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Abstract. This paper addresses the problem of proving safety properties of im-
perative programs manipulating dynamically allocated data structures using de-
structive pointer updates. We present a new abstraction for linked data structures
whose underlying graphs do not contain cycles. The abstraction is simple and
allows us to decide reachability between dynamically allocated heap cells.
We present an efficient algorithm that computes the effect of low level heap mu-
tations in the most precise way. The algorithm does not rely on the usage of a
theorem prover. In particular, the worst case complexity of computing a single
successor abstract state isO(V log V ) whereV is the number of program vari-
ables. The overall number of successor abstract states can be exponential inV . A
prototype of the algorithm was implemented and is shown to be fast.
Our method also handles programs with “simple cycles” such as cyclic singly-
linked lists, (cyclic) doubly-linked lists, and trees with parent pointers. Moreover,
we allow programs which temporarily violate these restrictions as long as they are
restored in loop boundaries.

1 Introduction

Automatically establishing safety properties of programs that permit dynamic stor-
age allocation and low-level pointer manipulations is challenging. Dynamic allocation
causes the state space to be infinite; moreover, a program is permitted to mutate a data
structure by destructively updating pointer-valued fields of nodes.

It is well understood that reachability is crucial for reasoning about linked data
structures. In this work we establish a simple abstraction method for reasoning about
reachability that is provably efficient and precise. This provides both a practical analysis
method and a theoretical contribution towards the understanding of how precise and
efficient shape analysis can be.

1.1 Main Results

We present a method to conservatively verify reachability properties via abstract inter-
pretation [4]. Specifically, we present a new lightweight method for shape analysis (e.g.,
see [10, 21]) that applies to programs on “regular tree-like” data structures. The method
is sound, i.e., whenever it reports that a safety property holds, it indeed holds. Further-
more, we computethe best abstract transformer [4] for atomic Java-like statements.
A prototype of the algorithm was implemented and is shown to be fast. The system
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can be seen as a specialization of TVLA [16] to a set of data-structures and a set of
properties.

In the rest of the section, we elaborate on the key contributions. Sect. 8 includes
more detailed comparison to related work.

New Abstraction of Heap ShapeIn Sect. 3, we present our simple abstraction for
heaps based on contracting segments of the heap into a single summary-node.

In contrast to existing methods, our abstraction admits the precise and efficient re-
covery of reachability information concerning the modeled concrete states. For exam-
ple, every path in the abstraction between “important” nodes is amust-path, i.e., it must
exist between the corresponding nodes in each modeled concrete state. Thus, reason-
ing about reachability between important nodes can be performed efficiently via simple
graph traversal.

We show that the abstraction of graphs with no undirected cycles yields a linear
number of nodes. Therefore, the size of the abstract state space is bounded for such
programs, allowing effective state space exploration. Moreover, this also holds for sim-
ple cycles such as cyclic singly-linked lists, (cyclic) doubly-linked lists and trees with
parent pointers. Furthermore, it is possible to apply our abstraction only in loop bound-
aries and thus allowing programs to temporarily violate the data-structure invariants.
Full proofs for the theorems in the paper can be found in [15].

Efficient Best Transformers In Sect. 4, we present an efficientO(NS ∗ V ∗ log V )
algorithm for computing the best abstract transformers for Java-like atomic program
statements including destructive pointer manipulation.V is the number of program vari-
ables.NS is the number successor abstract states (can be exponential in the number of
program variables).

Most existing methods for shape analysis including TVLA do not implement the
best transformers and may require exponential time to produce a single abstract state.
Also, in contrast to existing methods for generating the best abstract transformers (e.g. [7,
22, 2]), our method does not employ a theorem prover. Precise reachability information
is maintained using our abstraction.

Efficient algorithms for computing the best transformers for predicate abstraction in
singly-linked lists were developed in [18]. This paper can be considered as a continua-
tion of [18] that handles more complex data-structures.

Information Extraction It is important to extract information from an abstract state
about the concrete states that it models. For example, we sometimes need to verify dis-
jointness of data structures. For safety properties we check that user-specified assertions
hold in every execution leading to a given program point.

In Sect. 5, we provide a conservative and efficient method that extracts such infor-
mation by evaluating a first-order formula with transitive closure on a given abstract
state. Our method is more precise than standard Kleene evaluation (e.g., [21]), although
less precise than supervaluational semantics [3, 19]. We show that our method is exact
for “atomic” reachability properties between important nodes. Our limited experiments
indicate that one of our evaluation methods is precise enough in practice.

2 Preliminaries

We call an allocated object on the heap aheap node. Shape analysis tracks reference
program variables and reference fields, i.e., to which heap node each reference variable
points to and for each heap node where each of its reference fields point to. In this paper



we assume a fixed set of (reference) program variables denoted byPVar and a fixed
set of reference fields denoted byPRef .

