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Abstract

The utility of including loops in plans has been long recognized by the plan-
ning community. Loops in a plan help increase both its applicability and the
compactness of its representation. However, progress in finding such plans has
been limited largely due to lack of methods for reasoning about the correct-
ness and safety properties of loops of actions. We present novel algorithms for
determining the applicability and progress made by a general class of loops of
actions. These methods can be used for directing the search for plans with
loops towards greater applicability while guaranteeing termination, as well as in
post-processing of computed plans to precisely characterize their applicability.
Experimental results demonstrate the efficiency of these algorithms. We also
discuss the factors which can make the problem of determining applicability
conditions for plans with loops incomputable.

Keywords: Automated planning, plans with loops, plan verification,
reachability in abacus programs, generalized planning

1. Introduction

The problem of planning in AI is to compute a plan, or a procedure which
can be executed by an agent to achieve a certain goal. This paper presents
methods which can be used for the computation of compact plans that resemble
computer programs with branches and loops.

In the classical formulation of AI planning, the agent’s state is assumed to
be completely observable, and effects of actions are assumed to be determined
entirely by this state. Classical plans consist of linear sequences of actions which
lead to a goal state from a particular initial state. Even in this restricted, de-
terministic formulation, the planning problem is PSPACE-complete (Bylander,
1994) when the input is specified in the STRIPS framework (Fikes and Nilsson,
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1971). More general formulations which allow the agent to possess only par-
tial information about its current state, and its actions to be non-deterministic
make the problem significantly harder (Rintanen, 2004). Consequently, numer-
ous approaches have been proposed for reusing sequences of actions computed
for related problems (Fikes et al., 1972; Hammond, 1986) and for computing
generalized plans which can be used to solve large classes of planning prob-
lems (Shavlik, 1990; Levesque, 2005; Winner and Veloso, 2007; Srivastava et al.,
2011a).

Approaches for generalized planning build extensively upon the power of
including loops of actions for representing cyclic flows of control in plans. Not
only are such constructs necessary when the input problem instances can be
unbounded in size, but they also allow significant reductions in plan sizes for
larger problems—particularly when contingent solutions are required in order
to deal with partial observability (Bonet et al., 2009; Srivastava et al., 2010b).
Plans with loops therefore present two very appealing advantages: they can be
more compact, and thus easier to synthesize, and they often solve many problem
instances, offering greater generality.

Loops in plans, however, are inherently unsafe structures because it is hard
(and even impossible, in general) to determine the general conditions under
which they will terminate and achieve their intended goals. It is therefore crucial
to determine when a plan with loops will be able to solve a given problem
instance. Unfortunately, there is currently very little understanding of when
the applicability conditions of plans with loops can even be computed, and if
so, whether this can be done efficiently. This limitation significantly impacts
the development and usability of approaches for finding generalized plans.

In this paper, we present methods for computing the conditions under which
a plan with a particular class of loops will terminate at a desired state. Our
approach elaborates and builds upon the ideas presented in (Srivastava et al.,
2010a). We further develop these ideas to identify more clearly the factors that
make the problem of determining termination of plans with loops difficult. We
also present new results for determining termination for a broader class of plans
with loops and illustrate how our methods can be applied.

We first formulate the notion of plans with loops using the concept of gen-
eralized planning problems introduced in prior work (Srivastava et al., 2008,
2011a). Solutions to such problems are expressed as generalized plans. Gener-
alized plans are rich control structures that include loops and parameterized or
“lifted” actions whose arguments must be instantiated during execution. These
notions are described in Section 2.

In spite of their expressiveness, a broad class of generalized plans can be
easily translated into abacus programs—formal models of computation that use
primitive actions, but are as powerful as Turing machines. Abacus programs
have finite sets of non-negative registers, and actions that may increment or
conditionally decrement these registers (Section 2.4). Abacus programs have
been shown to have a close relationship with numerical planning problems.
Helmert (2002) showed that abacus programs can be reduced to a class of plan-
ning domains over numerical variables where the goal conditions do not use
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numerical variables, but action preconditions include comparisons of these vari-
ables with zero and action effects increment or decrement these variables. This
leads to a negative result that the plan existence problem is undecidable for such
planning domains due to the undecidability of the halting problem for abacus
programs. In this work however, we present some positive results capturing
classes of abacus programs for which the halting problem is decidable.

Our approach for computing applicability conditions for plans with loops
is to first develop methods for computing the conditions under which a given
abacus program will reach a desired state. This is referred to as the reacha-
bility problem of abacus programs. Undecidability of the halting problem in
abacus programs implies that the reachability problem for abacus programs is
also undecidable in general. However, we show that certain classes of abacus
programs, categorized in terms of the graphical structure used to represent their
control flow, do have solvable reachability problems. We develop methods for
addressing the reachability problem of abacus programs in these classes.

These methods can be used to compute applicability conditions for a broad
class of generalized plans by translating them into abacus programs. Further-
more, the fact that this translation preserves the structure of the control flow
makes these methods applicable also in synthesis of “tractable” generalized
plans: during synthesis, we can choose to permit only those control structures
in generalized plans that would allow the computation of reachability condi-
tions upon translation to abacus programs. Prior work describes one possible
instantiation of this process in greater detail (Srivastava et al., 2011b). The
fundamental nature of abacus programs also makes our methods more generally
applicable to plans with loops that may not be expressed as generalized plans in
our representation, but which have suitable translations into abacus programs.

The following section develops the formal framework for the rest of the paper
and describes the connection between generalized plans and abacus programs.
We develop methods for solving the reachability problem for abacus programs
whose control flow only uses simple loops in Section 3. We then introduce a class
of nested loops in Section 4 and develop methods for addressing the reachability
problem for deterministic and non-deterministic abacus programs with this class
of nested loops in Section 5. Finally, we conclude with a demonstration of the
scope and efficiency of these methods.

