial-time graph properties and determining
the complexity of graph isomorphism — problems that remain open. Despite that, so
much more is now known about the remarkable power of FPC. Anuj Dawar explains
in the following lovely survey.
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The Nature and Power of Fixed-Point Logic
with Counting

Anuj Dawar, University of Cambridge

In 1982, Neil Immerman proposed an extension of fixed-point logic by means of counting quantifiers (which
we denote FPC) as a logic that might express all polynomial-time properties of unordered graphs. It was
eventually proved (by Cai, Fürer and Immerman) that there are polynomial-time graph properties that
are not expressible in FPC. Nonetheless, FPC is a powerful and natural fragment of the complexity class
PTime. In this article, I justify this claim by reviewing three recent positive results that demonstrate the
expressive power and robustness of this logic.

1. INTRODUCTION
Neil Immerman showed in [Immerman 1982] that fixed-point logic—FP, a formalism
extending first-order logic with a mechanism for defining predicates recursively—could
define exactly the polynomial-time decidable properties of finite structures provided
that the formulas had access to a linear order on the elements of the structures (a
result established independently by Vardi [1982]). In his paper, Immerman asks the
question whether the requirement of having a linear order could be replaced by allow-
ing instead the logic to express the cardinalities of definable sets. This leads to the
definition of Fixed-Point Logic with Counting (FPC), the extension of first-order logic
with a mechanism for iteration and a mechanism for counting. Immerman’s question
was motivated by two considerations. On the one hand, the requirement for a linear
order imposes an extraneous condition on the structures allowing us to express prop-
erties that are not really properties of the underlying structure at all, and one would
like to avoid this. On the other hand, the only known examples of structural prop-
erties that could not be expressed in FP were cardinality properties, which could be
expressed once a mechanism for counting is included.

It was not long after the question was raised that it was shown, by Cai et al. [1992]
that there are, indeed, polynomial-time properties of graphs that cannot be expressed
in FPC. The question of whether there is a natural logic in which one can express all
and only the polynomial-time (PTime) decidable properties of finite structures remains
open. There have been several proposals of logics that properly extend the expressive
power of FPC while remaining within PTime. These include logics with choice oper-
ators [Gire and Hoang 1998], choiceless machines [Blass et al. 1999] and logics with
matrix rank operators [Dawar et al. 2009]. However, none of these has been as exten-
sively studied as FPC (see, for instance, the monograph by Otto [1997] for an extensive
discussion of the logic). FPC, though no longer a candidate for capturing PTime, seems
to capture an intriguing class of problems within PTime worthy of study in its own
right. That makes the logic an important focus of continuing investigation.

In this article, I take a look at three recent results about the expressive power of
FPC that support the case that the FPC-definable properties form a natural and pow-
erful fragment of PTime. First of these is the monumental result of Grohe that shows
that on any class C of structures that excludes some graph minor (precise definitions
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of these notions are given in Section 3) FPC captures all of PTime. This is the culmina-
tion of a decade of work exploring the expressive power of FPC on restricted classes of
structures using the methods of structural graph theory. The second result (explored
in Section 4) is one that establishes the surprising power of FPC to express linear-
programming problems and uses this to settle a fifteen-year-old conjecture of Blass,
Gurevich and Shelah. The third result, reviewed in Section 5, characterizes the ex-
pressive power of FPC in terms of families of circuits restricted by a natural symmetry
condition. This frames the class of problems definable in FPC in the context of cir-
cuit complexity and reinforces the view that this is a natural and robust class. In this
article, the aim, of course, is not to prove these results but to explain the context in
which they are proved, the nature of their contribution and explore some of the ideas
involved in the proofs. But, first of all, we begin by reviewing the definitions and some
background of the logic FPC.

2. FIXED-POINT LOGIC WITH COUNTING
Fix a relational vocabulary �, and let FO[�] denote first-order logic over this vocab-
ulary. By this we may mean the collection of first-order �-formulas or we may also
mean the collection of �-classes of finite structures that are definable in first-order
logic. In general, we may drop the mention of the vocabulary � if it is implicit and
just write FO. FP denotes the extension of FO with a fixed-point operator. Fixed-point
operators come in different varieties, such as the least-fixed-point operator and the
the inflationary-fixed-point operator. For our purposes here, it is most convenient to
just consider inflationary fixed-points. For details of the different logics one can obtain
with such fixed-point operators and their expressive power, the interested reader may
consult [Ebbinghaus and Flum 1999]. By Immerman [1986] and Vardi [1982], we know
that on ordered structures, FP expresses exactly those properties that are decidable in
polynomial-time. However, in the absence of order, simple counting properties, such as
saying that the number of elements in a structure is even, are not definable.