A state(shape graph [10]) is a tripleC
def= (UC , envC , refC). The universe,UC , is

the set of allocated heap nodes; the environment,envC ⊆ PVar×UC , is a partial func-
tion from program variables to the heap nodes that they point to; andrefC : PRef →
P(UC × UC) is a function from each field namef to a relation which pairs each node
with the node itsf field points to. Since these relations induce a graph on the heap
nodes, we will use the termf -edgefor a pair of nodes in the relationrefC(f) and call
f its edge type. In languages such as Java where the program cannot use the memory
address of an object directly, the specific names of the nodes inUC are immaterial.
Thus, we define equality between states as isomorphism between them.

2.1 Notations

Fig. 1 lists some notation used throughout. We shortenE{{x}} to E{x}.

Symbol Definition Meaning
E∗ Reflexive Transitive Closure ofE
succ(X, E) {(n, n′) ∈ E | n ∈ X} Restriction of first component
pred(X, E) {(n, n′) ∈ E | n′ ∈ X} Restriction of second component
E1 ◦ E2 {(n, n′′) | (n, n′) ∈ E2, (n

′, n′′) ∈ E1} Relation composition
E{X} {n′ | (n, n′) ∈ succ(X, E)} Relation image
upb→a λn. if (n = b) thena elsen Updatingb to bea
fldC ⋃

f∈PRef refC(f) Edges ofC
disj(v1, v2, v3) v1 6= v2 ∧ v1 6= v3 ∧ v2 6= v3 The variables are disjoint

Fig. 1.Notations used in the paper.

We definevar(S) def= envS{PVar} to be the set of nodes inS pointed to by program
variables andshared(S) to be that set of nodes inS that are pointed to by two or
more different heap nodes (ignoring self-loops). We say such a node isheap-shared.
Formally,shared(S) def= {v | (w1, v) ∈ fldS , (w2, v) ∈ fldS , disj(w1, w2, v)}

3 Abstraction

A state,C, is concrete if none of its edges are self loops and if eachrefC(f) is a
partial function. The main idea of the abstraction is to keep a set of distinct nodes
which are not abstracted and abstract the rest of the graph in such a way that keeps all
reachability information for these nodes explicit. The set of distinct nodes we use are
those nodes that are either pointed to by variables or heap shared, i.e.,distinct(S) def=
var(S) ∪ shared(S).

Wecontract an edge(a, b) by replacing each occurrence ofb bya, contract(S, a, b) def=
(US − {b}, envS , λf.{(upb→a(n1), upb→a(n2) | (n1, n2) ∈ refS(f)}) (note that
envS is not updated because we never contract a node pointed to by a variable). We
now define a methodB(S,D) that given a state and a set of nodesD s.t.distinct(S) ⊆
D ⊆ US , returns the abstract state generated by repeatedly applying contraction on all



edges that are not incident to nodes in D until the unique fixpoint is reached. An equiv-
alent way to defineB(S, D) is by collapsing every maximal connected subgraphTn of
S that does not contain nodes inD (the subgraph is a rooted tree) to a single noden (its
root). The edge types of the self-loops ofn are exactly the types of edges withinTn.
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Fig. 2. (a) A concrete stateC1, (b) S1 = B(C, distinct(C1))

We call the function,M , that maps each node to the node it was collapsed into byB
theembedding function(after [21]). When multiple nodes have been embedded into a
single noden (i.e.,|M−1(n)| > 1) we calln asummary node. Fig. 2 gives an example
of a concrete stateC1 and the result ofB(C1, distinct(C1)). We mark summary nodes
with a double-circle for emphasis.

The abstraction relation,β
def= { (S,B(S, distinct(S))) | S a state}, maps each state,

S, to a state in which every edge not incident to a distinct node has been contracted.

3.1 Data Structures

We limit the class of data structures handled to graphs with no undirected cycles (i.e.,
when we remove the direction of the edges we get an undirected forest) and no garbage
(i.e. all nodes are reachable from program variables). We call such statesadmissible
states. This class includes linked lists, trees, and trees with limited amount of sharing
(i.e., each pair of nodes has at most one simple path between them and each pair of
variables meets at most once). Extensions to support cyclic linked lists, doubly linked
lists and trees with parent pointers are described in Sect. 6.

We use a standard relational abstract domain with set-union as join (in Sect. 6 we
define a more concise partial-join operator). The concretization relation is defined as
γ

def= {(S,C)|(C, S) ∈ β andC is an admissible concrete state}. We say that an abstract
state,S, is feasibleif γ{S} 6= ∅, i.e.S models some admissible concrete state.