2. Formal Foundations

In this work we consider loops of actions whose every iteration, during any
execution of the plan, will make measurable progress towards a goal. We call
such necessarily terminating loops, progressive. For example, in the blocks-
world, a loop of actions which in every iteration unstacks a block that is clear
but not on the table, makes incremental progress towards the goal of having all
blocks on the table. In contrast, a loop could also be used with actions that
need to be repeated until they succeed. For example, in order to pick up a
block using a slippery gripper, we need a loop that executes the pickup action
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until it succeeds. Plans with such loops are considered in strong cyclic plan-
ning (Cimatti et al., 2003) but are not the focus of this paper. Our motivation
for considering only progressive loops is to facilitate the computation of plans
with strong guarantees of termination and correctness in situations where the
number of objects to be manipulated is unknown.

To clarify these notions, we begin the formal description of our approach with
a brief summary of a recently proposed framework for generalized planning in
which progressive loops turn out to be very useful. This is followed by a descrip-
tion of our representation for generalized plans (Section 2.2). The latter half of
this section presents the formal definition of abacus programs (Section 2.4) and
some conditions under which we can view generalized plans as abacus programs
(Section 2.3).

2.1. Generalized Planning Problems

Intuitively, a generalized planning problem consists of a domain schema, a
set of initial states and a goal condition. A domain schema includes a predicate
vocabulary (the set of predicate symbols that can be used in formulas; constants
are represented as special unary predicates), a set of action operators and in-
tegrity constraints. We use first-order logic to represent domain schemas and
generalized planning problems. This allows us to represent planning domains
without referring to the specific objects that may occur in a particular gener-
alized planning problem. Further, a generalized planning problem may include
uncertainty about object quantities and properties. We refer the reader to prior
work for details (Srivastava et al., 2008, 2011a) and present the essentials below.

Definition 1. (Domain schema) A domain schema is a tuple D = 〈V,A,K〉
where V is a vocabulary, A is a set of actions expressed in first-order logic
with transitive closure (FO(TC)), and K is an integrity constraint expressed in
FO(TC).

Action Representation. For each predicate p that action a1 affects, the action
operator for a1 includes an expression of the following form, where p′ denotes
the predicate after action application:

p′(x̄) ≡ [¬p(x̄) ∧ ∆+
p,a(x̄)] ∨ [p(x̄) ∧ ¬∆−p,a(x̄)]

Here ∆+
p,a denotes the conditions under which predicate p is changed to true

on application of action a, and ∆−p,a denotes the conditions under which it is
changed to false. Intuitively, Eq. 2.1 states that p becomes true for a tuple iff
either (a) it was false and action a changes it to true, or, (b) it was already true,
and is not removed by action a. This representation is similar to frame axioms
in situation calculus (Levesque et al., 1998). To compute the effect of an action
on a given state, for each affected predicate p we evaluate the truth of the RHS
of Eq. 2.1 on the given state.

We define a generalized planning problem as follows:
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Definition 2. (Generalized planning problem) A generalized planning problem
is a tuple 〈α,D, γ〉 where α is an FO(TC) formula describing the possible initial
states, D is the domain schema, and γ is an FO(TC) formula specifying the
goal states.

2.2. Generalized Plans

We represent generalized plans using graphs. We provide a brief illustration
of the main features of this representation here and refer the interested reader
to prior work for further details (Srivastava et al., 2011a).

Definition 3. (Graph-based generalized plan) A graph-based generalized plan
Π = 〈V,E, `, s, T 〉 is defined as a tuple where V and E are respectively, the
vertices and edges of a finite connected, directed graph; ` is a function mapping
nodes to actions and edges to conditions represented as linear inequalities; s is
the start node and T a set of terminal nodes.

The edge conditions in graph-based generalized plans are represented as
linear inequalities over the number of objects that satisfy certain properties
(unary predicates). The interested reader is referred to (Srivastava et al., 2011a)
for details. Fig. 1 shows a simple generalized plan for a transport problem, where
a single truck incrementally loads an object from location L1, drives to L2 and
unloads the object. The predicate vocabulary in this example consists of the
unary predicates obj(x) denoting that x is an object to be transported; atLi(x)
denoting that x is at Li, where i ∈ 1, 2; and inT(x), denoting that x is in the
truck. The start and terminal nodes for this plan are labelled with dummy
Start() and Stop() actions. Most edges have the default edge condition, “True”.
The two non-True edge conditions use the number of objects that satisfy the
predicates obj and atL1 (denoted as #{obj, atL1}). These two edge conditions
depend on whether or not the cardinality of the set of objects at L1 is equal to
0.

The execution of a generalized plan begins at the start node and continues
along edges whose conditions are satisfied by the world state resulting from the
last action’s application. Fig. 1 also lists the changes in cardinalities of certain
predicate combinations. These changes are significant to the translation from
plans to abacus programs and we will revisit them in the next section.

This example illustrates how a generalized plan may use choice actions to
select arguments for subsequent actions. Choice actions select an object which
satisfies a given formula in first-order logic, and assign it to a constant used in
action update formulas. Intuitively, if multiple objects satisfy a formula used
in a choice action, the generalized plan is considered to solve a problem iff all
executions of the plan with all choices of the qualifying objects will solve the
problem.

2.3. Cardinality Changes in Generalized Plans

The generalized plan in Fig. 1 is annotated with the changes in cardinalities
of various properties. The class of possible properties whose cardinalities are
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Start() choose c: obj(c)

atL1(c)

#{obj, atL1}−−

#{obj, atL1, inT}++
#{obj, atL2, inT}++
#{obj, atL1, inT}−−

#{obj, atL2}++

#{obj, atL2, inT}−−

loadT(c) moveTL2() unloadT()

moveTL1()

#{obj, atL1}>0

Stop()

#{obj, atL1}=0
Cardinality changes:

Figure 1: A generalized plan for transporting objects from L1 to L2.

kept track of can be specific to a particular approach for generating generalized
plans. We consider the special case where the space of possible properties is the
powerset of all unary predicates in the domain. More precisely, we define the
role of an element in a state to be the set of unary predicates that it satisfies
(e.g., {obj, atL1}). The role-count of a role (e.g., #{obj, atL1}) in a state
denotes the cardinality of that role, or the number of elements that satisfy that
role. Thus, in Fig. 1, the cardinality changes indicate that the loadT(c) action
decrements the number of objects at L1 by one and increments the number of
objects at L1 and in the truck by one.

