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Abstract

A language L over an alphabet A is said to have a neutral letter if there is a letter
e ∈ A such that inserting or deleting e’s from any word in A∗ does not change its
membership or non-membership in L.

The presence of a neutral letter affects the definability of a language in first-
order logic. It was conjectured that it renders all numerical predicates apart from
the order predicate useless, i.e., that if a language L with a neutral letter is not
definable in first-order logic with linear order, then it is not definable in first-order
logic with any set N of numerical predicates. Named after the location of its first,
flawed, proof this conjecture is called the Crane Beach conjecture (CBC, for short).
The CBC is closely related to uniformity conditions in circuit complexity theory
and to collapse results in database theory.

We investigate the CBC in detail, showing that it fails for N = {+,×}, or,
possibly stronger, for any set N that allows counting up to the m times iterated
logarithm, for any constant m. On the positive side, we prove the conjecture for
the case of all monadic numerical predicates, for the addition predicate +, for the
fragment BC(Σ1) of first-order logic, for regular languages, and for languages over
a binary alphabet. We explain the precise relation between the CBC and so-called
natural-generic collapse results in database theory. Furthermore, we introduce a
framework that gives better understanding of what exactly may cause a failure of
the conjecture.

Key words: first-order logic, circuit uniformity, numerical predicates

Preprint submitted to Elsevier Science 31 March 2004



1 Introduction

Logicians have long been interested in the relative expressive power of different
logical formalisms. In the last twenty years, these investigations have also
been motivated by a close connection to computational complexity theory
— most computational complexity classes have been given characterisations
as finite model classes of appropriate logics, cf. [17]. In these investigations it
became apparent that in order to describe computation over a finite structure,
a formula has to be able to refer to some linear order of the elements of this
structure. Given such an order, the universe of the structure, i.e., the set of its
elements, can be identified with an initial segment of the natural numbers. In
a logic with the capability to express induction we can then define predicates
for arithmetical operations such as addition or multiplication on the universe,
and use them in order to describe operations on time or memory locations.
In weak logics, however, e.g., first-order logic, defining an order relation does
not automatically make arithmetic available. In fact, even over strings, the
expressive power of first-order logic varies considerably, depending on the set
of numerical predicates that can be used.

As an example, if the order is the only numerical relation then the only regular
languages that can be defined in first-order logic are the star-free languages.
If, however, for every p ∈ N we have available the predicate modp (which holds
for a number m iff m ≡ 0 (mod p)) then we can express regular languages that
are not star-free, such as (000 + 001)∗. In fact, with these predicates we can
express all the first-order definable regular languages, cf. [33]. Thus, even very
powerful relations (arithmetical relations, or even undecidable ones) are of no
further help in defining regular languages. On the other hand, with addition,
we can easily express languages that are not regular, such as {0n1n / n ∈ N}.

First-order logic with varying numerical predicates can also be thought of as
specifying circuit complexity classes with varying uniformity conditions [6].
The language defined by a first-order formula is naturally computed by a fam-
ily of boolean circuits with constant depth, polynomial size, and unbounded
fan-in (called “AC0 circuits”). The power of such a family depends in part on
the sophistication of the connections among the nodes. A formula with only
simple numerical predicates leads to a circuit family where these connections
are easily computable. These are called “uniform circuits”, and how uniform
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1 Supported by NSF grant CCR-9988260.
2 Supported by NSF grant CCR-9877078.
3 Supported by NSERC and FCAR.

2



they are is quantified by the computational complexity of a language describ-
ing the connections. A formula with arbitrary numerical predicates leads to a
circuit family with arbitrary connections — the set of languages so describable
is called “non-uniform AC0”.

There are languages, such as the PARITY language, for which we can prove
no AC0 circuit exists [1,16]. A major open problem in complexity theory is to
develop methods for showing languages to be outside of uniform circuit com-
plexity classes even if they are in the corresponding non-uniform class. This
is an additional motivation for the study of the expressive power of first-order
logic with various numerical predicates, as this provides a parametrization of
various versions of “uniform AC0”.

In an attempt to obtain a better understanding of this expressive power,
Thérien considered the concept of a neutral letter for a language L, i.e., a
letter e that can be inserted into or deleted from a string without affecting
its membership in L. Since, in the presence of such a letter, membership in L
cannot depend on specific (combinations of) letters being in specific (combina-
tions of) positions, it seemed conceivable that neutral letters would render all
numerical predicates, except for the order, useless. With this in mind, Thérien
proposed what was later dubbed the Crane Beach conjecture (named after the
location of its first, flawed proof):

If a language with a neutral letter can be defined in first-order logic using
some set N of numerical predicates then it can be so defined using only the
order relation.

One particular example of a language with a neutral letter is PARITY, con-
sisting precisely of those 0-1-strings in which 1 occurs an even number of
times. PARITY is not definable in first-order logic — no matter what numer-
ical predicates are used (cf. [1,16]). The Crane Beach conjecture would imply
this result, since PARITY is a regular language known not to be star-free.

In this paper, we investigate the Crane Beach conjecture in detail. We show
that in general it is not true — in fact, it already fails for N = {+,×}.
Furthermore, we introduce a framework that gives better understanding of
what exactly may cause a failure of the conjecture. However, we also show
that the conjecture is true in a number of interesting special cases, including
the case of addition, i.e., when N = {+}.

This work is closely related to a line of research in data base theory which is
concerned with so-called collapse results (cf. [9]). Here one considers a finite
data base embedded in some infinite, ordered domain, and then looks at locally
generic queries, i.e., queries which are invariant under monotone injections of
the data base universe into the larger domain. In this setting, a language with
a neutral letter is the special case of a locally generic (Boolean) query over
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monadic databases with background structure 〈N,≤,N〉, and the conjecture
then can be translated into a collapse for first-order logic.

The present paper combines results of the conference contribution [5] and
the dissertation [27]. The paper is structured as follows: Section 2 fixes the
basic notations concerning first-order logic and Ehrenfeucht-Fräıssé games.
Section 3 gives an introduction to the Crane Beach conjecture (the CBC, for
short). Section 4 presents the cases where the CBC is known to be true, ex-
plains the precise relation between the CBC and collapse results in database
theory. Section 5 presents cases where the CBC is false, and Section 6 provides
a framework that gives a better understanding of what exactly may cause the
conjecture to fail. Building upon this framework we show that, in some sense,
no reasonable update of the unrestricted version of the CBC is possible. Fi-
nally, Section 7 summarizes the results and points out suggestions for further
work.
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2 Preliminaries

2.1 First-Order Logic

A signature is a set σ containing finitely many relation, or predicate, symbols,
each with a fixed arity. A σ-structure A = 〈UA, σA〉 consists of a set UA, called
the universe of A and a set σA that contains an interpretation RA ⊆ (UA)k

for each k-ary relation symbol R ∈ σ.

In this paper, we are concerned almost exclusively with first-order logic over
finite strings. We write |w| to denote the length of the string w. For an
alphabet A we use the signature σA := {Qa / a ∈ A}, and we identify a
string w = w1 · · ·wn ∈ A∗ with the structure w = 〈{1, . . , n}, σw

A,≤〉, where
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σw
A = {Qw

a / a ∈ A} and Qw
a = {i ≤ n /wi = a}, i.e, i ∈ Qw

a ⇐⇒ wi = a, for
all a ∈ A.

In addition to the predicates Qa we also have numerical predicates 4 . A k-
ary numerical predicate P has, for every n ∈ N, a fixed interpretation Pn ⊆
{1, . . , n}k. Our prime example of a numerical predicate is the linear order
relation ≤. Where we see no danger of confusion (i.e., almost everywhere) we
will not distinguish notationally between a predicate and its interpretation.

Sometimes we will consider numerical predicates that result from relations over
N. Given a relation R ⊆ N

k, we will write R̂ to denote the k-ary numerical
predicate with R̂n = R ∩ {1, . . , n}k (for every n ∈ N).

An atomic σ-formula is either of the form x1=x2, or P (x1, . . , xk), where
x1, x2, . . , xk are variables and P ∈ σ is a k-ary predicate symbol. First-order
σ-formulas are built from atomic σ-formulas in the usual way, using Boolean
connectives ∧, ∨, ¬, etc. and universal (∀ x) and existential (∃ x) quantifiers.

For every alphabet A, and every set N of numerical predicates, we will denote
the set of first-order σA ∪ N -formulas by FO[N ]. We define the semantics of
first-order formulas in the usual way. In particular, for a string w ∈ A∗ and
a formula ϕ ∈ FO[N ] without free variables (i.e., variables not bound by a
quantifier), we will write w |= ϕ iff ϕ holds on the string w. If x1, . . , xk are
the free variables of ϕ, and if p1, . . , pk ≤ |w|, w |= ϕ(p1, . . , pk) indicates that
ϕ holds on the string w with xi interpreted as pi, for every i ≤ k.

Every formula ϕ ∈ FO[N ] without free variables defines the set Lϕ of those
A-strings that satisfy ϕ. We say that a language L ⊆ A∗ is definable in FO[N ],
and write L ∈ FO[N ], if L = Lϕ, for some ϕ ∈ FO[N ]. We will use anal-
ogous notation for subsets of FO[N ]; in particular, we will consider the set
Σ1[N ] of formulas which are of the form ∃x1 · · · ∃xrψ, for some quantifier-free
ψ ∈ FO[N ], and its Boolean closure, BC(Σ1[N ]). One can define a complete
hierarchy of classes Σi[N ] and Πi[N ] along with their Boolean closures, us-
ing the hierarchy of first-order formulas given by the number of quantifier
alternations. But in this paper we will have need only for BC(Σ1[N ]).