3.2 Properties of the Abstraction

We start with some important definitions:
– We say that(n1, n2) ∈ refS(f) is anf must edgewhen

∀C ∈ γ{S}, n′1 ∈ M−1(n1), n′2 ∈ M−1(n2) . (n′1, n
′
2) ∈ refC(f)

– We say that(n1, n2) ∈ refS(f) is anf may edgewhen
∀C ∈ γ{S} .∃n′1 ∈ M−1(n1), n′2 ∈ M−1(n2) . (n′1, n

′
2) ∈ refC(f)

– We say that(n1, n2) ∈ refS(f) is anf unique may edgewhen
∀C ∈ γ{S} .∃! n′1 ∈ M−1(n1), n′2 ∈ M−1(n2) . (n′1, n

′
2) ∈ refC(f)



– We say there is amust path betweenn1 andn2 when
∀C ∈ γ{S}, n′1 ∈ M−1(n1), n′2 ∈ M−1(n2) . (n′1, n

′
2) ∈ (fldC)∗

– We say there is amay path betweenn1 andn2 when
∀C ∈ γ{S} .∃n′1 ∈ M−1(n1), n′2 ∈ M−1(n2) . (n′1, n

′
2) ∈ (fldC)∗
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Fig. 3. An
abstract state
S2.

The abstract stateS2 in Fig. 3 models all singly-linked lists of length
4 or more s.t.x points to their head andy to their tail. Note that there
are cases in which there is a must path between two nodes (e.g. from
0 to 2) although the path in the abstract state contains may edges (the
edges from 0 to 1 and from 1 to 2).

Thm. 1 summarizes some important properties of our abstraction.

Theorem 1. For every feasible abstract stateS the following hold:
1. Everyf edge inS is anf may edge.
2. Every non self-loopf edge is anf unique may edge.
3. Everyf edge between non-summary nodes is anf must edge.
4. A node inS is a summary node iff it has self-loops.
5. For every summary noden the subgraph induced byM−1(n) is a
tree and has a unique incoming edge which leads to its root.
6. Letn1 6= n2 wheren1 has no self-loops or a single self-loop of the same type as its
outgoing edge. A path fromn1 to n2 is a must path.

Proof: (sketch)
1. Immediate from definition of contraction.
2. Analysis of possible contractions reveals that the only case in which two edges

are merged by a contraction is if an undirected cycle appeared in the original state.
3. Immediate from 4 and definition of contraction.
4. Contraction always creates a self-loop. Self-loops are preserved by contraction

and contraction is the only way to create self-loops.
5. LetTn be the subgraph induced byM−1(n). Since contraction is done on edges,

the nodes inTn are weakly connected. Shared nodes are never contracted, thus there is
no sharing inTn. Since the original state had no garbage any cycle either has a variable
pointing to it, or has a shared node. In any case, an entire cycle cannot be contracted to
the same summary node. Thus,Tn is a tree. Furthermore, to avoid sharing and garbage,
the one and only incoming edge must be to its root.

6. By 5 and 1, every summary node represents a tree and every edge is a may-edge.
Thus, paths between non-summary nodes are must paths. Since a summary node is a
tree, all the nodes in it are reachable from the root and so if the target node is a summary
node, the path is still a must path. If the source node has a single self-loop it is a singly-
linked list. The only outgoing edge from a singly-linked list of the same type as the
self-loop is from its last node, thus reachable from all nodes. 2

The last property is of particular importance since it means that the reachability in-
formation in the abstract state is explicit. This property is not standard in shape analysis
abstractions (e.g., in TVLA it in not always the case). The reason for the limitation on
n1 is that ifn1 has 2 or more self-loops it embeds a tree, thusn2 is not reachable from
some nodes embedded ton1 (e.g. in Fig. 2 the path inS1 from node 3 to node 4 is not
a must path, since for example inC1 there is no path from node 5 to node 4).

Lem. 1 defines when an abstract stateS is feasible and Lem. 2 bounds its size. Note
that the set of admissible concrete states is exactly the set of feasible abstract states with
no self-loops.

Lemma 1. (Feasibility) Abstract stateS is feasible iff the following hold:
1. There are no edges between two different non-distinct nodes.



2. Distinct nodes are never summary nodes.
3. A node that has two outgoingf edges has a self-loop of a different edge type.
4. Deleting all self-loops fromS makes it admissible.

Proof: (sketch)
(Only If) 1. An edge between two different non-distinct nodes can be contracted,

which contradicts thatS is in the image ofβ.
The rest of the properties hold in concrete admissible states and are preserved by

contraction.
2. Immediate from definition of contraction.
3. A counterexample would be a node with zero or one self-loops and two outgoing
edges of the same type. Since in the original concrete state each edge is a partial func-
tion, a node without self-loops cannot have two outgoing edges of the same type. A
node with a single self-loop is a linked list, thus the only outgoing edge from it can be
from its tail, thus a single edge.
4. It is easy to see that contractions do not introduce garbage or undirected cycles (ex-
cept for self-loops).