In the following development we will utilize two crucial aspects of cardinality
changes that are demonstrated in Fig. 1:

1. Action branches in the plan (nodes with out-degree greater than 1) are dis-
tinguished by inequalities between a constant (zero) and the cardinalities
of certain properties.

2. The changes due to actions on these cardinalities are deterministic. Every
possible execution of a particular action node in the plan leads to the same
change in the cardinality.

In fact, these aspects are fundamental to computation—as we will see in the
next section, some form of such cardinality changes can be used to express any
plan with loops.

In prior work we showed how generalized plans could be computed together
with such cardinality changes in a wide class of domains (Srivastava et al.,
2011a). This class includes all PDDL-like domains that use only unary predi-
cates in their vocabulary and a particular class of domains with binary predi-
cates, defined as extended-LL domains. In that work, action branches depend on
comparisons between role-counts and the constant 1, while we use the constant 0
in this paper. The two representations are equivalent however and plans can be
easily translated from one to the other (Srivastava, 2010). Another direction of
study, which we defer to future work, would be to identify the changes caused
by each action node on a selected group of cardinalities, given an arbitrary
generalized plan.
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The main insight of this paper is that we can effectively determine the ap-
plicability of a generalized plan by looking only at the effect of each action
on the cardinalities that determine action branches. Thus, we can reduce a
generalized plan into a simpler structure whose actions increment or decrement
non-negative integer valued variables, and whose action branches depend on the
values of these variables. Such structures are known as abacus programs and
are described formally in the next section.

Viewing generalized plans as abacus programs allows us to study more easily
the conditions under which a particular sequence of action branches will be taken
during an execution. This in turn allows us to compute the conditions under
which the execution of a generalized plan will lead to a desired state in the plan.
In most applications this state will be one that can only be reached when the
world state satisfies a goal condition (recall that a generalized plan’s edges are
labelled with conditions on world states). In such configurations our methods
will compute the conditions under which a generalized plan will terminate in
a finite number of steps and achieve the goal. A domain can also be designed
so that the non-occurrence of an undesirable property is included as a part of
the goal formula—in which case, goal reachability will also ensure that unsafe
situations do not occur.

2.4. Abacus Programs

We now introduce the formal framework of abacus programs (Lambek, 1961).
Abacus programs are finite automata whose states are labeled with actions that
increment or decrement a fixed set of registers.

Definition 4. (Abacus programs) An abacus program 〈R,S, s0, sh, `〉 consists
of a finite set of non-negative, integer-valued registers R, a finite set of states
S with special initial and halting states s0, sh ∈ S and a labeling function ` :
S \ {sh} 7→ Act. The set of actions, Act, consists of actions of the form:

• Inc(r, s): increment r ∈ R; goto s ∈ S, and

• Dec(r, s1, s2): if r = 0 goto s1 ∈ S else decrement r and goto s2 ∈ S

We represent abacus programs as bipartite graphs with edges from nodes
representing control states to nodes representing actions and vice-versa. In
the rest of this paper, we will use the term “state” in connection with abacus
programs to refer to a node that represents a control state and the term “action”
to refer to a node that represents an action. “Node” will be used as a more
general term, only in situations where the type of the label of the node is
irrelevant to the property being discussed. States have at most one outgoing
edge and actions have at most two outgoing edges; the two edges out of a
decrement action are labeled = 0 and > 0 respectively (see Fig. 2).

Given an initial valuation of its registers, the execution of an abacus program
starts at s0. At every step, an action is executed, the corresponding register
is updated, and a new state is reached. An abacus program terminates iff its

7



S2

S1

{r }  2

S3

{r }  1

>0 =0

Figure 2: A simple abacus machine for the program: while (r1 > 0) { r1 −−;r2 + +}

execution reaches the halt state. The set of final register values in this case is
called the output of the abacus program.

Abacus programs are equivalent to Minsky Machines (Minsky, 1967), which
are as powerful as Turing machines and thus have an undecidable halting prob-
lem:

Fact 1. The problem of determining whether an abacus program will reach the
halt state starting with a given set of initial register values is undecidable.

Nevertheless, we identify in this paper a general class of abacus programs
for which the halting problem is decidable.

As discussed in the previous section, our approach for determining the util-
ity and applicability conditions of plans with loops is to view them as abacus
programs. However, the abacus program framework is restrictive from this
point of view: it does not include non-deterministic actions. In planning on
the other hand, non-deterministic sensing actions are common. We need a way
to effectively translate them into the abacus framework, without changing the
loop structure. For this purpose, we extend the abacus program framework by
adding the following non-deterministic form of action to Def. 4:

Definition 5. (Non-deterministic abacus programs) Non-deterministic abacus
programs are abacus programs whose set of actions, Act, includes, in addition
to the Inc and Dec actions, non-deterministic actions of the form:

• NSet(s1, s2): non-deterministically go to s1 ∈ S or go to s2 ∈ S.

where S is the set of states of the abacus program.

A non-deterministic action thus has two outgoing edges in the graph repre-
sentation. Either of these branches may be taken during execution. Although
the original formulation of abacus programs is sufficient to capture any compu-
tation, these actions will allow us to conveniently translate plans with loops for
non-deterministic domains into abacus programs.

3. Applicability Conditions for Deterministic Simple-Loop Abacus
Programs

We now show that for any simple-loop abacus program, we can efficiently
characterize the exact set of register values that lead not just to termination,
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but to any desired “goal” state defined by a given set of register values (Theorem
1). We only consider deterministic actions in this section; the case for simple
loops with non-deterministic actions is analogous and can also be handled as a
special case of the methods presented in Section 5.2 for a more general class of
loops. Recall that a non-trivial strongly connected component is one which has
more than one node.