2.2 Ehrenfeucht-Fräıssé Games

One of our main technical tools will be the Ehrenfeucht-Fräıssé game (EF-
game, for short). In our context, the EF-game for a set of numerical predicates,
N , is played by two players, the Spoiler and the Duplicator, on two strings
u, v ∈ A∗. There is a fixed number k of rounds, and in each round i

4 In the literature, such predicates sometimes are also called built-in predicates.

5



• first, the Spoiler chooses one position, ai in u, or a position bi in v;
• then the Duplicator chooses a position in the other string, i.e., a bi in v, if

the Spoiler’s move was in u, and an ai in u, otherwise.

After k rounds, the game finishes with positions a1, . . , ak chosen in u and
b1, . . , bk chosen in v. The Duplicator has won if the mapping ai 7→ bi, (for
i = 1, . . , k), is a partial σA ∪ N -isomorphism, i.e., if

• for every i, j ≤ k, ai = aj ⇐⇒ bi = bj,
• for every i ≤ k, ai and bi carry the same letter, i.e., uai

= vbi
, and

• for every m-ary predicate P ∈ N and every i1, . . , im ≤ k, it holds that
P (ai1, . . , aim) ⇐⇒ P (bi1 , . . , bim).

Since the game is finite, one of the two players must have a winning strategy,
i.e., he or she can always win the game, no matter how the other player plays.
If the Duplicator has a winning strategy in the k-round game for N on two
strings u and v, we write u ≡N

k v. The fundamental use of the game comes
from the fact that it characterises first-order logic (cf., e.g., the textbooks
[12,17]). In our context, this can be formulated as follows:

Theorem 2.1 (Ehrenfeucht, Fräıssé) A language L ⊆ A∗ is definable in
FO[N ] iff there is a finite subset N ′ of N and a number k such that, for every
u ∈ L, v 6∈ L, the Spoiler has a winning strategy in the k-round game for N ′

on u and v.

We will also use the following variant of the game:
In the single-round k-move game for N on two strings u, v

• first, the Spoiler chooses either k positions a1, . . , ak in u, or k positions
b1, . . , bk in v;

• then the Duplicator chooses k positions in the other string, i.e., she chooses
k positions b1, . . , bk in v, if the Spoiler’s move was in u, or she chooses k
positions a1, . . , ak in u, if the Spoiler’s move was in v.

Again, the Duplicator wins iff the mapping ai 7→ bi (for i = 1, . . , k) is a
partial isomorphism. Clearly, if the Duplicator has a winning strategy for the
single-round k-move game on u and v, then she also has one for the single-
round h-move game, for all h ≤ k. By the standard argumentation (cf., e.g.,
the textbooks [12,17]), one obtains that this game characterises the expressive
power of BC(Σ1[N ]):

Theorem 2.2 A language L ⊆ A∗ is definable in BC(Σ1[N ]) iff there is a
finite subset N ′ of N and a number k such that, for every u ∈ L, v 6∈ L, the
Spoiler has a winning strategy in the single-round k-move game for N ′ on u
and v.
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3 The Crane Beach Conjecture

3.1 Formulation of the Crane Beach Conjecture

As already mentioned in Section 1, first-order logic with varying numerical
predicates can be thought of as specifying the circuit complexity class AC0 with
varying uniformity conditions. Roughly speaking, simple built-in predicates
lead to circuit families that are easily computable, whereas involved built-
in predicates may lead to circuit families that are difficult to compute, if
computable at all. In [6] it was shown that FO[≤,Bit] and, equivalently, FO[≤,
+,×] precisely characterises logtime-uniform AC0. Furthermore, non-uniform
AC0 is characterised by FO[≤,ARB], where ARB is the class of arbitrary, i.e.
all, numerical predicates.

Intuitively, since numerical predicates can only talk about positions in strings,
it seems that they can only help to express properties that depend on certain
(combinations of) letters appearing in certain (combinations of) positions. The
Crane Beach Conjecture (named after the location of its first, flawed, proof)
is an attempt to make that intuition precise.

Definition 3.1 (Neutral letter) Let L ⊆ A∗. A letter e ∈ A is called neu-
tral for L iff inserting or deleting e’s in any string in A∗ does not change
its membership or non-membership in L. Precisely, this means that for any
u, v ∈ A∗ it holds that uv ∈ L ⇐⇒ uev ∈ L.

For example, the letter 0 is a neutral letter of the language PARITY, consisting
of exactly those {0, 1}-strings in which the letter 1 occurs an even number of
times. A deep result of [1,16] states that PARITY is not definable in FO[≤,
ARB].

Membership in a language with a neutral letter cannot depend on the indi-
vidual positions on which letters are: any letter can be moved away from any
position by insertion or deletion of neutral letters. It seems therefore conceiv-
able that for every such language, if it can be defined at all in first-order logic
then it can be defined using the linear order as the only numerical predicate.
With this intuition, the following conjecture seems plausible:

Definition 3.2 (Crane Beach conjecture) Let N be a set of numerical
predicates. We say that the Crane Beach conjecture (CBC, for short) is true for
FO[≤,N ], iff for every alphabet A and every neutral letter language L ⊆ A∗,
the following is true: If L is definable in FO[≤,N ], then L is already definable
in FO[≤].

The CBC for any logic F other than FO is defined in the analogous way,
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replacing FO with F in the above definition. In other words: The CBC is true
for F [≤,N ] iff F [≤] can define all neutral letter languages that are definable
in F [≤,N ].

As we will see in the subsequent sections, the CBC is true for some cases
and false for others. A summary of what is known about the CBC is given in
Figure 2 at the end of this paper.

3.2 An EF-Game Approach to the CBC

We now present a general methodology for EF-game lower bound proofs for
languages with neutral letters. Given a set N of numerical predicates, our goal
will be to prove that the CBC is true for FO[≤,N ]. I.e., given an arbitrary
neutral letter language L that is not definable in FO[≤], show that it is not
definable in FO[≤,N ], either.

From Theorem 2.1 we know that for each number r of rounds, we can find
strings u ∈ L and v 6∈ L such that the Duplicator wins the r-round game for
{≤} on u and v. This game will henceforth be called the “small game”.
Since L has a neutral letter we can assume, without loss of generality, that u
and v have the same length. (If not, append u with 2r + |v| neutral letters e
and append v with 2r + |u| neutral letters e. It is straightforward to see that
the Duplicator wins the r-round game for {≤} on these padded versions of u
and v.)

To show that L is not definable in FO[≤,N ] it suffices to construct (cf. The-
orem 2.1), for each finite subset N ′ of N , and for each number k of rounds,
two strings U ∈ L and V 6∈ L such that the Duplicator wins the k-round
game for {≤} ∪N ′ on U and V . This game will henceforth be called the “big
game”.
The basic plan for the construction of U and V is as follows: Given N ′ and
k, choose an appropriate number r(k) of rounds for the “small game”. Fur-
thermore, choose strings u ∈ L and v 6∈ L of the same length, such that the
Duplicator wins the r(k)-round game for {≤} on u and v. Afterwards, choose
a suitable sequence p1 < p2 < p3 < · · · of natural numbers, and move the
letters of u and v onto the positions p1, p2, . . . Precisely, if u = u1 · · ·um, then
U is the string with input positions 1, . . , n (for some n ≥ pm), where the
positions p1 < p2 < · · · < pm carry the letters u1, u2, . . . , um, and where all
other positions carry the neutral letter e. In the analogous way, the string V
is obtained from v.
Since e is a neutral letter for L, we know that U ∈ L and V 6∈ L.

We have available a winning strategy for the Duplicator in the r(k)-round
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“small game” on u and v, and we want to find a winning strategy for the
Duplicator in the k-round “big game” on U and V . To this end, we translate
each move of the Spoiler in the “big game” into a number of moves for a “vir-
tual Spoiler” in the “small game”. Then we can find the answers of a “virtual
Duplicator” playing according to her winning strategy in the “small game”.
Afterwards, we translate these answers into a move for the Duplicator in the
“big game”. Finally, this will give us a winning strategy for the Duplicator
in the “big game” on U and V ; and altogether, this will show that L is not
definable in FO[≤,N ].

This methodology of translating a winning strategy for the “small game” into
a winning strategy for the “big game” will be used for proving some of the
positive instances of the CBC presented in the following section.

4 Cases Where the CBC is True

In this section we present all cases where the CBC is known to be true.

4.1 The CBC for the Class MON of Monadic Numerical Predicates

Theorem 4.1 Let MON be the class of all monadic (i.e., unary) numerical
predicates. The Crane Beach conjecture is true for FO[≤,MON ].

Proof: Let L be a language with a neutral letter that is not definable in
FO[≤]. As explained in Section 3.2, this means that for any number k of
rounds there must be two strings u ∈ L and v 6∈ L of the same length m, such
that the Duplicator wins the k-round game for {≤} on u and v (the “small
game”).

Now let N be any finite set of monadic predicates. We will show that L is
not definable in FO[≤,N ] as follows. We will use N to construct two strings
U ∈ L and V 6∈ L from u and v by a suitable padding with neutral letters.
The length of U and V will be a suitably large number n to be defined below.
Then we will show how the Duplicator can win the k-round game for {≤}∪N
on U and V .