(If) It can be shown that a state that satisfies these properties can always be expanded
to a concrete state of finite size. 2

Lemma 2. (MaxSize)For every feasible abstract stateS we have|US | ≤ MaxSize,
whereMaxSize

def= (|PRef |+ 1) ∗ (2 ∗ |PVar | − 1)

Proof: Let C be an admissible concrete state,D a set s.t.var(C) ⊆ D ⊆ UC , and
S = B(C, D). S has the property that every node is either inD or has a parent inD.
Thus, the number of nodes in|US | ≤ |D| ∗ (|PRef | + 1). SinceC has no garbage
and no undirected cycles,|distinct(C)| ≤ |PVar | ∗ 2 − 1. Thus, if (C, S) ∈ β then
|US | ≤ MaxSize. 2

4 Best Transformers

Concrete SemanticsFig. 4 defines the concrete semantics for simple atomic state-
ments in Java-like programs. Most preconditions were added to simplify the presenta-
tion. In practice we use temporaries to translate each program statement to a sequence
of operations while maintaining the preconditions. Some preconditions such as no null-
dereference cannot be removed by a sequence of operations. The analysis detects vio-
lations of these preconditions and gives a warning.

Thegc operation performs garbage collection by removing all nodes not reachable
from any variable. Garbage collection can by executed either after everyx = null op-
eration, periodically, or we can run garbage detection instead of garbage collection to
detect memory leaks. The semantics of the other operations are straightforward formal-
izations of standard Java-like operational semantics.

4.1 Abstract Transformers

We now show how to compute the best abstract transformers (see [4]) for the our ab-
straction and concrete semantics defined in Fig. 4. The best transformer of an operation
st is defined asstbest def= β◦st◦γ (i.e, for each concrete state inγ{S} apply the concrete
semantics and abstract). This definition is not constructive since the number of states



Operation Precondition Semantics

gc let R = fld∗(var(S)) in
(R, env, λf.succ(R, ref(f)))

x = null (U, succ(PVar − {x}, env), ref)

x = y env{x} = ∅ (U, env ∪ {(x, n)|(y, n) ∈ env}, ref)

x.f = null env{x} 6= ∅∧ (U, env,
ref(f) ◦ env{x} ⊆ var(S) ref [f := succ(U − env{x}, ref(f))])

x.f = y env{x} 6= ∅∧ (U, env, ref [f := ref(f) ∪ {(nx, ny)|
ref(f) ◦ env{x} = ∅ (x, nx) ∈ env, (y, ny) ∈ env}])

x = y.f env{x} = ∅∧ (U, env ∪ {(x, n)|(y, n) ∈ ref(f) ◦ env},
env{y} 6= ∅ ref)

x = malloc env{x} = ∅ ∧ nmalloc 6∈ U (U ∪ {nmalloc}, env ∪ {(x, nmalloc)}, ref)

x == null env{x} = ∅
x == y env{x} = env{y}

Fig. 4. The operations supported and their concrete semantics.

in γ{S} is unbounded and potentially infinite. The main idea is to define a relation
focus[st] whose image is a bounded set of states and if(S, S′) ∈ focus[st] there is
a representative stateC ∈ γ{S} s.t.β{st(S′)} = β{st(C)} and vice versa. Thus, we
define the abstract transformer to best]

def= β ◦ st ◦ focus[st]. Note that the transformer
defined in the concrete semantics can be applied to abstract states as well.

The focus operation is similar to the one defined in [21], i.e., it is a partial concretiza-
tion intended to restore enough information to compute the transformer precisely. Let
D(st, C) def= distinct(C) ∪ distinct(st(C)). We define focus to be:

Definition 1. focus[st] def=
{
(S,B(C,D(st, C)))

∣∣ C ∈ γ{S}}

Focus takes all the states inγ{S} and keeps both the distinct nodes of the state and the
nodes that will become distinct after the statement is executed. In Sect. 4.2 we define
an algorithm that computes the image of focus.

Lem. 3 gives some important properties for the interaction ofβ andst. Note that
the existence of commutative diagrams is not true in general shape abstraction. Thm. 2
uses Lem. 3 to prove thatst] is the best abstract transformer.

Lemma 3. For every(S, C) ∈ γ, let D = D(st, C) andS′ = B(C, D). Then:
Idempotence β{S′} = β{S},
Commutative Diagrams B(st(C), D) = B(st(S′), D), and
Equivalence underβ (β ◦ st){C} = (β ◦ st){S′}
Proof: (sketch)
Idempotence It can be shown that contraction induces a confluent derivation relation

commutative in the choice ofD. SinceB can be seen as the fixed-point of that
relation, the statement follows.

Commutative Diagrams This can be verified by checking the algebraic operations
defining the transformer, for each operation in Fig. 4.

Equivalence underβ By commutative diagrams we haveB(st(C), D) = B(st(S′), D).
By Idempotence we haveβ{B(st(C), D)} = β{st(C)} andβ{B(st(S′), D)} =
β{st(S′)}. Thus,β{st(C)} = β{st(S′)}.