We define simple-loop abacus programs as follows:

Definition 6. (Simple-loop abacus programs) A simple loop in a graph is a
strongly connected component consisting of exactly one cycle. A simple-loop
abacus program is one all of whose non-trivial strongly connected components
are simple loops.

Let S1, a1, . . . , Sn, an, S1 be a simple loop (see Fig. 3). We denote register
values at states using vectors. For example, R̄0=〈R0

1, R
0
2, . . . , R

0
m〉 denotes the

initial values of registers R1, . . . , Rm at state S1. Let a(i) denote the index of
the register potentially changed by action ai. Since these are abacus actions,
if there is a branch at ai, it will be determined by whether or not the value of
Ra(i) is greater than or equal to 0 at the previous state.

We use subscripts on vectors to project the corresponding registers, so that
the initial count of action ai’s register can be represented as R̄0

a(i). Let ∆i denote
the vector of changes in register values R1, . . . , Rm for action ai corresponding
to its branch along the loop. For any action, this change vector has 0’s in
all dimensions except possibly for the register index that the action affects,
where the change can be +1,−1, or 0 (corresponding to an “= 0” branch of a
decrementing action). Let a linear segment of an abacus program be a distinct
sequence of states and actions, S1, a1, S2, a2, . . . , an−1, Sn, such that Si has an
edge to ai and ai has an edge to Si+1 in the program. Let ∆1..i = ∆1 + ∆2 +
· · · + ∆i denote the register-change vector due to a sequence of abacus actions
a1, . . . , ai. Given a linear segment of an abacus program, we can easily compute
the preconditions for reaching a particular register value and state combination:

Proposition 1. Suppose S1, a1, S2, a2 . . . , Sn is a linear segment of an abacus
program where Si are states and ai are actions. Let F̄ be a vector of register
values (constants and/or variables). A set of necessary and sufficient linear
constraints on the initial register values R̄0 at S1 can be computed under which
Sn will be reached with register values F̄ .

Proof. We know F̄ = R̄0 + ∆1..n, if the linear segment is executed until Sn.
However, we need to determine the conditions under which flow of control will
not take a branch leading out of this linear segment. Since the sequence of
actions is known, register values at each state Si can be represented in terms of
R̄0. More precisely, the register vector before action ai (at Si−1) is R̄+ ∆1..i−1.
The condition for taking the > 0 branch of ai can therefore be expressed as (R̄+
∆1..i−1)ai

> 0. A conjunction of such expressions for each decrementing action
in the given linear segment constitutes the necessary and sufficient conditions
(by induction on the length of the linear segment). This conjunction can be
computed in time linear in the length of the input segment.
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Figure 3: A simple loop with (right) and without (left) shortcuts

Proposition 2. Suppose we are given a simple loop, S1, a1, . . . , Sn, an, S1, of an
abacus program. Then in O(n) time we can compute a set of linear constraints,
C(R̄0, F̄ , `), that are satisfied by initial and final register tuples, R̄0, F̄ , and
natural number, `, iff starting an execution at S1 with register values R̄0 will
result in ` iterations of the loop, after which we will be in S1 with register values
F̄ .

Proof. Consider the action a4 in the left loop in Fig. 3. Suppose that the con-
dition that causes us to stay in the loop after action a4 is that Ra(4) > 0. Then
the loop branch is taken during the first iteration starting with fluent-vector R̄0

if (R̄0 + ∆1..3)a(4) > 0. For one full execution of the loop starting with R̄0 we
require, for all i ∈ {1, . . . , n}:

(R̄0 + ∆1..i−1)a(i) ◦ 0

where ◦ is one of {>,=} corresponding to the branch that lies in the loop; (this
set of inequalities can be simplified by removing constraints that are subsumed
by others). Since the only variable term in this set of inequalities is R̄0, we
represent them as LoopIneq(R̄0). Formally, for any vector of register values R̄
and a given simple loop sl, we define LoopIneq as follows:

LoopIneqsl(R̄) = ∧ni=1{(R̄+ ∆1..i−1)a(i) ◦ 0}

where in the ith inequality, ◦ is the inequality on the branch following action a(i)
that is in the loop. We omit the subscript sl where it is clear from the context.
Let R̄` = R̄0 +`×∆1..n, the register vector after ` complete iterations. Thus, for
executing the loop completely ` times, the required condition is LoopIneq(R̄0)∧
LoopIneq(R̄`−1). This conjunction ensures that the conditions for execution of
intermediate loop iterations hold, because the changes in register values due
to actions are constant, and the expression for R̄`−1 is linear in them. These
conditions are necessary and sufficient since there is no other way of executing
a complete iteration of the loop except by undergoing all the register changes
and satisfying all the branch conditions.
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Hence, the necessary and sufficient conditions for achieving the given register
value after ` complete iterations are:

C(R̄0, F̄ , `) ≡ LoopIneq(R̄0) ∧ LoopIneq(R̄`−1) ∧ (F̄ = R̄`).

The inequality for each action is of constant size because it concerns a single
register. The total length of all the inequalities is O(n) and as described above
they can be computed in a total of O(n) time.

An exit during the first iteration amounts to a linear segment of actions and
is handled by Prop. 1. Instead of non-negative integers, each component of F̄
may be an algebraic expression representing the register values which make a
subsequent state in the abacus program reachable. These expressions may be
derived from reachability computations for subsequent segments of the abacus
program. More precisely, the precondition for reaching the goal by executing a
segment Πj of a simple loop abacus program will be expressed in terms of the
register vector at the start of Πj (say R̄j). Representing the precondition for
reaching F̄ by executing an abacus program Π starting with the register vector
R̄0 as preΠ(R̄, F̄ ), the precondition for reaching the goal by executing a segment
Π2 followed by Π1 is computed as preΠ2

(R̄2, R̄1) ∧ preΠ1
(R̄1, F̄ ). Here the final

register vector for preΠ2
is the vector of variables, R̄1. This process is similar

to regression (Reiter, 2001) but it applies to plans with loops of actions rather
than acyclic plans. The following example illustrates these points.