The construction of U and V :

For every n ∈ N, the predicates in N may be regarded as a coloring of the
input positions from 1 to n, with finitely many colors. If r < s are input
positions, consider the colored string given by the interval from r to s, with
each input position holding a neutral letter. For any two such colored strings,
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consider the k-round game for {≤}. Let two strings be considered equivalent iff
the Duplicator wins this game on them. Of course (cf., e.g., [17, Exercise 6.11])
there are only a finite number of equivalence classes.

We now define a colored undirected graph whose vertices are these n input
positions and where the color of the edge from position r to position s rep-
resents the equivalence class of the colored string for that interval. By the
Erdös-Szekeres Theorem 5 [14], as long as n is greater than md where d is the
number of edge colors, there must be a monochromatic path of length at least
m. We create U from u, and V from v, by placing the letters of the shorter
strings in the locations given by the vertices of this monochromatic path (the
“special locations”), and making all other letters neutral. We must now ex-
plain how the Duplicator can win the k-round game for {≤}∪N on U and V
(the “big game”).

The Duplicator’s strategy for the “big game”:

The Duplicator will model the “big game” by a series of “small games”, where
she already has a winning strategy for each. One small game is played on the
strings u and v using only ≤, and there is another small game (using ≤ and
color only) for each interval between special locations. Whenever the Spoiler
moves in the “big game”, the Duplicator translates this move into the “u-v
small game” by moving to the position matching the next special position to
the right. She also translates it into the “small game for that interval”. The
Duplicator’s reply in the “big game” is determined by her correct move in the
“u-v small game”, and her correct move in the “small game for that particular
interval”. An illustration of this strategy is given in Figure 1.

After k rounds the Duplicator must win the original “u-v small game” and
all the “interval small games”, as she has made at most k moves in each. It
is easy but tedious to look at the input letters, order, equality, and monadic
predicates of N in the “big game” and verify that the Duplicator has won
that as well. 2

4.2 The CBC for the Class ARB of Arbitrary Numerical Predicates

We can use Theorem 4.1, together with a result of [4], to derive the following
interesting generalization of the nonexpressibility of PARITY. Note, however,
that we do not get an independent proof of the nonexpressibility of PARITY,
because the existing proofs are used crucially to obtain the results in [4].

5 or, almost equivalently, the finite version of the Ramsey Theorem (cf., e.g., the
textbook [11])
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u:

U :

v:

V :

≡
≤

k

1 2 2 1 2 1 2

1 2 1 2 2 1 2

1 2 2 1 2 1 2

1 2 1 2 2 1 2

a2 a3a4a1
×
a5
×

a6
×

a′2 a′3a′4

b′2 b′3b′4

b2 b3b4b1
×
b5
×

b6
×

1 2 2 1 2 1 2

1 2 1 2 2 1 2

1 2 2 1 2 1 2

1 2 1 2 2 1 2

Fig. 1. Visualization of the Duplicator’s strategy in the proof of Theorem 4.1 with
u = 1221212 and v = 1212212. U and V are padded versions of u and v; (multiple)
occurrences of the letter e are visualized by a solid line between the letters 1 and 2.

Corollary 4.2 The Crane Beach conjecture for FO[≤,ARB] holds for all
regular languages. That is, for the set ARB of arbitrary (i.e., all) numerical
predicates and for every regular language L that has a neutral letter, it is true
that L is definable in FO[≤,ARB] if and only if it is definable FO[≤].

Proof: This follows from Theorem 4.1 and the fact, proven in [4], that
every regular language definable in FO[≤,ARB] is also definable in FO[≤,
{modp / p ∈ N}], where modp(i) is true iff i ≡ 0 mod p. 2

Instead of restricting attention to regular languages, we can also restrict at-
tention to languages over a two-letter alphabet :

Theorem 4.3 The Crane Beach conjecture for FO[≤,ARB] holds for all lan-
guages over a two-letter alphabet. That is, if |A| = 2, then every language
L ⊆ A∗ with a neutral letter that is definable in FO[≤,ARB] is also definable
in FO[≤].

Proof: Let L be a language on {1, e} with e as a neutral letter. Consider the
set SL of numbers n such that 1n is in L and 1n+1 is not. If SL is finite, then
it is easy to see that L is regular and thus definable in FO[≤]. We will show
that if SL is infinite, then L is not definable in FO[≤,ARB].

Assume, then, that L is defined by a formula in FO[≤,ARB]. By [6], it follows
that L is recognized by a family of unbounded fan-in circuits with constant
depth and polynomial size. Let n be a number in SL and consider the circuit
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that decides L on inputs of length 2n. This circuit computes a symmetric
function of its inputs.

Fagin et al. [15] defined a “measure function” µF for any family F of sym-
metric boolean functions, where µF(n) is the minimum number of inputs that
must be fixed to make the n-bit function in F a constant function. We see that
if we let F be the characteristic function of L, then µF(2n) ≥ n− 1 for every
n in SL. But they proved that F is recognized by a family of constant-depth
polynomial-size circuits only if µF = o(nε) for every positive ε. (In fact, given
later results, their proof shows that such circuits exist iff µF is polylogarith-
mic.) So if SL is infinite, the circuit family cannot exist. 2

Since PARITY is a non-star-free regular language over {0, 1}∗ and has a neu-
tral letter, Theorem 4.3 implies the nonexpressibility of PARITY in first-order
logic with arbitrary numerical predicates (i.e., non-uniform AC0). Note, how-
ever, that our proof of Theorem 4.3 directly uses the existing proofs of the
nonexpressibility of PARITY.

Rather than restricting the languages under consideration, we can also con-
sider special cases of the Crane Beach conjecture based on restrictions on
the type of logical formulas allowed. For example, with arbitrary numerical
predicates the conjecture does hold for Boolean combinations of Σ1-formulas:

Theorem 4.4 Let ARB be the set of arbitrary (i.e., all) numerical predicates.
The Crane Beach conjecture is true for BC(Σ1[≤,ARB]).

Proof: We must show that for any finite set N of numerical predicates and
any language L with a neutral letter, L is definable in BC(Σ1[≤,N ]) if and
only if it is definable in BC(Σ1[≤]).

Step 1:

Using Theorem 2.2, we first show that the CBC for BC(Σ1[N ]) is true for
the special case N = {suc,min,max}, where suc is the successor relation with
suc(p, q) iff q = p+1, 〈w, p〉 |= min(p) iff p=1, and 〈w, p〉 |= max(p) iff p = |w|.

Let e be the neutral letter, and assume that L 6∈ BC(Σ1[≤]). Then, for every
k, there are strings u ∈ L, v 6∈ L such that the Duplicator wins the single-
round k-move game for {≤} on u and v (the “small game”). We can assume u
and v to be of the same length m (if not, append |v|+k e’s to u and |u|+k e’s
to v). We construct strings U from u and V from v such that U ∈ L, V 6∈ L,
and the Duplicator wins the single-round k-move game for {≤, suc,min,max}
on U and V (the “big game”). Then L 6∈ BC(Σ1[≤, suc,min,max]), which
proves that the CBC is true for BC(Σ1[≤, suc,min,max]).
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In order to construct U , insert 2k−1 e’s between each pair of adjacent positions
in u, as well as at the beginning and the end of u. More precisely, U =
U1 · · ·Um2k+2k−1, with Uj2k = uj, and Uj2k+i = e, for any j ≤ m, i < 2k.
Similarly, we construct V from v. Since e is neutral, we have U ∈ L, V 6∈ L.

For the “big game”, assume that the Spoiler chooses positions a1, . . , ak in U
(the other case is symmetric). Some (possibly all, or none) of the Uaj

will be
neutral letters, others will be from A\{e}. For the sake of notational simplicity
we will assume, without loss of generality, that Ua1 , . . , Uaq

∈ A \ {e}, and
Uaq+1 = · · · = Uak

= e. Then each aj with j ≤ q is of the form sj2k, for some
sj ∈ {1, . . , m}. Now the Duplicator simulates a move of a “virtual Spoiler” in
the “small game” on u and v, in which the “virtual Spoiler” pebbles s1, . . , sq

on u, and finds her reply, s′1, . . , s
′
q on v, according to her winning strategy in

the “small game”. She then sets, for each j from 1 through q, bj to be s′j2k.
Then for each j, l ≤ q it holds that

• bj 6= bl+1 and aj 6= al+1,
• bj ≤ bl ⇐⇒ aj ≤ al, and
• Vbj

= vs′
j
= usj

= Uaj
.

To complete this move, the Duplicator has to define bq+1, . . . , bk such that
Vbq+1 = · · · = Vbk

= e, and that for all j, l ≤ k

• bj ≤ bl ⇐⇒ aj ≤ al,
• bj = bl+1 ⇐⇒ aj = al+1, and
• bj = 1 ⇐⇒ aj = 1 and bj = |V | ⇐⇒ aj = |U |.

Such bq+1, . . . , bk can easily be found, since between any two different bj, bl
with j, l ≤ q, there are at least 2k−1 positions p where Vp = e.
This completes the proof of Step 1.

Step 2:

Now let N be an arbitrary finite set of numerical predicates and assume that
L 6∈ BC(Σ1[≤]). From what we have shown in Step 1 it follows that, for every
k, we can find strings u ∈ L, v 6∈ L of the same length m such that the
Duplicator has a winning strategy in the single-round 2k+2-move game for
{≤, suc,min,max} on u and v. From now on, this game will be called the
“small game”.
We want to construct strings U and V by inserting neutral letters into u and v,
respectively, in such a way that the original letters of u and v are moved onto
positions p1, . . . , pm which are, in a certain sense, highly indistinguishable. To
this end, we define, for every number n, a coloring of subsets of size h ≤ 2k
of {1, . . . , n}. This coloring was inspired by the one used by Straubing in [34],
in his proof of Theorem 8. There he used the following extension of Ramsey’s
theorem, which will also help us here:
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Theorem 4.5 Let m,K, c1, . . . , ck > 0, with K ≤ m. Let n be sufficiently
large as a function of m and the c’s. If all h-element subsets of {1, . . . , n},
with 1 ≤ h ≤ K, are colored from a set of ch colors, then there exists an m-
element subset P of {1, . . . , n} such that for each h ∈ {1, . . , K} there exists a
color κh such that all h-element subsets of P are colored κh.