2



Theorem 2. st] is the best abstract transformer, i.e.,st] = stbest.

Proof: Let (S, S]) ∈ st]. There isS′ s.t. (S, S′) ∈ focus[st] and (S′, S]) ∈ β ◦
st. By Def. 1 there is a concrete and admissible stateC s.t. (S, C) ∈ γ andS′ =
B(C, D(st, C)), and by Lem. 3(C, S]) ∈ (β ◦ st) thus(S, S]) ∈ stbest.

Conversely, let(S, S]) ∈ stbest. There isC s.t.(S,C) ∈ γ and(C,S]) ∈ (β ◦ st).
Let S′ = B(C,D(st, C)). By Def. 1 we have(S, S′) ∈ focus[st], and by Lem. 3
(S′, S]) ∈ β ◦ st thus(S, S]) ∈ st]. 2

4.2 Algorithms

In order to compute the best abstract transformer,st], we must give efficient algorithms
for state equality, focus, andβ. The total complexity of computing the abstract trans-
former isO(NS ∗ V ∗ log V ) whereNS is the number of successor abstract states
(which may be exponential in the number of program variables).

Focus In Sect. 4.1, we defined focus non-constructively. We now present an algo-
rithm, Focus(S, st), that computesfocus[st]{S}. The first observation is that for all
statements,st, exceptx = y.f , focus[st] is the identity relation. This is clear for
x = malloc, and true for the rest becausedistinct(st(S)) ⊆ distinct(S),

For st
def= x = y.f , Focus(S, st) enumerates on all states that can be contracted to

S by a minimal number of contractions and still havedistinct(st(S)) ⊆ distinct(S)
as non-summary nodes. Letnf be the node pointed to byy.f in S. If it is a non-
summary nodeFocus(S, st) = {S}. Otherwise, letG be the self-loops ofnf in S.
Let (S, S′) ∈ focus[x = y.f ], S′ can be contracted intoS by at most one contraction
for each edge type inG. Let N ′

f be the subgraph ofS′ that was contracted intonf .
Since all edges are may-edges, the edges withinN ′

f are exactly the self-loops ofnf .
Furthermore, since all the edges between different nodes are unique may-edges, the
edges betweenN ′

f and the rest of the graph are exactly the edges betweennf and the
rest of the graph. Finally, sinceS′ is the result ofB on an admissible concrete state the
property that a node that has two outgoingg edges has a self-loop of different reference
field, is maintained. This gives us an enumeration algorithm to computeFocus(S, st).
Lem. 4 summarizes the properties ofFocus(S, st).

Lemma 4. focus[x = y.f ]{S} = Focus(S, x = y.f)

BetaTo compute the image ofβ we perform two tasks, 1) check that the state is admis-
sible and 2) return a state in which all the possible contractions have been made.

Admissibility Since an admissible state is one without garbage and with no undi-
rected cycles, the check is done by DFS from all nodes pointed to by variables to make
sure that there is no garbage. To compute undirected connectivity, we maintain a Union-
Find data structure during the DFS, thus detecting undirected cycles. We start with sin-
gleton groups for each node and for every edge we encounter we union the groups the
two incident nodes belong to. Thus the sets maintain weak reachability. If we find the
two incident nodes already belong to the same group we found an undirected cycle and
we abort. The complexity for this check isO(nα(n)), wheren is the size of the input
state andα is the inverse Ackerman function.

To computeβ{S} we observe that the edges contracted are exactly the edges be-
tween non-distinct nodes. Thus, the algorithm performs two DFS traversals. The first
computesdistinct(S) by marking nodes that are either pointed to by variables or have



an in-degree greater than one (note that self-loops do not contribute to the in-degree).
The second traversal simply contracts every non self-loop edge s.t., both its incident
nodes are not distinct. The complexity of this algorithm isO(n).

State Equality We defined state equality as isomorphism between the states. We give
an algorithm that computes canonical names for each state. The canonical names of two
states are identical iff the two states are isomorphic.

Canonical names are given to nodes by traversing the graph in DFS from program
variables (in fixed order) traversing the reference fields in fixed order as well. The name
of a noden is composed of the names of the variables pointing ton, n’s self loops
and for each ofn’s parents, the parent name and the type of the edge leading from the
parent ton. To ensure the traversal order is unique, we only leave a node to its children
after all its parents have been visited. Hash-cons is used to store the canonical names,
allowing for O(1) amortized time equality checks. The name of a state is the hash-cons
of its set of nodes ordered by some fixed order (e.g. memory address of the hash-cons).
Thus, the total complexity of the algorithm isO(V log V ).

5 Evaluation

We use a subset of first-order logic with transitive closure as a query logic to extract
information from states. Let[[ϕ]]S denote the boolean value of formulaϕ in stateS.