Example 1. The abacus program shown in Fig. 4 can be used to divide the value
of a register by 2. Suppose the initial register vector is R̄0 = 〈r0

1, r
0
2〉. The total

change vector due to one iteration of the loop is ∆1..3 = 〈−2,+1〉. LoopIneq(R̄0)
for this loop is r0

1 > 0 ∧ r0
1 − 1 > 0; LoopIneq(R̄`−1) ≡ r0

1 + (` − 1) · (−2) >
0 ∧ r0

1 + (`− 1) · (−2)− 1 > 0.
To obtain conditions for reaching S2 via the exit from action a1 we include

the condition that the value of r1 must be zero before the last application of a1:
r0
1 + (` − 1) · (−2) = 0. In general, this condition can be computed by treating

the last, partial iteration of the loop required to reach an exit node (action a1 in
this case), as a linear segment in an abacus program.

Therefore, reachability conditions for S2 via a1 with at least one iteration of
the simple loop are: r0

1 > 0 ∧ r0
1 − 1 > 0 ∧ r0

1 = 2(`− 1), where ` represents the
number of loop iterations. The final register vector at S2 will be F̄ = 〈0, r0

2 +
` − 1〉(= 〈0, r0

2 + r0
1/2〉). The conditions for reaching S2 via a1 during the

first iteration are: r0
1 = 0; F̄ = 〈0, r0

2〉. Therefore, the necessary and sufficient
conditions for reaching S2 with register vector F̄ via a1 are: Ra1 ≡ {` > 0∧r0

1 =
2(` − 1) ∧ F̄ = 〈0, r0

2 + ` − 1〉} ∨ {r0
1 = 0 ∧ F̄ = 〈0, r0

2〉}. If we include the
condition that the final value of r2 must be r0

1/2, we get r0
2 = 0. In other words,

if r0
2 = 0 and r0

1 is even, then r2 will be r1/2 at S2. Reachability conditions for
S2 via a2 can be computed similarly and capture the case when r0

1 is odd. Here,
we get Ra2 ≡ {` > 0∧r0

1 = 2`+1∧ F̄ = 〈0, r0
2 +`〉} ∨ {r0

1 = 1∧ F̄ = 〈0, r0
2〉}.

The complete reachability conditions for S2 are Ra1
∨ Ra2

. If another segment
of the program led to S1, variables r0

i could be used as the components of the
final register vector for precondition computation over that segment.

11



=0

1

S4

a :  1 {r − −}  1

a :  3 {r ++}  2

a :  2 {r − −}  1

S2

S3

>0

>0

=0

S

Figure 4: An abacus program for inte-
ger division by 2

When used in combination with Prop. 1,
the method described above produces the
necessary and sufficient conditions for reach-
ing any state and register value in an abacus
program:

Theorem 1. Let ΠA be a simple-loop aba-
cus program. Let S be any state in the
program, and F̄ a vector of register values.
We can then compute a disjunction of lin-
ear constraints on the initial register values
that is a necessary and sufficient condition
for reaching S with the register values F̄ .

Proof. Since ΠA is acyclic except for simple
loops, it can be decomposed into a set of segments starting at the common
start-state, but consisting only of linear paths and simple loops. One approach
for carrying out this process is to first collapse every simple loop in the graph
of the abacus program into a “super node”. All edges ending or beginning at
a node in a simple loop are changed to end or begin respectively, at the super
node that replaced the simple loop. The resulting graph will be acyclic and
we can compute all linear paths leading from the start state to the desired
state. In each such path, we replace the super nodes with their corresponding
simple loops. During this process, we re-attach the edges from neighbours of
the super node to the original nodes that they were attached to. By Prop. 1
and 2, necessary and sufficient conditions for each of these segments can be
computed. The disjunctive union of these conditions gives the desired necessary
and sufficient condition. In the worst case, the total size of the disjunction could
be exponential in the number of nodes in the graph.

4. Nested Loops Due to Shortcuts

Due to the undecidability of the halting problem for abacus programs, it
is impossible to find preconditions of abacus programs with arbitrarily nested
loops. The previous section demonstrates, however, that structurally restricted
classes of abacus programs admit efficient applicability tests.

In this section, we show that methods developed in the previous section can
be extended to a class of graphs representing nested loops obtained by adding
unidirectional paths, or shortcuts to a simple loop. We first define the general
class of non-simple loops as follows:

Definition 7. (Complex loops) Let A be an abacus program. A complex loop
in A is a non-trivial strongly connected component that is not a simple loop.

In particular, we will be interested in a special class of complex loops, i.e.,
those obtained by adding “shortcuts” in a simple loop:

12
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Figure 5: Many “nested” loops encountered in programming can be viewed as simple loops
with shortcuts by distinguishing the loop-orienting node from the loop entry node. In this
example, the linear path from a1 to j < k can be treated as a linear segment, followed by a
simple loop with shortcuts.

Definition 8. (Simple loop with shortcuts) Let A be an abacus program. A
simple loop with shortcuts in A is a strongly connected component C which in-
cludes a node n0, designated the loop-orienting node, such that removing n0

makes C acyclic.
We say that an abacus program has only simple loops with shortcuts if all

its strongly connected components are simple loops with shortcuts.

Note that a loop-orienting node may be labelled with either an action or a
state. Intuitively, such a simple loop with shortcuts consists of a simple loop
with all elements, starting at the loop-orienting node, in increasing linear order.
For any pair of nodes along the loop, a preceeding b, a shortcut from a to b
may be added; different shortcuts may overlap as long as this does not create
cycles. (e.g., state S2 can be designated the loop-orienting node in Fig. 3). The
loop-orienting node does not have to be the node through which the flow of
control enters a simple loop with shortcuts. Indeed, if we wish to determine
the preconditions with respect to a node other than the loop-orienting node
as the “entry” node for a given simple loop with shortcuts, we first find the
preconditions with respect to the loop-orienting node as the entry node and
then propagate these conditions back along the acyclic path(s) connecting the
entry node to the loop-orienting node (by Theorem 1 as applied to an acyclic
segment of the abacus program).