For every h ≤ 2k let Th = {τ1, . . . , τq} be the set of all atomic {≤} ∪ N -
formulas on the variables x1, . . , xk, y1, . . , yh. The {≤} ∪ N -type α(r, S) of a
tuple r = (r1, . . . , rk) ∈ {1, . . . , n}k with respect to an h-element set S =
{s1 < · · · < sh} is the set of all those formulas of Th that are satisfied when
xi is interpreted as ri, and yj as sj, for i ≤ k and j ≤ h.

We now color, for each number n and every h ≤ 2k, every h-element set
S = {s1 < · · · < sh} ⊆ {1, . . . , n} with the set of all those α ⊆ Th for which
there is a k-tuple r over {1, . . . , n} such that r has {≤}∪N -type α with respect
to S. Clearly, for every h ≤ 2k there is a fixed (finite) number of possible colors,
independent of n. The extension of Ramsey’s theorem stated above tells us
that for large enough n we can find numbers p1 < · · · < pm ≤ n such that,
for every h ≤ 2k, all h-element subsets of {p1, . . . , pm} have the same color.
We now insert neutral letters into u in such a way that in the resulting string
U we have Upi

= ui, for i = 1, . . . , m, and Ui = e for all i 6∈ {p1, . . . , pm}.
In the same way we construct V from v. Let us call p1, . . . , pm the “special
positions”.

We now show that the Duplicator has a winning strategy in the k-move game
for {≤} ∪ N on U and V (the “big game”). Assume that the Spoiler chooses
a = a1, . . . , ak in U (the other case is symmetric). Then the Duplicator finds,
for every aj the next smallest special position pij , i.e, pij ≤ aj < pij+1; in the
special case that aj < p1 we let ij := 1; in the special case that pm ≤ aj we
let ij := m and ij+1 and pij+1 remain undefined. Let S = {pij , pij+1 / j =
1, . . , k}. The Duplicator now simulates a move of a “virtual Spoiler” in the
single-round 2k+2-move game for {≤, suc,min,max} on u and v (the “small
game”), in which the “virtual Spoiler” plays all the points ij and ij+1, for
j = 1, . . . , k on u, as well as min and max. Using her winning strategy in this
game, the “virtual Duplicator” finds a reply with which she wins the “small
game”. Therefore, we can safely call these points lj, lj+1, for j = 1, . . , k, and
we know that uij = vlj , for j = 1, . . , k. Let T be the set {plj , plj+1 / j =
1, . . , k}. |T | = |S| =: h ≤ 2k, so S and T have the same color, and this
implies that there is a tuple b = (b1, . . . , bk) with the same {≤} ∪ N -type as
a. The Duplicator now puts her pebbles on b1, . . . , bk in V . We have to check
the winning conditions. By construction, α(a, S) = α(b, T ). In particular, this
implies that

• (a1, . . . , ak) and (b1, . . . , bk) have the same {≤} ∪ N -type,
• aj ≤ aj′ ⇐⇒ bj ≤ bj′ , for all j, j ′,
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• if aj = pij then bj = plj , and hence Uaj
= uij = vlj = Vbj

. If aj is not of
this form then pij < aj < pij+1 (or aj < p1 or aj > pm), and consequently,
plj < bj < plj+1 (or bj < p1 or bj > pm) and Uaj

= Vbj
= e (note that this

is the place where we need that the relations suc, min, max are present in
the “small game”).

This completes the proof of Step 2 and, altogether, the proof of Theorem 4.4. 2

A recent result of Krol and Lautemann [18] proves another positive case of
the CBC. For every string-language L that has a neutral letter, the following
is true: If L is definable in BC(Σ

(s,p)
1 [≤,ARB]) then L is also definable in

BC(Σ
(s,p)
1 [≤, suc,min,max]). Here, suc is the successor relation, and Σ

(s,p)
1 is

the class of all formulas of the form ∃(i,s,p)(x1, . . , xk)ψ, where i, s, p, k ≥ 0
and ψ is quantifier free. Basically, such a formula expresses that the number
of tuples (x1, . . , xk) that satisfy ψ is congruent i modulo (s, p), where, by
definition, a number j is congruent i modulo (s, p) if and only if (j = i ≤ s)
or (j > s and j ≡ i mod p).

4.3 The CBC With “+” as Numerical Predicate

As we will see in Section 5, with addition and multiplication first-order logic
has enough expressive power to defeat the neutral letter. Addition alone is,
in many ways much weaker than addition and multiplication together. For
example, this is witnessed by the fact that the first-order theory of the natural
numbers with + and × is undecidable, whereas Presburger arithmetic, the
first-order theory of the natural numbers with addition only, can be decided
using quantifier elimination (cf., e.g., the textbook [32]). It is therefore more
than conceivable that addition alone is too weak to make the conjecture fail,
and we now show that this is indeed the case.

Theorem 4.6 The CBC is true for FO[≤,+], where + is the ternary numer-
ical predicate which, in every universe {1, . . , n}, is interpreted by the graph of
the addition function.

As indicated in the introduction, this theorem follows from collapse results for
first-order queries over finite databases; in Section 4.4 we will concentrate on
the correspondence between the Crane Beach conjecture and collapse results in
database theory in detail. However, the terminology in which these results (and
their proofs) are formulated in the literature is rather alien to our setting here.
Thus, in the following, we also will give a brief sketch of a direct, Ehrenfeucht-
Fräıssé game proof of Theorem 4.6.
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For simplicity, we concentrate on 0-1-strings U and V of the same (large) size
and discuss what the Duplicator has to do in order to win the k-round game
for {≤,+} on U and V . Let A be the set of indices a for which Ua = 1,
similarly, B = {b / Vb = 1}. As in previous proofs, we will work with a set
P = {p1 < · · · < pm} of indistinguishable positions, and choose U and V such
that A,B ⊆ P .
Assume that, after i−1 rounds a1, . . , ai−1 have been played in U , and b1, . . , bi−1

in V . Let the Spoiler choose some element ai in U . When choosing bi in V , the
Duplicator has to make sure that any of the Spoiler’s moves for the remaining
k−i rounds in one structure can be matched in the other. In particular, this
means that any sum over the aj behaves in relation to A exactly as the corre-
sponding sum over the bj behaves in relation to B. For instance, for any sets
J, J ′ ⊆ {1, . . , i}, it should hold that there is some a ∈ A that lies between
∑

j∈J aj and
∑

j′∈J ′ aj′ if and only if there is some b ∈ B that lies between
∑

j∈J bj and
∑

j′∈J ′ bj′ . But it is not enough to consider simple sums over pre-
viously played elements. Since with O(r) additions it is possible to generate
s ·ai from ai, for any s ≤ 2r, we also have to consider linear combinations with
coefficients as large as this. Furthermore, since the Spoiler is allowed to choose
either structure to move in each time, it is necessary to deal with even more
complex linear combinations. One can only handle all these complications be-
cause, as the game progresses, the number of rounds left for the Spoiler to
do all these things decreases. This means, for instance, that the coefficients
and the length of the linear combinations we have to consider decrease: after
the last round, the only relevant linear combinations are simple additions of
chosen elements.

All the technical details necessary to make this strategy work are worked out
in [25] in order to prove that for each FO[≤,+]-formula ϕ there is a set Q ⊆ N

such that ϕ cannot distinguish between subsets of Q if they are of equal cardi-
nality, or both large enough. Drawing on Lynch’s theorem, in [22] the authors
prove a theorem, which, specialised to our setting can be formulated as follows:
For every k ∈ N there exists a number r(k) ∈ N and an order-preserving map-
ping q : N → N such that, for every (finite) signature σ the following holds: If σ ′

and σ′′ are interpretations of σ over N, and if m′, m′′ ∈ N such that the Dupli-
cator has a winning strategy in the r(k)-round EF-game on 〈N, σ ′, m′,≤〉 and
〈N, σ′′, m′′,≤〉, then the Duplicator also has a winning strategy in the k-round
EF-game on 〈N, q(σ′), q(m′),≤,+〉 and 〈N, q(σ′′), q(m′′),≤,+〉. Here, q(σ′)

is short for {q(R′) /R ∈ σ}, where q(R′) = {
(

q(i1), . . , q(il)
)

/ (i1, . . , il) ∈ R′}.

This result was further generalized in [27] to the following:

Theorem 4.7 There is an infinite set Q ⊆ N such that for every finite collec-
tion N of subsets of Q and for every (finite) signature σ and every k ∈ N there
exists a number r(k) ∈ N and an order-preserving mapping q : N → N such
that the following is true: If σ′ and σ′′ are interpretations of σ over N, and if
m′, m′′ ∈ N such that the Duplicator has a winning strategy in the r(k)-round
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EF-game on the structures 〈N, σ′, m′,≤〉 and 〈N, σ′′, m′′,≤〉, then the Dupli-
cator also has a winning strategy in the k-round EF-game on the structures
〈N, q(σ′), q(m′),≤,+,N〉 and 〈N, q(σ′′), q(m′′),≤,+,N〉.