The Logic. Fixed-point logic with counting (FPC) extends FP with the ability to ex-
press the cardinality of definable sets. The logic has two sorts of variables: x1, x2, . . .
ranging over the domain elements of the structure, and ⌫1, ⌫2, . . . ranging over the
non-negative integers. If we allow unrestricted quantification over non-negative inte-
gers, the logic would be powerful enough to express undecidable properties. In Immer-
man’s original proposal, number variables were restricted to taking values in the set
{0, . . . , n} where n is the number of elements in the domain of the structure of inter-
pretation. In the formal definition below, we adopt another convention (suggested by
Grohe) of requiring quantification of number variables to be bounded by a term. In ad-
dition, we also have second order variables X1, X2, . . ., each of which has a type which is
a finite string in {element, number}⇤. Thus, if X is a variable of type (element, number),
it is to be interpreted by a binary relation relating elements to numbers. The logic
allows us to build up counting terms according to the following rule:

If � is a formula and x is a variable, then #x� is a term.

The intended semantics is that #x� denotes the number (i.e. the non-negative integer)
of elements that satisfy the formula �. The formulas of FPC are now described by the
following set of rules:

— all atomic formulas of first-order logic are formulas of FPC;
— if ⌧1 and ⌧2 are counting terms (that is each one is either a number variable or a term

of the form #x�) then each of ⌧1 < ⌧2 and ⌧1 = ⌧2 is a formula;
— if � and  are formulas then so are � ^  , � _  and ¬ ;
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— if � is a formula, x is an element variable, ⌫ is a number variable, and ⌘ is a counting
term, then 9x� and 9⌫  ⌘ � are formulas; and

— if X is a relation symbol of type ↵, z is a tuple of variables whose sorts match the
type ↵ and t is a tuple of terms of type ↵, then [fpX,z�](t) is a formula.
The intended semantics here is that the tuple of elements denoted by t is in the
inflationary fixed-point of the operator defined by �, binding the variables in X, z.

For details of the semantics and a lot more about the logic I refer the reader to Otto’s
excellent monograph [Otto 1997]. Here, I illustrate the use of this logic with some
examples. In what follows, we use A and B to denote finite structures over a vocabulary
� and A and B to denote their respective universes.

A standard example of the power of inductive definitions is that we can use them to
say a graph is connected, a property that is not expressible in FO.

Example 2.1. The following formula:

8u8v[fp
T,xy

(x = y _ 9z(E(x, z) ^ T (z, y)))](u, v)

is satisfied in a graph (V,E) if, and only if, the graph is connected. Indeed, the least relation
T that satisfies the equivalence T (x, y) ⌘ x = y _ 9z(E(x, z) ^ T (z, y))) is the reflexive and
transitive closure of E. This is, therefore the fixed point defined by the operator fp. The formula
can now be read as saying that every pair u, v is in this reflexive-transitive closure.

The standard example of a property not definable in FP is to say that the number of
elements in a structure is even.

Example 2.2. The following sentence is satisfied in a structure A if, and only if, the number
of elements of A that satisfy the formula �(x) is even.

9⌫1  [#x�]9⌫2  ⌫1(⌫1 = [#x�] ^ (⌫2 + ⌫2 = ⌫1))

In particular, taking � to be a universally true formula such as x = x, we get a sentence that
defines evenness. Here we have used the addition symbol in the subformula ⌫2 + ⌫2 = ⌫1. It
should be noted that this denotes a relation that is easily definable by induction on the domain
of numbers.

Besides using formulas of FPC to define classes of structures, we also use it to de-
fine a new structure from a given one. An FPC-interpretation of a vocabulary ⌧ in a
vocabulary � is a sequence of �-formulas, including a formula ✓R for each symbol R of
⌧ which, when interpreted in a �-structure A, yield a definition of a ⌧ -structure �A.
More precisely, the universe U of �A is the set of tuples of elements (which may be
tuples involving numbers as well as elements of A) satisfying some particular formula
✓U , and the interpretation of each ⌧ symbol R is given by the set of those tuples in U
satisfying ✓R. We omit some technical details here and the interested reader may con-
sult [Immerman 1999] where an interpretation is also called a query or [Grohe 2014,
Chapter 2], where it is called a transduction.

Finite Variable Logics. A key tool in analysing the expressive power of FPC is to
look at equivalence in a weaker logic—first-order logic with counting quantifiers and
a bounded number of variables. For each natural number i, we have a quantifier 9i
where A |= 9ix� if, and only if, there are at least i distinct elements a 2 A such that
A |= �[a/x]. While the extension of first-order logic with counting quantifiers is no
more expressive than FO itself (in contrast to the situation with counting terms), the
presence of these quantifiers does affect the number of variables that are necessary to
express a query. Let Ck denote the k-variable fragment of first-order logic with count-
ing quantifiers. That is, Ck consists of those formulas in which no more than k vari-
ables appear, free or bound. For two structures A and B, we write A ⌘Ck

B to denote
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that the two structures are not distinguished by any sentence of Ck. The link between
this and FPC is the following fact, established by Immerman and Lander [1990]:

THEOREM 2.3. For every sentence � of FPC, there is a k such that if A ⌘k B, then
A |= � if, and only if, B |= �.

Indeed, this theorem follows from the fact that for any formula � of FPC, there is a k
so that on structures with at most n elements, � is equivalent to a formula ✓n of Ck

Additionally, it can be shown that the quantifier depth of ✓n is bounded by a polynomial
function of n, but the important bound for us is that the number of variables k is
bounded by a constant that only depends on �.