Definition 2. (Sound)An evaluation function of a formula issoundiff for every feasi-
ble abstract stateS, ¬[[ϕ]]S ⇒ ∀C ∈ γ{S} .¬[[ϕ]]C

(Complete) An evaluation function of a formula iscompleteiff for every feasible
abstract stateS, ¬[[ϕ]]S ⇐⇒ ∀C ∈ γ{S} .¬[[ϕ]]C

To computeassert (ϕ, S), i.e., to verify that all the states inγ{S} satisfyϕ, we
will apply a sound evaluation function on¬ϕ and verify that the result is false.

5.1 Query Logic

The query logic is first order logic in Negation Normal Form (NNF) over the following
vocabulary:

– For everyx ∈ PVar a unary predicate symbol;x(n) iff x points ton
– For everyf ∈ PRef a binary predicate symbol;f(n1, n2) iff the f field of then1

points to then2

– Binary predicate symbolTC; TC(n1, n2) iff there is any non-empty path fromn1

to n2

– Equality;n1 = n2 iff n1 andn2 are the same heap node
Examples:

∀v . ∃w.x(w) ∧ (v = w ∨ TC(w, v)) (1)

∀v, w .¬y(w) ∨ ¬left(v, w) (2)

Formula (1) states that all the nodes in the heap are either pointed to byx or reachable
from the node pointed to byx. Formula (2) states that the any node pointed to byy has
no incomingleft edge.

We will restrict our attention to closed formulas (no free variables). We say that a
formula isguarded if every quantifier is of the form(∀v . x(v) ⇒ ψ) or (∃v . x(v)∧ψ)
wherex is some program variable.



To evaluate formulaϕ in stateS we translateS to a standard logical structurêS and
ϕ to aFO formula,TR(ϕ), in the vocabulary of̂S. Let [[ϕ]]S def= [[TR(ϕ)]]Ŝ where the
right hand side is standardFO Tarskian semantics. Thm. 3 ensures the soundness of the
evaluation and guarantees completeness for the guarded fragment of the query logic.

Theorem 3. For every formulaϕ, λS.[[TR(ϕ)]]Ŝ is a sound evaluation function. Ifϕ is
guarded, it is also a complete evaluation function.

5.2 Translation

The universe of̂S is the universe ofS. The vocabulary and its interpretation are given
in Fig. 5(a). The translation defines for each edgef two predicates,f∀ and f∃. If
f∀(n1, n2) then there is anf must edge fromn1 to n2. If f∃(n1, n2) then there is
an f may edge fromn1 to n2. Similarly we useTC∀(n1, n2) to define a must path
from n1 to n2, andTC∃(n1, n2) to define a may path fromn1 to n2. The translation is
a formalization of Thm. 1. Fig. 5(b) gives the translation ofS2 defined in Fig. 3. The
translation rules for the literals in the query formula are given in Fig. 5(c).

Vocabulary Interpretation
x(n) (x, n) ∈ envS

f∃(n1, n2) (n1, n2) ∈ refS(f)
f∀(n1, n2) f∃(n1, n2) ∧ ¬sm(n1) ∧ ¬sm(n2)
TC∃(n1, n2) A (possibly empty) directed path

from n1 to n2

TC∀(n1, n2) TC∃(n1, n2), n1 6= n2 and the
path satisfies case 6 of Thm. 1

sm(n)
∨

f∈PRef (n, n) ∈ refS(f)

PredicateTuples
x 〈0〉
y 〈2〉
left∃ 〈0, 1〉, 〈1, 1〉, 〈1, 2〉
left∀

TC∃ 〈0, 1〉, 〈0, 2〉,
〈1, 1〉, 〈1, 2〉

TC∀ 〈0, 1〉, 〈0, 2〉, 〈1, 2〉
sm 〈1〉

(a) (b)
ϕ TR(ϕ) ϕ TR(ϕ)
x(v) x(v) TC(v1, v2) TC∃(v1, v2)
¬x(v) ¬x(v) ¬TC(v1, v2) ¬TC∀(v1, v2)
f(v1, v2) f∃(v1, v2) n1 = n2 n1 = n2

¬f(v1, v2) ¬f∀(v1, v2) ¬n1 = n2 ¬n1 = n2 ∨ sm(n1)
(c)

Fig. 5. (a) Translation of an abstract state to a logical structure. (b)Ŝ2 - the translation
of S2 from Fig. 3 (c) Rules for translating a query formula to the vocabulary ofŜ

Theorem 3 Proof: (sketch)
The evaluation ofTR(ϕ) on Ŝ simulates the evaluation of aϕ on any concrete state