Using the above theorem, we can prove the following generalization of Theo-
rem 4.6.

Theorem 4.8 There is an infinite set Q ⊆ N such that the Crane Beach con-
jecture is true for FO[≤,+,MONQ]. Here, MONQ = {P̂ / P ⊆ Q} where,

in every universe {1, . . , n}, P̂ is interpreted by P ∩ {1, . . , n}.

Proof: We follow the methodology described in Section 3.2 and use Theo-
rem 4.7; in particular, Q is the set provided in that theorem.
Let A be an alphabet, let L ⊆ A∗ be a neutral letter language that is not
definable in FO[≤], and let N̂ be a finite subset of MONQ. Our aim is to

show that L is not definable in FO[≤,+, N̂ ].
In order to apply Theorem 4.7, let N := {P ⊆ Q/ P̂ ∈ N̂}, let σ := σA be
the signature associated with the alphabet A (cf. Section 2.1), and let k ∈ N.
Choose r(k) ∈ N and q : N → N according to Theorem 4.7.

Since L is not definable in FO[≤], there must be strings u ∈ L and v 6∈ L of
the same length, m, such that the Duplicator has a winning stragtegy in the
k-round game for {≤} on u and v. The strings u and v define σ-interpretations
σu and σv, respectively, and the winning strategy of the Duplicator on u and
v can easily be extended to the structures 〈N, σu, m,≤〉 and 〈N, σv, m,≤〉:
If the Spoiler plays a position ai ≤ m on 〈N, σu, m,≤〉, this corresponds to
a move on u, and the Duplicator can choose her answer according to her
winning strategy on v. If the Spoiler plays a position ai > m on 〈N, σu, m,≤〉,
then the Duplicator replies with bi := ai. (The case where the Spoiler plays on
〈N, σv, m,≤〉 is completely symmetric.) Clearly, this defines a winning strategy
for the Duplicator in the r(k)-round EF-game on the structures 〈N, σu, m,≤〉
and 〈N, σv, m,≤〉.

Application of Theorem 4.7 gives us a winning strategy for the Duplica-
tor in the k-round EF-game on the structures 〈N, q(σu), q(m),≤,+,N〉 and
〈N, q(σv), q(m),≤,+,N〉. From this, we obtain a winning strategy for the Du-
plicator in the k-round game for {≤,+} ∪ N̂ on the strings U and V that are
obtained from u and v by inserting neutral letters in such a way that the i-th
letter of u (resp. v) is placed onto the q(i)-th position in U (resp. V ): Every
move of the Spoiler in U is translated into a move on 〈N, q(σu), q(m),≤,+,N〉,
and the Duplicator’s reply on 〈N, q(σv), q(m),≤,+,N〉 is translated back into
a move on V . The winning condition of the Duplicator on 〈N, q(σu), q(m),≤
,+,N〉 and 〈N, q(σv), q(m),≤,+,N〉 directly translates into the winning con-
dition for the Duplicator on U and V for {≤,+} ∪ N̂ . Altogether, this proves
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Theorem 4.8. 2

4.4 The CBC and Collapse Results in Database Theory

As already mentioned, so-called collapse results in database theory imply that
the CBC is true for specific cases.
For a well-written concise survey on collapse results and database theory we
refer to the paper [36]. A detailed and very recent overview of collapse results
on finite databases is given in [23]. More information can also be found in the
book [19].

A database can be viewed as a finite relational structure whose elements belong
to some infinite universe U of “potential database elements”. Sometimes, U

also has additional, fixed relations such as a linear ordering ≤ and some further
list of relations, N . Such a structure 〈U,≤,N〉 is called a context structure.
A database schema can be viewed as a finite relational signature σ, whereas
a finite database can be viewed as an interpretation σ ′ where all symbols in σ
are interpreted by finite relations over U (such interpretations will be called
finite). The active domain adom(σ′) is the set of all elements of U that occur
in some tuple of some relation of σ′.
A database query (of a specific kind) can be modeled as a FO[σ,≤,N ]-formula
ϕ(x). We write ϕ(σ′) to denote the evaluation of ϕ(x) over σ′, i.e., ϕ(σ′) is the
set of all tuples a over U such that 〈U, σ′,≤,N〉 |= ϕ(a).

Basically, one speaks of a collapse result in database theory if the relations
in N are not necessary to express queries of a specific kind. In the literature,
various different kinds of collapse notions have been thoroughly investigated
(cf., e.g., [23]). The specific collapse notion which perfectly fits to the Crane
Beach conjecture is fixed in the following definition.

Definition 4.9 (locally generic; natural-generic collapse)
Let 〈U,≤,N〉 be a context structure.

(a) Let σ be a finite relational signature. A FO[σ,≤,N ]-formula ϕ(x) is called
locally generic iff for all finite interpretations σ ′ of σ over U the following
is true: If q is a ≤-preserving mapping from adom

(

σ′ ∪ {ϕ(σ′)}
)

to U,

then q(ϕ(σ′)) = ϕ(q(σ′)).
(b) FO-logic admits the natural-generic collapse over 〈U,≤,N〉 iff for every

finite relational signature σ and every locally generic FO[σ,≤,N ]-formula
ϕ(x) there exists a FO[σ,≤]-formula ψ(x) which is equivalent to ϕ(x) on
all structures 〈U, σ′,≤,N〉, for all finite interpretations σ′ of σ over U.
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It is not difficult to see that the natural-generic collapse over a context struc-
ture whose universe is the set of natural numbers, implies a positive case of
the Crane Beach conjecture:

Proposition 4.10 Let 〈N,≤,N〉 be a structure. If FO-logic has the natural-
generic collapse over 〈N,≤,N〉, then the Crane Beach conjecture is true for
FO[≤, N̂ ], where N̂ := {P̂ / P ∈ N}.

Proof: Let A be an alphabet, and let L ⊆ A∗ be a language with a neutral
letter e ∈ A that is definable in FO[≤, N̂ ]. Our aim is to show that L is also
definable in FO[≤].

Since L is definable in FO[≤, N̂ ], there is a first-order sentence ϕ over the
signature σA ∪ {≤} ∪ N̂ such that for all strings w ∈ A∗ we have

(I): w ∈ L iff 〈{1, . . , |w|}, σw
A,≤, N̂ 〉 |= ϕ.

In order to apply the presumed natural-generic collapse result, we represent the
string w by a finite database τw embedded in the context structure 〈N,≤,N〉.
The positions in w that carry non-neutral letters are exactly the active domain
elements of τw, and τw contains a unary relation Maxw := {|w|} that consists
of the maximum position of w. Precisely, we define the relational signature τ :=
(σA\{Qe})∪{Max}, and for a string w we define τw := (σw

A \{Qw
e })∪{Maxw}.

Let us now proceed with the proof of Proposition 4.10.

Step 1: We transform the given FO[σA,≤, N̂ ]-sentence ϕ that defines L into a
FO[τ,≤,N ]-sentence ϕ′ such that for all strings w ∈ A∗ the following is true:

(II): 〈N, τw,≤,N〉 |= ϕ′ iff 〈{1, . . , |w|}, σw
A,≤, N̂ 〉 |= ϕ.

The formula ϕ′ is defined inductively via

– ϕ′ := ϕ if ϕ is of the form x<y, x=y, or Qa(x), for some a ∈ A \ {e}

– ϕ′ :=
∧

a∈A¬Qa(x) if ϕ = Qe(x)

– ϕ′ := P (x1, . . , xk) if ϕ = P̂ (x1, . . , xk), for some predicate P̂ ∈ N̂

– ϕ′ := ¬χ′ if ϕ = ¬χ

– ϕ′ := χ′ ∨ ζ ′ if ϕ = χ ∨ ζ

– ϕ′ := ∃x ∃y (Max(y) ∧ x ≤ y ∧ χ′) if ϕ = ∃xχ.

It is straightforward to see that (II) is indeed true for all strings w ∈ A∗.
For technical reasons we combine ϕ′ with a FO[τ ]-formula that is satisfied
by a τ -structure 〈N, τ ′〉 if and only if there exists a string w ∈ A∗ such that
τ ′ = τw. From now on, the conjunction of this formula and the formula ϕ′ will
be called ϕ′.
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Step 2: We show that ϕ′ is locally generic. Let τ ′ be a finite interpretation of
τ over N, and let q be a ≤-preserving mapping from adom(τ ′) to N. We have
to show that

(III): 〈N, τ ′,≤,N〉 |= ϕ′ iff 〈N, q(τ ′),≤,N〉 |= ϕ′.

Of course, if there is no string w ∈ A∗ such that τ ′ = τw, then both structures
do not satisfy ϕ′. We therefore only have to consider the case where τ ′ = τw for
some string w ∈ A∗ of length, say, n. Let i1 < · · · < im ≤ n be exactly those
positions in w that do not carry the letter e. Let ñ := q(n). We define the
string w̃ of length ñ as follows: The positions q(i1) < · · · < q(im) in w̃ carry
the same letters as the positions i1 < · · · < im in w, and all other positions in
w̃ carry the neutral letter e. Since q is ≤-preserving, w̃ can be obtained from w
by inserting or deleting e’s, and therefore we have that w̃ ∈ L iff w ∈ L. From
(I) and (II) it thus follows that 〈N, τw,≤,N〉 |= ϕ′ iff 〈N, τ w̃,≤,N〉 |= ϕ′.

This directly gives us (III), because by definition of w̃ we have τ w̃ = q
(

τw
)

.