The equivalence relations ⌘Ck have many different characterisations, some of which
arose in contexts removed from the connection with logic, such as the Weisfeiler-
Lehman family of equivalences arising in the study of graph isomorphism (see the
discussion in [Cai et al. 1992] for the connection). Particularly interesting are the
characterisations of ⌘Ck in terms of two-player games, including the counting game
of Immerman and Lander [1990] and the bijection game of Hella [1992]. These provide
a means of arguing that two structures A and B are ⌘Ck -equivalent. By Theorem 2.3,
this can then be used to show that some property is not definable in FPC, by showing
that it is not closed under ⌘Ck for any fixed k.

Inexpressibility Results. The suggestion that FPC might be sufficient to express all
properties in PTime arose from the intuition that it addresses the two obvious short-
comings of FO by providing a means to express inductive definitions and a means of
counting. In a sense, all algorithms that are “obviously” polynomial-time can be trans-
lated into the logic. Nonetheless, an ingenious construction by Cai et al. [1992] uses
games to give a polynomial-time decidable class of graphs that is not definable in FPC.
More precisely, they show how to construct a sequence of pairs of graphs (Gk, Hk), one
for each k 2 ! such that:

— for each k, Gk ⌘Ck

Hk;
— for each k, Gk 6⇠= Hk, i.e. the graphs are not isomorphic; and
— Gk and Hk have maximum degree 3.

It is an immediate consequence of these facts that the problem of graph isomorphism
for graphs of degree 3 is not expressible in FPC. However, this problem is known to be
in PTime by a result of Luks [1982].

A number of other conclusions on the limitations of the expressive power of FPC
can be drawn from the result of Cai et al. Such results typically fall into one of two
classes. In the first category are non-expressiblity results that follow from the result of
Cai et al. by means of reductions. For instance, there is no FPC sentence that defines
the graphs with a Hamiltonian cycle. This is because, by a result of Dahlhaus [1984],
this problem is NP-complete under first-order reductions, and FPC is closed under
such reductions. Hence, as long as we have some problem in NP that is not definable
in FPC, it follows that Hamiltonicity is not definable. By an older result of Lovász
and Gács [1977] we also know that satisfiability of Boolean formulas in CNF (suit-
ably encoded as a relational structure) is NP-complete under first-order reductions and
therefore this is also not definable in FPC. Interestingly, it remains an open question
whether 3-SAT is NP-complete under first-order reductions.

In the second category of non-expressibility results that follow on from Cai et al.
are those proved by adapting their methods. For instance, it is known that graph
3-colourability is not NP-complete under first-order reductions (indeed, the class of
problems that reduce to it obeys a 0-1-law, see [Dawar and Grädel 2010]). Still, it has
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been shown [Dawar 1998] that 3-colourability is not definable in FPC by a construc-
tion of graphs adapting that of Cai et al. More recently, Atserias et al. [2009] show
that the problem of determining whether a system of linear equations (modulo 2) is
solvable cannot be expressed in FPC, though this is a problem in PTime. By means
of first-order reductions, they then show that this implies that a host of constraint
satisfaction problems (characterised by algebraic properties) are not definable in FPC,
including 3-colourability and 3-SAT.

It should be noted that in all cases mentioned, the problem is shown to be not defin-
able in FPC by establishing the stronger statement that the problem is not invariant
under ⌘Ck for any fixed k. Of course, there are problems that are invariant under ⌘Ck

for some k but still not definable in FPC, for instance, problems that are not in PTime

at all. Could it be that every problem in PTime that is invariant under ⌘Ck for some
k is also in FPC? This remains an open question and I refer the interested reader to
Otto [1997] for a thorough discussion.

Capturing Results. Alongside results establishing the limits of the expressive power
of FPC, there has been a series of results showing that FPC is powerful enough to
express all polynomial-time decidable properties, provided that we restrict the class of
structures in some way. Of course, we have already noted above that FPC (even without
the counting extension) suffices to capture PTime on ordered structures. One impor-
tant line of investigation has sought to examine classes of structures based on sparse
graphs. An early result in this vein was due to Immerman and Lander, who showed
that FPC captures PTime on trees. This was generalized in two distinct directions by
Grohe [1998], who showed that FPC capture PTime on planar graphs and Grohe and
Mariño [1999] who show that FPC captures PTime on graphs of bounded treewidth.
These results were the beginning of a long progression which leads to Grohe’s theo-
rem establishing that FPC captures PTime on any class of structures whose adjacency
graphs form a proper minor-closed class. This generalizes the prevous mentioned re-
sults and that is the subject of the next section.

3. MINOR-CLOSED CLASSES
With any �-structure A, we associate a (loop-free, undirected) graph �A, which we
call the adjaceny graph of A (also known as the Gaifman graph of A). This is the
graph with vertex set A and in which two vertices u and v are adjacent if there is
some relation R in � and some tuple t 2 RA such that both u and v occur in t. A very
useful methodology for studying well-behaved classes of finite structures is to restrict
attention to structures with adjacency graphs from some restricted graph class. This
has enabled the deployment of techniques from structural graph theory in the study of
finite model theory (see [Dawar 2007] for a short survey). In particular, well-behaved
classes of finite structures can be defined using the graph minor relation. In the rest
of this section, I talk of graphs and classes of graphs. All the results about definability
and capturing PTime that are stated for a class of graphs C apply equally well to a
class of relational structures all of whose adjacency graphs are in C.