C s.t.(S, C) ∈ γ. Assume an assignmentvi 7→ ni satisfies a literalL(v1, ..., vk) in S′,
we shall see thatvi 7→ M(ni) satisfiesTR(L)(v1, ..., vk). Most cases are immediate
from the definition of̂S and the properties of the abstraction (Sect. 3.2). The only case
requiring further explanation isL ≡ ¬v1 = v2. Here we may chosen1 6= n2 s.t.
M(n1) = M(n2), but in this casesm(M(n1)) thus TR(L)(v1, v2) still evaluates



to true. Since an NNF formula has no negation outside of literals this is enough for
soundness. 2

Examples: The translation of (1) is∀v.∃w.x(w)∧(v = w∨TC∃(w, v)) which eval-
uates to true in̂S2 as expected. The translation of (2) is∀v, w.¬y(w) ∨ ¬left∀(v, w)
unfortunately this formula also evaluates to true. In some cases, including this one,
we can overcome this imprecision by an improved formula translationTR′(ϕ), as de-
scribed in [15].

6 Extensions

6.1 Loop Boundaries

Some programs temporarily violate the data structure invariants (including admissibil-
ity) and restore all within the boundary of a single loop iteration. We can handle such
programs with the same level of precision by only performingβ on loop boundaries.

6.2 Partial Join

Partial Join [17] replaces union as the join operator of the abstract domain with an
operator that merges matching states. We build a variant of the partial join operator
by ignoring the self-loops when giving canonical names to states. Matching states are
merged by performing union on the self-loops on nodes with the same canonical names.
The concretization function is modified to consider that some of the self-loops may not
represent concrete edges.

The focus operation needs to be updated according to the changes in the concretiza-
tion function. There are two changes in the algorithm: 1) There is no need to enumerate
the self-loops in the subgraph contracted to the summary node. 2) The case in which
the summary node represents a single node needs to be considered.

The experimental results (Sect. 7) show that Partial Join is important for perfor-
mance, while maintaining precision.

6.3 Cycles

The abstract domain can be extended to support cycles in the following limited way.
A directed cycle is admissible if there is a path from a variable that contains the entire
cycle and all the outgoing edges from all the nodes of this path are of the same edge type
(i.e. the cycle is a part of a singly-linked list). A state is admissible if all its undirected
cycles are actually admissible directed cycles. All the properties of the abstraction such
as the bounded abstract state size remain true for this extended class.

Focus andβ can be easily modified to support these cycles since an entire cycle can
never be contracted (since there has to be a node on each cycle that is either pointed to
by a variable or heap-shared). The subtleties come from two sources. One is the fact the
a self loop can now represent a concrete self-loop and not a summary node. This can be
easily solved by adding an extra bit per node indicating whether it is a summary node
or not and maintaining it in all the operations.

The second subtlety is in computation of canonical names, since without breaking
the cycles we may never be able to give a name to a node before traversing its children.
The solution is to mark the back-edges during the first DFS and ignore them in the
second DFS. At the end, we add their names to their incoming nodes.



6.4 Parent Pointers

The abstract domain can be extended to allow parent pointers (i.e., doubly linked lists
and trees with parent pointers) in the following limited way. Each node can use only a
single field as a parent pointer (specified by the user). Parent pointers are not considered
for contraction, heap-sharing or garbage (thus every node has to be reachable using
non parent-pointer fields). This means that exactly the same nodes will be contracted
whether parent pointers exist or not. Either all the nodes contracted to a summary have
the same parent pointer (in this case we say that the summary node has that parent
pointer) or none of them have it. If two nodes are contracted, all the parent pointers
incoming or outgoing from these nodes have to be the inverse of “real” reference fields
and the two nodes and the edge between them have to agree on the parent pointer (either
none have parent pointers, or all of them have the same parent pointer).

These limitations still allow us to handle doubly-linked lists and trees with parent
pointers as long as every node is reachable using “real” reference fields (i.e. there is a
pointer from the head of the doubly linked list or from the root of the tree). Specifically
we can handle all the doubly-linked list examples of [21].

To support this extension we make the following changes:
FocusThe only problem in the current focus is the fact that we can now traverse a

parent pointer into a summary node and, in this case, it does not necessarily lead to the
root of the sub-graph contracted to the summary node. The parent pointers within the
sub-graph are easy to handle since they are either the inverse of all the reference fields
in the sub-graph or none of them.

Beta Since the contractions ignore the parent pointers we only need to make sure
that the state is admissible. We update the current admissibility check to consider the
parent pointer limitation described above.

Updating the canonical names algorithm is simple as well.

7 Implementation

We have implemented the abstract transformer detailed above including the extensions
of Sect. 6. Focus was implemented only for linked lists and binary trees (i.e., up to two
self-loops). The implementation is written in Java and is integrated with the Soot Java
Optimization Framework [20] as a front end. The empirical results of running our anal-
ysis on some examples are given in Fig. 6. In all cases the analysis also proved absence
of memory leaks, acyclicity (where applicable) and absence of null-dereferences. N/A
states that the information for the example is not available for that tool and O/S means
that it is out of scope for the tool. Max states is the maximum number of states in each
program point. The columns marked with ”[R]” use the relational join as described
in Sect. 4. The columns marked with ”[P]” use the partial join extension described in
Sect. 6. The TVLA times given for tree manipulating algorithms use partial join as well.
The tests were made on an Intel Pentium M, 1.6 GHz with 1.00 GB of RAM.