Step 3: We use the presumed natural-generic collapse of FO-logic over 〈N,≤,
N〉. For the FO[τ,≤,N ]-sentence ϕ′ this, in particular, gives us a FO[τ,≤]-
sentence ψ′ such that, for all w ∈ A∗,

(IV): 〈N, τw,≤〉 |= ψ′ iff 〈N, τw,≤,N〉 |= ϕ′.

Step 4: We transform the FO[τ,≤]-sentence ψ′ into a FO[σA,≤]-sentence ψ
such that the following is true for all strings w ∈ A∗:

(V): 〈{1, . . , |w|}, σw
A,≤〉 |= ψ iff 〈N, τw,≤〉 |= ψ′.

For the sake of contradiction assume that ψ does not exist. Then, accord-
ing to Theorem 2.1, for every k ∈ N there are strings u and v such that
〈N, τu,≤〉 |= ψ′, 〈N, τu,≤〉 6|= ψ′, and the Duplicator has a winning strat-
egy in the k-round game for {≤} on u and v. This strategy can easily be
extended to the structures 〈N, τu,≤〉 and 〈N, τ v,≤〉: If the Spoiler plays a
position ai ≤ |u| on 〈N, τu,≤〉, this corresponds to a move on u, and the Du-
plicator can choose her answer according to her winning strategy on v. If the
Spoiler plays a position ai > |u| on 〈N, τu,≤〉, then the Duplicator replies with
bi := ai−|u|+|v|. (The case where the Spoiler plays on 〈N, τ v,≤〉 is completely
symmetric.) Clearly, this defines a winning strategy for the Duplicator in the
k-round EF-game on the structures 〈N, τ u,≤〉 and 〈N, τ v,≤〉. However, this
contradicts the presumption that 〈N, τu,≤〉 |= ψ′ and 〈N, τu,≤〉 6|= ψ′, and
therefore the formula ψ must exist.

Step 5: From (I), (II), (IV), and (V) we obtain, for all strings w ∈ A∗, that
w ∈ L if and only if w satisfies ψ. In other words: We have shown that ev-
ery language L that has a neutral letter and that is definable in FO[≤, N̂ ],
is also definable in FO[≤]. Hence, the proof of Proposition 4.10 is complete. 2
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Various different conditions on the context structure 〈U,≤,N〉 are known
which imply the natural-generic collapse (see, e.g., [8,7,3]). The most general
of these conditions known by now (see [23]) is the notion of finite Vapnik-
Chervonenkis dimension (finite VC-dimension, for short; also known as the
lack of the independence property). For the sake of completeness, we state the
precise definition of finite VC-dimension, basically taken from [9]:

Definition 4.11 (Finite VC-Dimension)
Let 〈U,≤,N〉 be a context structure.

(a) Let ϕ(x, y) be a FO[≤,N ]-formula, and let nx and ny be the lengths of
the tuples x and y, respectively.
• For every a ∈ U

ny the formula ϕ(x, y) defines the relation
Rϕ(x,a) := { b ∈ U

nx / 〈U,≤,N〉 |= ϕ(b, a) }.
• The formula ϕ(x, y) defines the following family of relations on U:

Fϕ(x,y) := {Rϕ(x,a) / a ∈ U
ny }.

• A set B ⊆ U
nx is shattered by Fϕ(x,y) iff {B ∩ R/R ∈ Fϕ(x,y)} =

{X /X ⊆ B}. I.e., for every X ⊆ B there is a aX ∈ U
ny such that

for all b ∈ B we have b ∈ X iff 〈U,≤,N〉 |= ϕ(b, aX).
• The family Fϕ(x,y) has finite VC-dimension iff there exists a number

mϕ(x,y) ∈ N such that the following is true for all B ⊆ U
nx:

If B is shattered by Fϕ(x,y), then |B| ≤ mϕ(x,y).
(b) 〈U,≤,N〉 has finite VC-dimension iff Fϕ(x,y) has finite VC-dimension,

for every FO[≤,N ]-formula ϕ(x, y).

According to [23], the following deep result of [3] is the most general natural-
generic collapse theorem that is known by now.

Theorem 4.12 (Baldwin, Benedikt) If 〈U,≤,N〉 is a context structure
that has finite VC-dimension, then FO-logic has the natural-generic collapse
over 〈U,≤,N〉.

Together with Proposition 4.10 this directly implies the following:

Corollary 4.13 If a structure 〈N,≤,N〉 has finite VC-dimension, then the
Crane Beach conjecture is true for FO[≤, N̂ ], where N̂ := {P̂ / P ∈ N}.

As can be seen from Definition 4.11 it is, a priori, not at all trivial to check
whether a given context structure has finite VC-dimension. Considering the
Crane Beach conjecture, context structures with universe N of natural numbers
are of particular interest. The examples of [3,9,23] of such structures that
have finite VC-dimension are 〈N,≤,+〉 and 〈N,≤,MON〉, where MON is
the class of all subsets of N. Via Corollary 4.13 one therefore directly obtains
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Theorem 4.6 and a weaker version of Theorem 4.1 (recall that in Theorem 4.1
a monadic numerical predicate P may have a different interpretation for each
universe size n, e.g., P may be interpreted as the set of all prime numbers for
even n and as the set of all square numbers for odd n).

A recent result of Michael Taitslin [35] shows that FO-logic has the natural-
generic collapse over 〈N,≤,+, R

2(blg xc2)〉, where

R
2(blg xc2) :=

{ (

x , 2(blg xc2)
)

/ x ∈ N

}

.

Via Proposition 4.10 one therefore obtains

Corollary 4.14 The Crane Beach conjecture is true for FO[≤,+, R̂
2(blg xc2)].

It is a further task to find more context structures with universe N for which
FO-logic admits the natural-generic collapse.

Let us mention that we do not know if the converse of Proposition 4.10 is
true, i.e., if a non-collapse in database theory implies that the CBC is false.
The main obstacle is that a FO[≤,N ]-formula that causes the non-collapse
in database theory may quantify over the entire context universe N, whereas
the FO[≤, N̂ ]-formulas that are relevant for the CBC, can only quantify over
initial segments of N. To see the enormous power gained by quantification
over all of N, recall that FO[≤,+,×] on N can, e.g., express all semi-decidable
problems (in fact, it can express the whole arithmetic hierarchy), whereas
FO[≤,+,×] on initial segments of N can express only properties in logtime-
uniform AC0. In particular, PARITY is definable in FO[≤,+,×] on N, but
not in FO[≤,+,×] on initial segments of N.

5 Cases Where the CBC is False

In this section we concentrate on cases where the Crane Beach conjecture for
is false for first-order logic. In fact, the conjecture fails for the set N = {+,×},
where + and × are the ternary numerical predicates which, in every universe
{1, . . , n}, are interpreted by the graphs of the addition function and the mul-
tiplication function, respectively. The set {+,×} of numerical predicates is
particularly important because FO[≤,+,×] corresponds to the most natural
uniform version of the circuit complexity class AC0 (cf., [6]).

Our counterexample to the Crane Beach conjecture makes use of the well-
known but somewhat counterintuitive ability of FO[≤,+,×]-formulas to count
letters up to numbers polylogarithmic in the input size:
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Definition 5.1 (Definibility of Counting) Let f(n) ≤ n be a nondecreas-
ing function from N to N. We say that a logical system can count up to f(n)
if there is a formula ϕ such that for every n and for every string w ∈ {0, 1}n,

w |= ϕ(c) ⇐⇒ c ≤ f(n) and c = #1(w),

where #1(w) is the number of ones in w.

We will need to consider two functions with similar notation. We write the
base-two logarithm of n as lg n, the k’th power of this logarithm as (lg n)k,
and the k’th iterated logarithm as lg(k)(n). For example, lg(2)(n) is the same as
lg(lg n). The counting capability of FO[≤,+,×] can be formulated as follows:

Theorem 5.2 ([2,15,10,37]) The system FO[≤,+,×] can count up to (lgn)k

for any k.
(However, if f(n) = (lg n)ω(1), and N is any set of numerical predicates, then
FO[≤,N ] cannot count up to f(n).)

The polylogarithmic counting capability of FO[≤,+,×] is essentially used to
prove the following:

Theorem 5.3 The Crane Beach conjecture is false for FO[≤,+,×].

Proof: We define a language L on alphabet {0, 1, a} as follows. For each
positive integer k, L will contain a string consisting of the 2k binary strings of
length k, in order, separated by a’s. The total length of the k-th string in L
is thus 2k · (k+ 1)− 1. The first three strings in L are thus 0a1, 00a01a10a11,
and

000a001a010a011a100a101a110a111.

We transfer L into a neutral letter language L′ over the alphabet A :=
{0, 1, a, e}: L′ is simply the set of strings w over A such that the string ob-
tained by deleting all the e’s in w is in L. Clearly, L′ has a neutral letter e, as
inserting or deleting e’s cannot affect membership in L′. Using the Pumping
Lemma for regular languages it is straightforward to see that L′ is not regular,
so it is not definable in FO[≤]. It remains for us to prove:

Lemma 5.4 L′ is definable in FO[≤,+,×].

Proof: We need to formulate a FO[≤,+,×]-sentence that will hold for a
string exactly if it is in L′, that is, exactly if its non-neutral letters form a
string in L. Recall that a string w is in L exactly if for some number k, w
consists of the 2k binary strings of length k, in order, separated by a’s.