Graph Minors. We say that a graph H is a minor of a graph G and write H � G,
if H can be obtained from G by means of repeated applications of the operations of (i)
deleting an edge; (ii) deleting a vertex, and all edges incident on it; and (iii) contracting
an edge. Here, the last operation is one where we remove an edge (u, v) and replace the
two vertices u and v by a new vertex whose neighbours are all neighbours of u and v
(other than u and v themselves). A more formal definition is that H = (U,F ) is a minor
of G = (V,E) if there is a set U 0 ✓ V and a surjective map M : U 0 ! U such that

— for each u 2 U , M�1(u) induces a connected subgraph of G; and
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— for each edge (u, v) 2 F , there is an edge in E between some x 2 M�1(u) and some
y 2 M�1(v).

Intuitively, H is a minor of G if the “structure” of H can be found inside G. As a simple
example, if H is a triangle (denoted K3), then H is a minor of G if, and only if, G
contains a cycle.

Say that a class C of graphs excludes H as a minor if H is not a minor of any graph
in C. Thus, the class of graphs that exclude K3 as a minor is exactly the class of acyclic
graphs. Say C is minor-closed if any minor of any graph in C is also in C. It is a proper
minor-closed class if it is minor-closed and is not the class of all graphs. Clearly, any
proper minor-closed class of graphs excludes some graph as a minor. Indeed it is char-
acterised by the set of minor-minimal graphs that it excludes. Also, any graph class
that excludes some graph H as a minor is included in a proper minor-closed class. In
particular, it is included in the class of all graphs that do not have H as a minor, which
is clearly minor-closed, by transitivity of the minor relation.

A famous theorem of Wagner [1937] (building on earlier work by Kuratowski [1930])
states that a graph G is planar if, and only if, neither K5 (the clique on 5 vertices)
nor K3,3 (the complete bipartite graph on two sets of three vertices) is a minor of G.
Thus, planar graphs are a proper minor-closed class that is characterised by two for-
bidden minors. The theory of graph minors was developed through a series of papers
by Robertson and Seymour culminating in the proof of the graph minor theorem:

THEOREM 3.1 ([ROBERTSON AND SEYMOUR 2004]). In any infinite collection
{Gi | i 2 !} of graphs, there are i, j with Gi � Gj .

In other words, there are no infinite anti-chains in the graph minor relation. Since the
set of minor-minimal elements that are excluded from some proper minor-closed class
C form an anti-chain, an immediate corollary to the theorem is that any such class is
characterised by a finite set of forbidden minors.

COROLLARY 3.2. For any minor-closed class C, there is a finite collection F of graphs
such that G 2 C if, and only if, F 6� G for all F 2 F .

This corollary has important algorithmic consequences. In particular, since Robertson
and Seymour also show [Robertson and Seymour 1995] that for every H, there is a
cubic time algorithm that decides if a given G has H as a minor, it follows that every
proper minor-closed class is decidable by a cubic time algorithm. Indeed, if C is such a
class and F the finite collection of forbidden minors that characterize it, an algorithm
for testing membership in C is obtained by taking a graph G and checking for each
H 2 F that H is not a minor of G.

Capturing PTime. We can now state the theorem of Grohe.

THEOREM 3.3 (GROHE [GROHE 2014]). FPC captures PTime on any proper minor-
closed class C.

Note that, since any class C that excludes a minor is included in some proper-minor
closed class, it follows that FPC captures PTime on any class of structures whose adja-
cency graphs exclude some minor.

The full proof of Theorem 3.3 has not yet been published but appears in a monograph
of more than 400 pages that is available from the author’s website [Grohe 2014]. The
statement of the result, and a proof of the important special case of classes of graphs
C embeddable in a fixed surface, have been published in [Grohe 2012]. It is clearly not
possible, in the confines of this column, to even sketch the proof of Theorem 3.3, but I
will try to highlight some of the important ideas.
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Say that a class C of �-structures admits FPC canonization if there is an FPC inter-
pretation that maps each structure A in C to a � ] {}-structure A whose �-reduct
is isomorphic to A and on which  is interpreted as a linear order of the universe.
In other words, the canonization allows us to define an ordered version of each struc-
ture in C from the structure itself. In particular, by the invariance properties of FPC,
a canonization has the property that two structures are isomorphic if, and only if, the
canonization takes them to isomorphic ordered structures. Checking isomorphism of
ordered structures is trivial, so an FPC canonization on a class C also gives us an FPC-
definable isomorphism test on C. Since FPC captures PTime on ordered structures, it
is not difficult to see that for any class C that admits FPC canonization, FPC captures
PTime on C. Grohe shows that for any graph H, there is an FPC interpretation that is
a canonization on the class of graphs that omit H as a minor.