Simple loops with shortcuts form a very general class of complex loops:
graph theoretically, this is exactly the class of strongly connected components
with cycle rank 1 (Eggan, 1963). Many control flows that are typically un-
derstood as “nested” loops in programming can be represented as simple loops
with shortcuts by choosing an appropriate loop-orienting node. Fig. 5 shows an
example. Further, for abacus programs we show in Section 4.1 that this class of
graphs is powerful enough to express any computation.

The advantage of this class of loops is that we can decompose them into
simple loops; in the definition below, a cycle has no repeated states other than
the start and end states.

Definition 9. (Loop decomposition) Let A be an abacus program and let C a
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strongly connected component of A in the form of a simple loop with shortcuts,
with the loop-orienting node n0. The loop decomposition of C is defined as the
set of all cycles of C beginning with n0.

In the worst case, the size of this decomposition can be exponential in the
number of shortcuts. This construction proves useful because in a simple loop
with shortcuts, every cycle must contain the loop-orienting node (this is im-
mediate from Def. 8). Thus, the execution of a simple loop with shortcuts in
an abacus program can be viewed as a sequence of complete executions of the
simple loops in its decomposition. For instance, we can view the loop with
shortcuts in Fig. 3 as consisting of 3 different simple loops. The order of execu-
tion of these loops, and whether a given loop will be executed at all, will depend
on the results of actions a3 and a5.

We now define a special class of simple loops with shortcuts for abacus
programs. In the next section we present methods for finding preconditions of
such programs.

Definition 10. (Monotone simple loops with shortcuts) Let the net change on
a register due to a simple loop in an abacus program be the total change that
will be caused on that register in one full execution of the loop. A simple loop
with shortcuts in an abacus program is monotone iff for every register, the sign
(positive or negative) of the net change, if any, on that register is the same for
every simple loop in its decomposition.

In the next section we show that removing this restriction can signficiantly
increase the power of abacus programs: any abacus program can be represented
as a program consisting of a simple loop with possibly nonmonotone shortcuts.

4.1. Relaxing Monotonocity

We now consider the problem of computing the preconditions of an abacus
program with simple loops with shortcuts that need not be monotone. As noted
earlier, in terms of computational expressiveness this class is very powerful. We
show below that any abacus program can effectively be represented as a program
consisting of one simple loop with shortcuts.

Theorem 2. Let Πg be an abacus program with Rg, Ng and Eg as the sets of
registers, nodes and edges respectively. Then there exists an equivalent abacus
program, ΠS with RS(⊇ Rg), NS(⊇ Ng), and ES as the sets of registers, nodes
and edges respectively, such that:

1. ΠS consists of one simple loop with shortcuts.

2. Execution of Πg with an initial register vector R̄init is equivalent to that of
ΠS with an initial vector R̄′init: a node n ∈ Ng is reachable with a register
vector R̄f in Πg iff it is reachable in ΠS with a register vector R̄′f which

matches R̄f on all the registers from Rg.
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Figure 6: Construction for translating a general abacus program into one with a simple loop
with shortcuts.

Proof. In order to construct ΠS , we add a new flag register li for each ni ∈ Ng.
The values of these flag registers will never rise above 1; at any stage during
execution, at most one of the flag registers will be non-zero. We will use these
flags to translate edges from Πg into a set of “case statements” starting with a
common, new start state.

Construction of ΠS. Let n0 → a0, a0 → n1, a0 → n2 be a set of edges corre-
sponding to a single (decrementing) action a0 in Πg. We translate this sequence
into a sequence beginning with the action decrementing l0. The > 0 branch
from this action represents the case that we were at state n0. This branch will
lead to the node for a0; the two branches from a0 lead to actions incrementing l1
and l2, corresponding to the branches that lead to n1 and n2. The construction
is illustrated in Fig. 6. The translation is similar for incrementing actions. To
get ΠS , we perform this construction for the edges corresponding to each action
in Πg in this manner and attach the each resulting graph to the = 0 branch
of the last flag decrementing action, as shown in Fig. 6. The resulting abacus
program ΠS consists of one simple loop with shortcuts.

Computation of R̄′init. The initial values for all the original registers Rg are
the same as those in R̄init; the flag register corresponding to Πg’s start state is
initialized as 1 and all the other flag registers are initialized as 0.

By construction, executing an action on a register vector leads to a node
ni in Πg iff executing that action on the extended register vector with all flag
variables zero (note that the flag-testing action also decrements the only non-
zero flag to zero) leads to li, and subsequently, ni in ΠS . By induction on path
lengths, we therefore have the result that a node ni is reachable from R̄init in
Πg iff it is reachable from R̄′init in ΠS .

Simple loops with non-monotone shorcuts are therefore sufficient to capture
the power of Turing machines:

Corollary 1. The class of abacus programs whose strongly connected compo-
nents are simple loops with shortcuts is Turing-complete.
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Removing the condition of monotonicity therefore makes the problem of
computing preconditions of abacus programs with simple loops with shortcuts
unsolvable. Currently, there are no intermediate characterizations of simple
loops with shortcuts that bridge the gap between monotone shortcuts, where
this paper demonstrates the existence of efficient methods for finding precon-
ditions, and non-monotone loops where the problem becomes undecidable. An
important direction for future work is to identify useful, yet tractable gener-
alizations of the notion of monotonicity where reachability conditions can be
computed.

5. Applicability Conditions for Monotone Simple Loops with Short-
cuts

We now consider the problem of computing applicability conditions for mono-
tone simple loops with shortcuts. We first present the more specific case of pro-
grams with deterministic actions. In the following section we present methods
for computing reachability conditions for abacus programs with non-deterministic
actions.