Our sentence will assert the existence of a number k such that the input string,
with e’s removed, is the k-th string in the language L. Since the length of the
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k-th string in L is exponential in k, and a valid input string must be at least as
long, any valid k must be at most lg n. Therefore by Theorem 5.2, FO[≤,+,×]
is able to count letters in any interval in the input string up to a limit of k.

The sentence defining L′ first asserts that there are exactly k 0’s and no 1’s
before the first a, exactly k elements from {0, 1} between each pair of a’s, and
exactly k 1’s (and no 0’s) after the last a. It then remains to assert that each
string of 0’s and 1’s between two a’s is the successor of the previous one. I.e.,
when all e’s are removed, between successive occurrences of a the string has
to have the form

· · ·ab1 · · · bi011 · · ·11ab1 · · · bi100 · · ·00a · · ·

where 0 ≤ i < k and b1, . . , bi ∈ {0, 1}.
To assert this, the sentence defining L′ states that for every position y con-
taining a 0 or 1 the following holds:

• If there is a position x left of y such that there is a 0 or 1 at x and exactly
k−1 0’s and 1’s strictly between x and y,

• then x has the same letter as y unless
• v has the unique a between x and y, w has the next a to the right of y or

is the rightmost position if there is no such a,
• x has 1, there are no 0’s between x and v, y has 0, and there are no 1’s

between y and w, or
• x has 0, there are no 0’s between x and v, y has 1, and there are no 0’s

between y and w.

Altogether, this gives us a FO[≤,+,×]-sentence that defines the language L′.
This proves Lemma 5.4, and thus Theorem 5.3 follows immediately. 2

An obvious consequence of Theorem 5.3 is that if N is any class of numerical
predicates such that FO[≤,N ] can express + and ×, then the Crane Beach
conjecture is false for FO[≤,N ]. Thus, we obtain the following:

Corollary 5.5 The Crane Beach conjecture is false for

(a) FO[≤,ARB],
(b) FO[≤,+,×], FO[≤,Bit], FO[≤,×], FO[≤,+, Squares],

where Bit is the binary numerical predicate such that Bit(x, y) is true iff
the y-th bit in the binary representation of x is 1, and Squares is the set
of all square numbers,

(c) FO[≤, f ],
where f is the graph of a suitable unary function,

(d) FO[≤,ORD],
where ORD is the class of all binary numerical predicates which, on each
universe {1, . . , n}, are linear orderings.
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Proof: Using Theorem 5.3, (a) is obvious. (b) is true since

FO[≤,+,×] = FO[≤,Bit] = FO[≤,×] = FO[≤,+, Squares].

The first equation is proved, e.g., in the textbook [17]; and, as Lee showed in
[20] the construction there also suffices to prove the second equation. For the
third equation it suffices to show that × is expressible in FO[≤,+, Squares].
This can be done using a construction of [24, Lemma 1]; details can be found
in [27, Theorem 2.3].

(c) is true since Schwentick [31] exposed a particular unary function 6 f :
N → N such that FO[≤,+,×] = FO[≤, f ] (see the proof of Theorem 3 in
[31]). (d) is true since Schweikardt and Schwentick [30] exposed four particu-
lar linear orderings ≤1,≤2,≤3,≤4 on initial segments of N such that FO[≤,
+,×] = FO[≤,≤1,≤2,≤3,≤4]. 2

Our proof of Theorem 5.3 crucially uses the fact that we can count up to
lg n in FO[≤,+,×]. We can strengthen the construction so that it provides
a counterexample using only counting up to lg(m)(n), the m times iterated
logarithm of n. However, we do not yet know whether this strengthening is non-
trivial — it may be that any set of numerical predicates that allows counting
up to lg(m)(n) also allows counting up to lg n.

Proposition 5.6 If N is a set of numerical predicates such that FO[≤,N ]
can count up to lg(m)(n) for some m ∈ N, then the Crane Beach conjecture is
false for FO[≤,N ].

Proof: We must show that counting up to lg(m)(n) suffices to provide a coun-
terexample to the Crane Beach conjecture. We give the construction in some
detail for m=2; afterwards we will indicate how to generalize it to arbitrary
values for m. Take the alphabet A := {a, b, 0, 1, e}, and for every k consider
strings of the form

(

b (0 + 1)k
(

a (0 + 1)k
)∗

)∗

b.

Finally, add e as a neutral letter. The letters a and b are used as markers,
and we interpret the 0-1-substring between any two successive markers as
the binary representation of some number between 0 and 2k−1. If x is any
position, we define block(x) to be the interval between the two nearest markers
to the left and to the right of x, and num(x) to be the number represented
by the 0-1 subsequence in block(x). Using a formula that can count up to k
and the construction from the proof of Theorem 5.3 we can write formulas
expressing that num(x) = num(y) and num(x) + 1 = num(y), respectively.
We can now express easily that between every successive occurences of two

6 whose graph can be interpreted as a binary numerical predicate
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b’s each number from 0 to 2k−1 is represented precisely once. In other words,
this formula stipulates that the {a, 0, 1}-substring between two successive b’s
represent a permutation of the numbers 0, . . , 2k−1. Finally, we write a formula
that expresses that all permutations are represented. Altogether, our formula
defines the set L of those strings which consist of a sequence of permutations
of the numbers 0, . . , 2k−1, for some k, containing every permutation at least
once. In particular, every such string has length Ω(2k!), whereas counting is
only required up to k = O(lg lg(2k!)).

To be more precise, the formula forces all permutations to be present as fol-
lows. It says that for every represented permutation π (starting, say, with a b
at position p), and every pair of positions i, j within that permutation (i.e.,
p < i < j < p′, where p′ is the smallest position > p that carries a b), there is
a permutation ρ (between b’s at q and q′, say) which is equal to π, except that
num(i) and num(j) are swapped. In what follows we will use abbreviations
first(x) and last(x) for formulas which express that x lies in the first, respec-
tively last, block of some permutation; next(x) will denote the first position
in the block directly to the right of block(x). Our formula for i and j now
expresses the following for all r, s such that p < r < p′ and q < s < q′:

• if num(r) = num(s) then num(next(r)) = num(next(s)) unless
(

last(r) or {num(r), num(next(r))} ∩ {num(i), num(j)} 6= ∅
)

• if
(

num(r) = num(s) and num(next(r)) = num(i)
)

then

num(next(s)) = num(j)

• if
(

num(r) = num(s) and num(next(r)) = num(j)
)

then

num(next(s)) = num(i)

• if
(

num(s) = num(j) and ¬last(s)
)

then

num(next(s)) = num(next(i))

• if
(

num(s) = num(i) and ¬last(s)
)

then

num(next(s)) = num(next(j))

• if
(

first(r) and first(s) and num(r) 6= num(i)
)

then

num(r) = num(s)

• if
(

first(r) and first(s) and num(r) = num(i)
)

then

num(s) = num(j).

Altogether, this gives us a FO[≤,N ]-sentence that defines the desired lan-
guage L (provided that FO[≤,N ] can count up to O(lg(2)(n))).

Considering m > 2, we can then iterate the above process, using an additional
marker symbol c. After the first iteration, the resulting formula stipulates that
our string represent all permutations of all the permutations of the numbers
0, . . , 2k−1. This will guarantee that string to be of length Ω(((2k)!)!), and so
forth. Finally, this proves Proposition 5.6. 2
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Let us note that a different proof, based on an “addressing mechanism” rather
than the permutations used above, can be found in [27].

It is not difficult to code the languages above using only two non-neutral
letters: just apply the homomorphism {a, b, 0, 1, e}∗ → {0, 1, e}∗ which maps e
to e, a to 01, b to 011, 0 to 0111, and 1 to 01111. However, due to Theorem 4.3,
with only one non-neutral letter there is no way of defeating the Crane Beach
conjecture.

In the following section we will introduce a framework that gives better under-
standing of what exactly may cause a failure of the Crane Beach conjecture.
Furthermore, we will show that, in some sense, no modified version of the
CBC is true for the class ARB.

6 The Crane Beach Conjecture Revisited

In Section 3 we exposed the intuition that led to the formulation of the Crane
Beach conjecture:

Assume that L is a language that has a neutral letter e. Via inserting or
deleting e’s, the non-neutral letters in a given string can be moved, without
changing the membership or non-membership in L, onto any combination
of positions — as long as the relative ordering of the non-neutral letters re-
mains unchanged. It therefore seems conceivable that extra numerical pred-
icates do not help first-order logic FO[≤] to define neutral letter languages.

This intuition sounds convincing — but it is wrong. In Theorem 5.3 we saw
that already the predicates {+,×} cause the conjecture to fail. The coun-
terexample was a language L that is not star-free regular but definable in
FO[≤,+,×]. Indeed, all that is needed to define this language is the ability
to count up to lg n. In other words: The counterexample is definable in first-
order logic with unary counting quantifiers, FOunC[≤] (even if counting is
restricted up to lg n). Here, the logic FOunC is obtained from FO by adding
unary counting quantifiers of the form ∃=xy. For an interpretation p of the
variable x, a formula ∃=xy ϕ(y) expresses that there are exactly p different
interpretations of the variable y such that the formula ϕ(y) is satisfied.

It is quite tempting to try to find a modified version of the CBC, i.e., a new
conjecture of, e.g., the following kind:

If a language with a neutral letter can be defined in FO[≤,ARB], then
it can be defined also in FOunC[≤] or, as another modified version of the
CBC, in FO[≤,Bit] = FO[≤,+,×].
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However, the subsequent considerations give a new intuition that helps to
refute the above versions and that gives a framework for identifying new cases
for which the CBC is false.