In order to prove the result, Grohe develops a version of the structure theory that
Robertson and Seymour developed in the proof of the graph minor theorem, but in a
version that respects definability. An essential ingredient of Robertson and Seymour’s
proof of Theorem 3.1 is known as the structure theorem [Robertson and Seymour
2003]. Introducing all the elements required for a formal statement of the theorem
would take us too far afield, so we will be content with an informal statement. The
structure theorem essentially says that for each H, there is a k such that a graph G
that excludes H as a minor admits a tree decomposition in which each bag is almost
embeddable in a surface of genus k. The difficulty in using this decomposition theorem
to derive an FPC canonization for graphs excluding H as a minor is that the particular
tree decomposition constructed by Robertson and Seymour is not generic. That is to
say, the construction relies on a particular presentation of the graph, is not invariant
under automorphisms of the graph and so cannot be defined by formulas that neces-
sarily respect such automorphisms. Indeed, it is not clear that any generic form of such
a tree decomposition can be defined.

To get around this difficulty, Grohe defines the notion of a treelike decomposition
of a graph G. This is not a tree decomposition at all. Rather, it is a directed acyclic
graph decorated with bags that are sets of vertices of G. The definition includes tech-
nical conditions on connectivity and consistency of these bags that ensure that it in-
cludes within it a tree decomposition of G. Indeed, a treelike decomposition of G can
be obtained from a tree decomposition by taking the images of all bags under auto-
morphisms of G. An essential step in Grohe’s construction is a definable version of
Robertson and Seymour’s structure theorem, showing that there is an FPC interpreta-
tion which, on graphs that exclude H as a minor, defines a treelike decomposition into
bags that are almost embeddable in a fixed surface.

The definable structure theorem is arrived at by a series of steps. First, Grohe shows
that there is an FPC-definable decomposition of planar graphs into their 3-connected
components. This is lifted to graphs embeddable in an arbitrary surface, by an induc-
tive argument on the surface. More heavy lifting is required, based on elements of
Robertson and Seymour’s structure theory, to obtain from this a definable treelike de-
composition. The final element is that from such a definable treelike decomposition,
one can show that the class of graphs excluding H as a minor admits FPC canoniza-
tion, leading to Theorem 3.3.

There are two significant consequences of this construction to note here. One is that
every proper minor-closed class of graphs is itself definable by some FPC sentence. The
other is that for any such class C, there is a k such that ⌘Ck is the same as isomorphism
on graphs in C. In other words, the k-dimensional Weisfeiler-Lehman algorithm suf-
fices to decide graph isomorphism on C. Of course, the exact value of k depends on the
finite set of excluded minors that characterise the class C and for many proper minor-
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closed classes, we do not know this set. But, in other cases, such as planar graphs, it
would be interesting to pinpoint the precise value of k for which this happens.

4. LINEAR PROGRAMMING AND MATCHING
We noted above (see page 11) that the original intuition that led to the question of
whether FPC captures PTime was that all problems that admit “obvious” polynomial-
time algorithms are expressible in FPC. The last section showed a whole class of
problems—the proper minor-closed classes of graphs—whose membership in PTime
is far from obvious, but which nonetheless turn out to be definable. In this section,
we turn to another fundamental algorithmic technique which is used in a rather non-
obvious way to establish that some problems are in PTime.

Linear programming is a widely used approach to solving combinatorial optimiza-
tion problems. It provides a powerful framework within which optimization problems
can be represented, as well as efficient methods for solving the resulting programs. In
particular, it is known since the work of [Khachiyan 1980] that there are polynomial-
time algorithms that solve linear programs.

Linear Programs as Structures. In general, a linear programming instance consists
of a set C of constraints over a set V of variables. Each constraint c consists of a vector
ac 2 QV and a rational bc 2 Q. The feasibility problem is to determine for such an
instance if there exists a vector x 2 QV such that aTc x  bc for all c 2 C. An instance
of the optimization problem is obtained if we have, in addition, an objective function
represented by a vector f 2 QV . The aim is then to find an x 2 QV which satisfies all
constraints in C and maximizes the value of fTx.

We want to consider instances of linear programming as relational structures that
may act as interpretations for formulas of FPC. For this, we consider structures whose
universe consists of three disjoint sets: V , C and B. The last of these is equipped with
a linear order and may be thought of as {0, . . . , t}, i.e. an initial segment of the natural
numbers where t is large enough that all the rational numbers required to represent
our instance can be written down using at most t bits for both numerator and denomi-
nator. We can then encode the linear programming instance through suitable relations
for the numerators, denominators and signs of the values involved. For instance, we
have a ternary relation N so that for c 2 C, v 2 V and b 2 B, N(c, v, b) holds if the
bth bit in the numerator of ac(v) is 1. It should be stressed that while the set B is
ordered, there is no order on the sets V and C. If there were, then feasibility of such
linear programming instances would be definable in FPC simply by the fact that all
polynomial-time decidable properties of ordered structures are definable.