5.1. Deterministic Monotone Shortcuts

We address the problem of determining whether a program will terminate
with a given register vector by designing an algorithm which takes as input
an initial register vector, and provides a yes/no answer. More precisely, the
algorithm will efficiently compute the final register vector for the given initial
register vector. Without loss of generality, we consider this problem in the
setting where we have a single simple loop with shortcuts and the start state
for the program is the loop-orienting node of this loop.

Our approach relies on the following observations:

1. Because of monotonicity, if a loop is executed for a certain number of
iterations and then exited, flow of control will never return to that loop.

2. For any given configuration of register values with which a loop-orienting
node is reached, at most one of the simple loops in the given loop’s decom-
position may be completely executable. This is because if multiple simple
loops can be executed starting from a given register value configuration,
then at some action in the program, it should be possible for the control
to flow along more than one outgoing edge. However, this is impossi-
ble because every action which has multiple outcomes (a decrementing
action) has exactly two branches, whose conditions are always mutually
inconsistent.

As a consequence of the second observation, given such an abacus program
and an initial register vector, we can compute the first loop which will be ex-
ecuted and the number of iterations for which it will be executed (the precise
method for computing this is described below); we can then remove this loop
from consideration because of the first observation and repeat the process. This
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Algorithm 1: Reachability for deterministic, monotone shortcuts

Input: Deterministic abacus program in the form of a simple loop with
monotone shortcuts with loop-orienting node (say the state Sstart), an
initial register configuration R̄0

Output: Sequence of (loop id, #iterations) tuples and final value of R̄ at
Sstart.

R̄← R̄01

Iterations ← empty list2

LoopList ← simple loops in the loop decomposition3

while LoopList 6= ∅ do4

if no ` ∈ LoopList satisfies LoopIneq`(R̄) then5

Return Iterations6

end
`← id of loop for which LoopIneq`(R̄) holds7

Remove ` from LoopList8

`max ← FindMaxIterations(R̄, `)9

if `max =∞ then10

Return “Non-terminating loop”
end
Iterations.append((`, `max))11

R̄← R̄ + `max∆`
12

end

Return Iterations, R̄13

can be continued until no loop can be executed completely. When this process
terminates, we get the sequence of loops and the number of iterations of each
that must be executed before exiting the given simple loop with shortcuts.

Taking an initial register valuation as input, Alg. 1 perfoms these computa-
tions. Let ΠA be an abacus program in the form of a simple loop with monotone
shortcuts and only deterministic actions. Alg. 1 works by identifying the unique
loop ` whose LoopIneq` is satisfied by the value R̄ (initialized to R̄0) [steps 5-8],
calculating the number of iterations which will be executed for that loop until
LoopIneq` gets violated [step 9], updating the register values to reflect the effect
of those iterations [step 12] and identifying the next loop to be executed [the
while loop, step 4].

The subroutine FindMaxIterations uses the inequalities in LoopIneq` (see
Prop. 2) to construct the vector equation (R̄ + `max∆` + ∆1..i−1)a(i) ◦ 0 for
every action in loop `. This system of equations consists of an inequality of the
following form for every i corresponding to a decrementing action in the loop:

`max < (R̄a(i) + ∆1..i−1
a(i) )/∆`

a(i)

Since R̄ is always known during the computation, the floor of minimum of
the RHS of these equations for all i yield the largest possible value of `max.
Equality constraints either drop out (if the net change in their register’s value
due to the loop ` is zero and they are satisfied during the first iteration), or
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set `max = 1 (if the net change in their register’s value is not zero, but it is
satisfied during the first iteration). Equality constraints will be satisfied when
FindMaxIterations is called because we know that LoopIneq` was satisfied. Note
that if there is any loop which does not decrease any register’s value, it will never
terminate. This will be reflected in our computation by an `max value of∞ [step
11]. Thus, we have:

Theorem 3. Given a deterministic abacus program Π in the form of a simple
loop with monotone shortcuts, a loop-orienting node representing state S, and
an initial register vector R̄0, Alg. 1 returns the number of times each simple
loop in Π’s decomposition will be executed, the register vector at S after all
these iterations as well as the order of execution of the simple loops in the loop
decomposition of Π.

Depending on the rest of the abacus program, the final register vector ouput
by Alg. 1 can be used as the initial register vector for determining the reacha-
bility of a subsequent state with a desired register vector.

Complexity Analysis. Let b be the maximum number of branches in a loop in
the decomposition of the given simple loop with shortcuts, and L the total
number of simple loops in the decomposition. The most expensive operation in
this algorithm is step 5, where R̄ is tested on every loop’s inequality (these loop
inequalities only need to be constructed once). Step 5 is executed in O(Lb) time
and step 9 in O(b) time. The entire loop may be executed at most L times,
resulting in a total execution time of O(L2b). On the other hand, if such a
program is directly applied on a problem instance and the program terminates,
then the execution time for the program will be of the order of the largest input
register value, which is unbounded.

5.2. Non-deterministic Monotone Shortcuts

We now consider the problem of computing applicability conditions for aba-
cus programs whose simple loops have monotone shortcuts with non-deterministic
actions. We presented methods for extending the approach of creating general-
ized plans with cardinality changes (summarized in Section 2) to this setting in
prior work (Srivastava et al., 2010b).

We will find that the accuracy of the reachability conditions that we compute
is determined by order independence (Def. 11), or the extent to which the execu-
tion of different loops in the decomposition of a simple loop with shortcuts can
be rearranged without significantly affecting the overall outcomes. The methods
discussed in this section can also be applied to settings with only deterministic
actions—yet, simple loops with shortcuts in most such situations demonstrate
order dependence. Therefore, reachability conditions obtained in this manner
will tend to be subsumed by those computed using methods from Section 5.1.