Definition 6.1 (Associating strings with numbers)
Let F be a class of formulas and let N be a set of numerical predicates. We
say that F [≤,N ] can associate strings with numbers iff the following is true:

• there exists an alphabet B and a letter e not in B, and letting A := B∪{e},
• there exists, for every k > 0, a string s(k) in B∗ of length ≥ k, where
s(k) 6= s(l) for all k 6= l, and

• there exists a F [σA,≤,N ]-formula ψ(x) such that

for every string w ∈ A∗ and for every position k in w, w satisfies ψ(k) if and
only if s(k) is the string obtained by deleting all the e’s in w.

In other words: The string s(k) encodes the number k, and the formula ψ(x)
serves as a decoder that works even if neutral letters are inserted into s(k).

For example, FO[≤,+,×] can associate strings with numbers: In the proof
of Theorem 5.3 we considered the alphabet B := {0, 1, a} and the strings
s(k) := “ordered list of all binary strings of length k, separated by the letter
a”, and we constructed a FO[≤,+,×]-formula ψ(x) such that for all strings
w over A := B ∪ {e} and all positions k in w it is true that w satisfies ψ(k)
if and only if w can be obtained by inserting e’s into s(k).

For convenience, given a string s ∈ B∗ we will henceforth write neutral(s) to
denote the set of all strings over B ∪ {e} which can be obtained by inserting
letters e into s.

The consequences of the ability to associate strings with numbers can be
formulated as follows:

The ability of associating strings with numbers permits access to the in-
formation stored in the numerical predicates — and this is what causes a
failure of the Crane Beach conjecture.

For example, if P is a subset of N, then the neutral letter language

LP :=
⋃

k∈P

neutral
(

s(k)
)

is definable in FO[≤,+,×, P̂ ] by the formula ∃x P̂ (x) ∧ ψ(x). Consequently,
since there is an uncountable number of subsets P of N, FO[≤,ARB] can
define an uncountable number of neutral letter languages. This immediately
leads to

28



Corollary 6.2 Let F be a logical system such that for every finite or countable
signature τ there are at most countably many F [τ ]-formulas.
There is no finite or countable set N of numerical predicates such that F [≤,N ]
can define all neutral letter languages that are definable in FO[≤,ARB].

The tool provided by Definition 6.1 also enables us to refute the CBC for
the counting logic FOunC, already for the class of monadic predicates and
two-letter alphabets:

Theorem 6.3

(a) There is no finite or countable set N of numerical predicates such that
FOunC[≤,N ] can define all neutral letter languages definable in FO[≤,
ARB].
In particular, the Crane Beach conjecture is false for FOunC[≤,ARB].

(b) Let P ⊆ N be a set that is not semi-linear 7 .
There is a neutral letter language over the alphabet {a, e} that can be
defined in FOunC[≤, P̂ ], but not in FOunC[≤].

For example, P can be chosen to be the set Primes of all prime numbers
or the set Squares of all square numbers. Consequently, the Crane Beach
conjecture is false for FOunC[≤,Primes], FOunC[≤, Squares], FOunC[≤,
MON ], and FOunC[≤,×], even if attention is restricted to languages
over a two-letter alphabet.

Proof: (a) is a direct consequence of Corollary 6.2. The proof of (b) proceeds
in three steps:

Step 1: FOunC[≤] can associate strings with numbers.
Let B := {a}. For every k > 0 let s(k) := ak be the string that consists
of exactly k a’s. Let A := {a, e} and let ψ(x) := ∃=xy Qa(y). Obviously,
for all strings w in A∗ and for all positions k in w, w satisfies ψ(k) iff w ∈

neutral
(

s(k)
)

.

Step 2: Choosing an FOunC[≤, P̂ ]-definable neutral letter language LP .

Define LP :=
⋃

k∈P neutral
(

s(k)
)

. Of course, LP is definable in FOunC[≤, P̂ ]

by the formula ∃x P̂ (x) ∧ ψ(x).

Step 3: LP is not definable in FOunC[≤].
For the sake of contradiction, assume that LP is definable in FOunC[≤] via
a sentence χ over the signature {Qa, Qe,≤}. We first show that χ can be
transformed into a FOunC[≤]-formula ϕ(x) that defines P in pure arithmetic
on N, i.e. P = {k ∈ N / 〈N,≤〉 |= ϕ(k)}; afterwards we will show that the

7 A set P ⊆ N is semi-linear iff there are p, q ∈ N such that for every k ≥ q we have
k ∈ P iff k+p ∈ P .
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existence of ϕ(x) is a contradiction to the presumption that P is not semi-
linear.

By definition of LP we know that the particular string s(k) = ak belongs to
LP if and only if k ∈ P . Furthermore, the string s(k) is represented by the
structure 〈{1, . . , k}, Qs(k)

a , Qs(k)
e ,≤〉, where Qs(k)

a = {1, . . , k} and Qs(k)
e = ∅.

According to our assumption, χ defines the language LP , and hence we have

〈{1, . . , k}, Qs(k)
a , Qs(k)

e ,≤〉 |= χ iff s(k) ∈ LP iff k ∈ P .

Let x be a new first-order variable that does not occur in χ. We replace every
atom of the form Qa(y) in χ by the atom y≤x ∧¬y=0, and we replace every
atom of the form Qe(y) in χ by the atom ¬y=y. Furthermore, we relativize
all quantifications to numbers that are ≤ x and 6= 0. It is not difficult to see
that this leads to a FOunC[≤]-formula ϕ(x) such that the following is true for
all interpretations k > 0 of the variable x:

〈N,≤〉 |= ϕ(k) iff 〈{1, . . , k}, Qs(k)
a , Qs(k)

e ,≤〉 |= χ iff k ∈ P .

Consequently, ϕ(x) is an FOunC[≤]-formula that defines the non-semi-linear
set P in pure arithmetic on N. However, in [29] it was shown that

FOunC[≤] = FOunC[≤,+] = FO[≤,+] in pure arithmetic on N.

This gives us an FO[≤,+]-formula ϕ′(x) such that P = {k ∈ N / 〈N,≤,+〉 |=
ϕ′(k)}. I.e., P is definable in FO[≤,+] on N. However, this is a contradiction
to the Theorem of Ginsburg and Spanier, stating that the FO[≤,+]-definable
sets are exactly the semi-linear sets (cf., e.g., the textbook [32, Theorem 4.10]).
In other words: The formula ϕ′(x) and, consequently, the formula χ cannot
exist. This completes our proof of Theorem 6.3. 2

7 Discussion

A summary of what we have shown about the Crane Beach conjecture is given
in Figure 2. Much of the above can be generalised from strings to arbitrary
relational structures over the natural (or real) numbers. This programme is
pursued in [22,27,28]. With regard to the questions here, the following prob-
lems remain open:

• It would be very good to have proofs of Theorem 4.3 and 4.2 that do not
rely on [1,16,4]. However, since both theorems imply the nonexpressibility
of PARITY, we expect this to be very difficult.
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• Can we find a set of numerical predicates that allows us to count up to
lg(m)(n), but not to lg n? What about counting up to even smaller functions?
We conjecture that the Crane Beach conjecture is true for a logical system
iff it cannot count beyond a constant.

• Within FO[≤,+,×], we can consider the subclasses of formulas based on
the number of quantifier alternations. The lg-counting operation requires Σ3,
and the construction of the counter example adds a few more levels. This
leaves a gap between the upper bound of something like Σ5 in Theorem 5.3,
and a lower bound of BC(Σ1) in Theorem 4.4. Since in BC(Σ2), counting
is only possible up to a constant (cf., [15]), it is conceivable that the lower
bound can be improved. However, currently the state of the Crane Beach
conjecture for arbitrary numerical predicates is not even known for Σ2∩Π2.

• Theorem 4.8 places limits on the power of a particular uniform circuit com-
plexity class, an “addition and some unary predicates”-uniform version of
AC0. Can we use these techniques (or new techniques) to place limits on the
power of more powerful uniform versions of AC0 (without using the non-
uniform lower bounds) or on addition-uniform versions of more powerful
complexity classes? This has been done for one such class, an addition-
uniform version of LOGCFL, by Lautemann, McKenzie, Schwentick, and
Vollmer [21].

• From Corollary 4.13 we know that the CBC is true for FO[≤, N̂ ] if the
structure 〈N,≤,N〉 has finite VC-dimension. It therefore is a further task
to find more structures with universe N that have finite VC-dimension.

• In Section 6 we have seen that the Crane Beach conjecture is false if a
logic can associate strings with numbers. It is a further task to investigate
what other consequences follow from the ability to associate strings with
numbers.

• It would also be of interest to study the conjecture for certain extensions of
FO, such as FO with modulo counting quantifiers. These each have various
versions depending on the numerical predicates available.
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Cases Where the CBC is True:

in general for all string–languages with neutral letter:

• FO[≤,MON ] Thm. 4.1

• FO[≤,+,MONQ] Thm. 4.8

• FO[≤,+, R̂
2(blg xc2) ] Cor. 4.14

• BC(Σ1)[≤,ARB] Thm. 4.4

• BC(Σ
(s,p)
1 )[≤,ARB] [18]

• FO[≤, N̂ ] if natural–generic collapse over 〈N,≤,N〉 Prop. 4.10

• FO[≤, N̂ ] if 〈N,≤,N〉 has finite VC–dimension Cor. 4.13

for certain kinds of string–languages:

• FO[≤,ARB] on regular languages Cor. 4.2

• FO[≤,ARB] on two–letter alphabets Thm. 4.3
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