Ellipsoid Method. In [Anderson et al. 2013], it is shown that the feasibility problem
and, indeed, the optimization problem, for linear programming, is definable in FPC.
The proof proceeds by means of expressing in the logic a version of Khachiyan’s el-
lipsoid method [Khachiyan 1980]. In short, the ellipsoid method for determining the
feasibility of a linear program proceeds by choosing a vector x 2 QV (one may as well
begin from the vector of all zeroes) and calculating, based on the bit complexity of the
instance, an ellipsoid around x which is guaranteed to include the polytope defined
by the constraints C. Now, if x itself does not satisfy all the constraints in C, we can
choose one c 2 C for which aTc x > bc and use it to calculate a new vector x0 and an
ellipsoid centred on x0 which still includes the polytope defined by C. The construction
guarantees that the volume of the new ellipsoid is at most half that of the original one.
This means that in a number of steps that is bounded by a polynomial in the size of the
instance, the process converges to a centre x that satisfies all the constraints in C or
the volume of the ellipsoid is small enough that we know for certain that the polytope
is empty.
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It is not difficult to show that all the calculations involved in computing the ellipsoid
and centres can be expressed in FPC (see [Holm 2010] for details on how linear algebra
using matrices without an order on the rows and columns can be expressed). The one
step in the algorithm outlined above that causes difficulty is the choice of a violated
constraint, which is used to define a new centre. There is no way, in any logical formal-
ism that respects automorphisms of the structure on which it is interpreted (as any
reasonable logic must) to choose an arbitrary element. However, the ellipsoid method
is quite robust and it still works as long as, at each stage, we can construct some hyper-
plane that separates our current centre x from all points in the polytope defined by C.
And, as shown in [Anderson et al. 2013], such a construction can be done canonically
by taking the set of all constraints in C that are violated by x and taking their sum as
our separating hyperplane. We thus get that feasibility of linear programs (and also
the linear programming optimization problem) are definable in FPC.

Separation Oracles. So far, we have considered linear programs represented explic-
itly. That is, all the constraints are written out as part of the input structure. Relying
on the robustness of the ellipsoid method, we can take this method further. In many
applications of linear programming, we are not given an explicit constraint matrix, but
some succinct description from which explicit constraints can be derived. In particu-
lar, the number of constraints may be exponential in the size of the input. The ellipsoid
method can be used in such cases as long as we have a means of determining, for any
vector x, whether it is in the polytope P described by the constraint matrix and, if it
is not, a hyperplane that separates x from the polytope. This is known as a separation
oracle for P . It is shown in [Anderson et al. 2013] that, as long as a separation oracle
for a polytope P is itself definable in FPC, then the corresponding linear programming
optimization problem can also be defined in FPC.

This reduction of optimization to separation reveals an interesting relationship of
linear programming with the equivalence relations ⌘Ck . We are given a polytope P ✓
QV in the form of some relational structure A and an FPC interpretation � which acts
as a separation oracle. That is, given an x 2 QV (and we assume that V is part of the
universe of A, though the constraint set C is not and may, in general, be exponentially
larger than A), � interpreted in a suitable expansion of A with x either determines
that x is in the polytope P or defines a hyperplane separating x from P . Then, there is
some k (the exact value will depend on �) so that we can take the quotient V 0 = V/⌘Ck

(where ⌘Ck is defined with respect to the structure A) and project P to a polytope
P 0 ✓ QV 0 in such a way that feasibility and optimization with respect to P can be
reduced to similar questions about P 0. This should be compared with [Grohe et al.
2014] where it is shown, essentially, that in the special case of explictly represented
constraint matrices, taking k = 2 gives a similar result. This is then used as a pre-
processing tool for optimizing the performance of linear programming solvers.

Maximum Matching. An important application given in [Anderson et al. 2013] of the
FPC definability of linear programming is to the maximum matching problem. Recall
that a matching in a graph G is a set of edges M so that each vertex in G is incident
on at most one edge in M . The maximum matching problem is then to find a matching
in G of maximum size. Note that it would not be possible, in FPC or any other logic,
to give a formula that would actually define the set M that is a maximum matching.
This is because M would not, in general, be invariant under automorphisms of G. For
instance, if G is Kn—the n-vertex complete graph—then it contains an exponential
(in n) number of distinct maximum matchings all of which map to each other under
automorphisms of G. However, it is shown in [Anderson et al. 2013] that the size of a
maximum matching in G can be defined in FPC. It is known, thanks to Edmonds [1965]
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that we can associate with a graph G a matching polytope with an exponential number
of constraints (and Rothvoß [2014] has shown that this is essentially optimal) so that
optimizing over this polytope yields a maximum matching. Anderson et al. [2013] show
that a separation oracle for the matching polytope can be defined in FPC interpreted
on the graph G and hence deduce that the size of the maximum matching is definable.
This settles a fifteen-year-old question posed by Blass et al. [1999] who conjectured
that the existence of a perfect matching in G was not definable even in the stronger
formalism of Choiceless Polynomial Time with Counting.

5. SYMMETRIC CIRCUITS
Let us now turn to the relationship between definability in FPC and circuit complexity.
We start with a brief introduction to the formalism of circuit complexity.

A language L ✓ {0, 1}⇤ can be described by a family of Boolean functions:

(fn)n2! : {0, 1}n ! {0, 1}.