The programs are explained in [15]. The “bubbleSort” and “bubbleSort2” are two
variants of an in-place bubble sort for linked lists analyzed by TVLA and [2] respec-
tively.

We can see that our analysis is indeed fast and in some cases up to 100 times faster
than the other analyses depicted. We should point out that most examples are small,
thus the differences in running times can be partially attributed to engineering issues.
Checking the properties detailed above for these examples is done automatically by
the system. To check other properties we need a way to extract information from the
abstract states. This is done by formula evaluation and is detailed in Sect. 5.



Programs Time[R] Max states[R]Time[P] Max states[P][2] TVLA [18]
deleteSortedTree2359.70 192355 3.22 520 O/S 47.48 O/S
insertSortedTree20.85 9365 0.55 264 O/S 1.8 O/S
lindstromScan 1459.63 79673 8.36 1337 O/S 65.86 O/S
insertRedBlack > 24 hours 38.15 4853 O/S N/A O/S
reverse 0.05 15 0.11 8 0.1 0.531 5
reverseCycle 0.24 159 0.26 62 0.1 N/A 2
merge 0.20 96 0.15 36 17.84.006 15
delete 0.02 20 0.01 12 0.9 1.242 7
bubbleSort 0.03 36 0.03 21 N/A 11.887N/A
bubbleSort2 0.08 76 0.08 33 11.4N/A N/A
insertSort 0.06 100 0.05 48 N/A 20.219N/A

Fig. 6. The empirical results from running the abstract transformer implementation

8 Related Work

Shape and heap analysis is a subject of active research with many interesting algo-
rithms including [10, 21, 13]. The TVLA system generalizes these algorithms and can
be utilized to implement our algorithm. Indeed, in this paper we followed the line of
research similar to the one in [8, 13, 12, 18] of developing a specialized shape analysis
for commonly used data structures.

We are very pleased with the ability of our method to compute the best transformers
in an efficient way. In contrast, TVLA can spend a lot of time in order to determine if an
abstract state is feasible. Indeed it can spend an exponential time even when there are no
resultant abstract states. The abstraction in this paper is tailored for an interesting set of
properties. A mechanism to support other properties (such as TVLA’s Instrumentation
Predicates) remains an interesting open problem.

Connection analysis [6] keeps reachability information between program variables.
Our work is more precise as it can perform strong updates for heap manipulation. Gram-
mar based abstraction [13] uses a restricted grammar to annotate summary nodes with
their possible shapes. The abstractions are incomparable since the grammar based ab-
straction can express invariants (such as binomial heap) that cannot be expressed in our
abstraction. On the other hand, the grammar based abstraction can deal with only a lim-
ited amount of sharing. For example, it cannot represent a tree with parent pointers and
a pointer arbitrarily deep into the tree.

The shape analysis of [5] is very similar to [18] both in the properties of the abstrac-
tion and in the programs handled.
Decision Procedures for Linked Data StructuresAn orthogonal line of research is
the development of decision procedures and theorem provers which support transitive
closure [1, 9, 14, 2]. Such techniques can be utilized with arbitrary abstractions.

In this paper, we developed direct methods for a specific abstraction. We are en-
couraged by the fact that our asymptotic complexity is lower than the above mentioned
procedures by orders of magnitudes. Moreover, our implementation is also faster by a
factor of 100 than the one reported in [2]3. The MONA System [11] can be used to
implement the operations in this paper. However, it has non-elementary complexity and
is in our experience infeasible for program with trees.

AcknowledgementsWe thank Noam Rinetzky and the anonymous CAV referees for
many helpful comments.

3 Our method also allows trees which are beyond the scope of [2].



References

1. I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate abstraction. InVMCAI,
pages 164–180, 2005.

2. J. Bingham and Z. Rakamaric. A logic and decision procedure for predicate abstraction of
heap-manipulating programs. Tech. Rep. TR-2005-19, Dept. of Comp. Sci., Univ. of BC,
Canada, 2005.

3. G. Bruns and P. Godefroid. Generalized model checking: Reasoning about partial state
spaces. InCONCUR, pages 168–182, 2000.

4. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InSymp.on
Princ.of Prog.Lang., pages 269–282, New York, NY, 1979. ACM Press.

5. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on separation logic.
In TACAS, pages 287–302, 2006.

6. R. Ghiya and L. Hendren. Putting pointer analysis to work. InSymp.on Princ. of Prog.
Lang., New York, NY, 1998. ACM Press.
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