Each fn can be represented by a circuit Cn which is a directed acyclic graph where
we think of the vertices as gates suitably labeled by Boolean operators ^,_,¬ for the
internal gates and by inputs x1, . . . , xn for the gates without incoming edges. One gate
is distinguished as determining the output. If there is a polynomial p(n) bounding the
size of Cn (i.e. the number of gates in Cn), then the language L is said to be in the
complexity class P/poly. If, in addition, the family of circuits is uniform, meaning that
the function that takes n to Cn is itself computable in polynomial time, then L is in
PTime. For the definition of either of these classes, it does not make a difference if we
expand the class of gates that we can use in the circuit beyond the Boolean basis to
include, for instance, threshold or majority gates. The presence of such gates can make
a difference for more restricted circuit complexity classes, for instance when we limit
the depth of the circuit to be bounded by a constant, but not when we allow arbitrary
polynomial-size circuits. Also, in the circuit characterization of PTime, it does not make
a difference if we replace the uniformity condition with a stronger requirement. Say,
we might require that the function taking n to Cn is computable in DLogTime.

Circuits on Graphs. We are interested in languages that represent properties of re-
lational structures such as graphs. For simplicity, in what follows, let us restrict at-
tention to directed graphs, i.e. structures in a vocabulary with one binary relation.
A property of such graphs that is in PTime can be recognised by a family (Cn)n2! of
Boolean circuits of polynomial size and uniformity, as before, where now the inputs
to Cn are labelled by the n2 potential edges of an n-vertex graph, each taking a value
of 0 or 1. Of course, given an n-vertex graph G, there are many ways that it can be
mapped onto the inputs of the circuit Cn. So, to ensure that the family of circuits is
really defining a property of graphs, we require it to be invariant under the choice of
this mapping. That is, each input of Cn carries a label of the form (i, j) for i, j 2 [n] and
we require the output to be unchanged under any permutation ⇡ 2 Sn acting on the
inputs by the action (i, j) 7! (⇡(i),⇡(j)). It is clear that any property of graphs that is
invariant under isomorphisms of graphs and is in PTime is decided by such a family of
circuits.

From Logic to Circuits. It turns out that the properties of graphs that are definable
in logics such as FPC are decided by circuits with a stronger invariance condition. Say
that a circuit Cn is symmetric if any permutation ⇡ 2 Sn can be extended to an auto-
morphism of Cn which takes each input (i, j) to (⇡(i),⇡(j)). It is clear that symmetric
circuits are necessarily invariant and it is not difficult to come up with examples that
show that the converse is not true.
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It is also not difficult to show we can translate a formula of first-order logic, say, in
the language of graphs into a family of symmetric circuits. Given a first-order sentence
� and a positive integer n, we define the circuit C�

n by taking as gates the set of pairs
( ,a) where  is a subformula of � and a is a tuple of values from [n], one for each
free variable occurring in  . The input gates correspond to the atomic formulas and
the output gate is the one labelled by �. If the outermost connective in  is a Boolean
operation, the gate ( ,a) is labelled by that operator and it is connected to the gates
corresponding to subformulas in the obvious way. If  is 9x✓, then ( ,a) would be an
OR gate with inputs from (✓,aa) for all values a 2 [n] and similarly a universal formula
attaches to a large AND gate. It is not difficult to see that the circuits constructed are
symmetric as for any ⇡ 2 Sn, the map that takes ( ,a) to ( ,⇡(a)) is an automorphism
of the circuit. Moreover, the depth of the circuit is a function of �, so a fixed formula
yields a family of circuits of constant depth. On the other hand, we can take a formula
� of fixed-point logic, FP, and for each n, obtain a first-order formula ✓n with k (inde-
pendent of n) variables and quantifier depth bounded by a polynomial in n so that �
and ✓n are equivalent on structures with at most n elements. Converting this into a
circuit by the translation above yields a polynomial-size family of symmetric Boolean
circuits (the size is bounded by c · nk where c is the number of sub-formulas of �) that
is equivelent to �. If we start with a sentence � of FPC instead, we can use the transla-
tion to Ck (see Theorem 2.3) to obtain a family of symmetric circuits with threshold (or
majority) gates. We need these additional gates to translate the counting quantifiers
that appear in the Ck formula and Boolean gates will no longer suffice. Symmetric
circuits have been studied for the repesentation of properties defined in logic under
different names in the literature (see [Denenberg et al. 1986; Otto 1996]).

From Circuits to Logic. The recent paper [Anderson and Dawar 2014] establishes
that the correspondence between decidability by a family of symmetric circuits and
definability in logic is tight by giving translations in the other direction. In particular,
the following is shown there.

THEOREM 5.1. A class of graphs is accepted by a polynomially uniform symmetric
family of Boolean circuits if, and only if, it is definable by an FP formula interpreted in
G ] ([n], <).

Here, G ] ([n], <) denotes a structure consisting of a graph G together with a disjoint
set of elements [n] of the same cardinality as the set of vertices of G. In this structure,
we have the edge relation on the vertices of G and a linear order on the elements
[n] and no other relations. In particular, the vertices of G are not ordered and there
is no relation that connects the vertices of G with the elements of [n]. One can write
an FP formula for such structures that states that the number of vertices is even,
since this amounts to saying that the length of the linear order ([n], <) is even. But,
it is not difficult to show by a pebble game argument that no FP formula can say
that the number of edges in the graph G is even, even in the presence of the linear
order on the side. It follows from Theorem 5.1 that this simple invariant property of
graphs is not decidable by any polynimially-uniform family of symmetric circuits. It
also follows that allowing threshold or counting gates in symmetric circuits leads to
a model that is more powerful than just Boolean circuits, in contrast to the situation
of general polynomial-size circuits. The exact power of polynomially uniform families
of symmetric circuits with threshold gates is determined by the following theorem
from [Anderson and Dawar 2014]:

THEOREM 5.2. A class of graphs is accepted by a polynomially uniform symmetric
family of threshold circuits if, and only if, it is definable in FPC.
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A consequence of Theorems 5.2 and 5.1 is that any translation of invariant Boolean
circuits into equivalent symmetric circuits, even allowing additional threshold gates
in the latter, will necessarily involve a super-polynomial blow-up in the size of the
circuits.

Theorem 5.2 gives a natural and purely circuit-based characterization of FPC defin-
ability, justifying the claim that this is a natural and robust class. It also shows that
inexpressibility results for FPC can be understood as lower bound results against a
natural class of circuits. The holy grail of circuit complexity is to prove lower bounds
against the class of polynomial-size circuit families. So far, lower bounds have been
proved by imposing various restrictions on the families, such as monotonicity (where
a famous result of Razborov [1985] showed that no polynomial size family of monotone
circuits can decide the clique problem) or bounded depth. We can now add symmetric
circuits to the catalogue of circuit classes against which we are able to prove lower
bounds. It is instructive to put this in the context of the expressibility and inexpress-
ibility results for FPC mentioned previously. In particular, it follows that there is a
polynomially uniform family of symmetric threshold circuits for deciding whether a
graph has a perfect matching. But, there is no such family that decides whether a
graph contains a Hamiltonian cycle. A natural circuit model that separates these two
problems is certainly an intriguiing development.

Proof Idea. To conclude this section, I present some of the ideas underlying the proofs
of Theorems 5.1 and 5.2. One direction is easy, by the argument given above about
translating formulas into circuits. In the other direction, we want to use the symmetry
of the circuit to derive an equivalent formula in the fixed-point logic. If Cn is a symmet-
ric circuit taking n-vertex graphs as input, we can assume without loss of generality,
that the automorphism group of Cn is exactly the symmetric group Sn acting in the
natural way on its inputs. For a gate g in Cn, we say that a set X ✓ [n] supports g if
for every ⇡ 2 Sn such that ⇡(x) = x for all x 2 X, we also have ⇡(g) = g. Now, when
we consider the circuit families (Cn)n2! that arise as translations of FPC formulas,
we can note that there is a constant k such that all gates have a support of size at
most k. This is because the gates are labelled by pairs ( ,a) where a is a k-tuple of
elements from [n] and it is easily checked that the set of elements that appear in a is
a support of the gate. The main technical lemma in the proof of Theomem 5.2 estab-
lishes that this is, in fact, necessary for all symmetric circuits: if (Cn)n2! is a family of
symmetric circuits of polynomial size then there is a k such that all gates in Cn have a
support of at most k elements. Moreover, given a description of the circuit Cn, there is
a polynomial-time algorithm that will determine a minimal size support of each gate.
Now, given a graph G on n vertices and a bijection � : [n] ! V (G) that determines how
this graph is mapped to the inputs of Cn, whether a gate g in Cn evaluates to TRUE
is completely determined by � restricted to the support of g. We can thus represent
the set of all maps � that make g true as a k-ary relation on G. These k-ary relations
admit an inductive definition (by induction on the construction of the circuit Cn) which
allows us to turn the circuit family into a formula of FP (for Boolean circuits) or FPC
(if the circuit also has threshold gates). This relies on the fact that the map that takes
n to Cn is polynomial-time computable and therefore definable in FP on ordered struc-
tures. We use the linear order available “on the side” in Theorem 5.1 for this. It is not
necessary in the proof of Theorem 5.2 as it can be replaced by the use of numerical
variables.

6. CONCLUSION
I noted in the introduction that the conjecture that FPC captures PTime was based on
the intuition that algorithmic techniques that are obviously polynomial-time are all ex-
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pressible in this logic. The result of Cai et al. and subsequent results on inexpressiblity
in FPC essentially show that one important algorithmic technique, that of Gaussian
elimination, is not expressible in the logic. Nonetheless, the recent results surveyed
in this article show that many powerful and certainly non-obvious polynomial-time al-
gorithmic techniques are indeed expressible in FPC. In particular, we have seen that
FPC can express maximum matching in graphs, feasibility of linear programs and ar-
bitrary minor-closed classes of graphs. For each of these, the fact that the problem is
in polynomial-time was a major result of its day. Finally, the results of Section 5 show
further that FPC is a natural and robustly defined class by giving a characterization
of it by a natural and independently-motivated circuit model. Taken together, these
justify the claim that FPC is a natural and powerful class of problems.
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