Suppose an abacus program Π is a simple loop with shortcuts which can
be decomposed into m simple loops with the loop-orienting node representing
a state, Sstart (analysis for the case where the loop-orienting node is labelled
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with an action is analogous). We consider the case of l complete iterations of
Π counted at its loop-orienting node, with k1, . . . , km representing the number
of times loops 1, . . . ,m are executed, respectively. The final, partial iteration
and the loop exit can be along any of the simple loops and can be handled as a
linear program segment. Then,

k1 + . . .+ km = l. (1)

Determining Final Register Values. We denote the ith loop in the decomposition
of the given simple loop with shortcuts as loopi. The final register values after
the l =

∑m
i=1 ki complete iterations (provided that these iterations are indeed

executed without exiting the simple loop with shortcuts) can be obtained by
adding the changes due to each simple loop, with ∆loopi denoting the change
vector due to loopi:

F̄ = R̄0 +

m∑
i=1

ki∆
loopi (2)

Cumulative Branch Conditions. For computing sufficient conditions on the achiev-
able register values after k1, . . . , km complete iterations of the given loops, our
approach is to treat each loop as a simple loop and determine the preconditions
for executing it. Note that every required condition for a loop’s complete iter-
ation stems from a comparison of a register’s value with zero. We consider the
case where the conditions required for staying in the loop are always > 0 and
discuss the situation with equality constraints in the following section (“Accu-
racy of the Computed Conditions”). Thus, we want to determine the lowest
possible value of each register during the k1, . . . km iterations of loops 1, . . . ,m,
and constrain that value to be greater than zero.

LetR+,R− be the sets of registers undergoing net non-negative and negative
changes respectively, by any loop. The sequence of actions in an iteration of
a simple loop may first decrease a register and then increase it. Through this
process, the net decrease in a register due to one full iteration of a simple loop
may be smaller than the greatest decrease that it underwent due to a an initial
segment of the loop. We denote the change due to an initial segment (w.r.t. the
loop-orienting node) of a simple loop on a register as a partial change due to
that loop on that register. Let δij be the greatest partial negative change caused
on Rj by loopi. Let min(j) = argminx{δxj : x ∈ {1, . . . ,m}}.

For Rj ∈ R+, the lowest possible value is R0
j + δ

min(j)
j , since the value of Rj

can only increase after the first iteration. The required constraint on Rj ∈ R+

therefore is R0
j + δ

min(j)
j ≥ 0 (we require “≥ 0” because the condition “> 0” on

an edge refers to the register value before a decrement takes place).
We now compute a lower bound on the least value of Rj that can be achieved

with k1, . . . km iterations of loops 1, . . . ,m respectively.

Lemma 1. In any execution of k1, . . . , km iterations of loops 1, . . . ,m, the

value of register Rj can never fall below R0
j +
∑m

i=1 ki∆
loopi
j +δ̂j−∆

loop̂

j , where

̂ = argminx{δxj −∆
loopx
j : x ∈ {1, . . . ,m}}.
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Proof. Suppose the last loop to be executed is loopx. If δxj 6= ∆x
j , then the

least possible value of Rj during the last execution of loopx is given by first
computing the value of Rj after execution of all iterations of all the required
loops, and then subtracting from it the effect of one complete iteration of loopx,
and adding δxj , the greatest partial negative change of loopx:

R0
j +

m∑
i=1

ki∆
loopi

j −∆
loopx
j + δxj

To obtain the lowest value of this expression over all possible choices for
the last loop, we need to minimize this expression w.r.t. x. In most cases
encountered in planning, this can be done effectively by choosing the loop which
minimizes δxj and using that loop for x (this method was used by Srivastava et al.
(2010a)). In this paper, we use the more general approach by selecting the last
loop, ̂, as follows:

̂ = argminx{δxj −∆
loopx
j : x ∈ {1, . . . ,m}}

This minimization requires the same number of comparison operations as the
minimization over δxj alone.

Let Rlb
j = R0

j +
∑m

i=1 ki∆
loopi
j +δ̂j−∆

loop̂

j . Our claim is that this expression
is a lower bound on the possible values of Rj in any execution of the given loops
and their iteration counts. Suppose this is not true. Then, a strictly lower value
of Rj must be achived during an execution of some loop, loopq, which is not the
last loop to be executed. This is not possible however, because Rj ∈ R− and
every successive loop iteration can only decrease its value.

Now that we can compute the minimum possible values of all registers, we
can state the required constraints as:

∀Rj ∈ R−
{
R0

j +

m∑
i=0

ki∆
loopi
j +δ̂j−∆

loop̂

j ≥ 0
}

(3*)

∀Rj ∈ R+
{
R0

j + δ
min(j)
j ≥ 0

}
(4*)

Together with Eqs. (1-2), these inequalities provide sufficient conditions
binding reachable register values with the number of loop iterations and the
initial register values. However, the process for deriving them assumed that
for every j, loop̂ and loopmin(j) will be executed at least once. We can make
these constraints more accurate by using a disjunctive formulation for selecting
the loop causing the greatest negative change among those that are executed at
least once. For register Rj , let 0̂, . . .m̂ be the ordering of loops in increasing

order of the values δxj −∆
loopx
j . We will use this ordering for writing the con-

straints for registers in R−. Similarly, let 0j, . . . ,mj be the ordering of loops
in increasing values of δxj , with the intended purpose of writing constraints for
registers in R+. In each of the following constraints, we will use ki<x = 0 to
denote the constraints {ki = 0 : i < x}, where the ordering is the one being used
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in that constraint. We can now write disjunctions of constraints corresponding
to the first loop in these orderings that is executed at least once, as follows:

∀Rj ∈ R−
∨

x=0̂,...,m̂

{
ki<x = 0; kx 6= 0;

R0
j +

∑
x≤i≤m̂

ki∆
loopi
j + δxj −∆

loopx
j ≥ 0

}
(3)

∀Rj ∈ R+
∨

x=0j ,...,mj

{
ki<x = 0; kx 6= 0;R0

j + δxj ≥ 0
}

(4)

Constraints (3) & (4) are derived from (3*) and (4*) by replacing the argmins
̂ and min(j) by the variable x, which iterates over loops in the order 0̂, . . . ,m̂
for registers in R− and in the order 0j, . . . ,mj for registers in R+.

Constraint (3) is tighter than (3*) only when changing the loop that executes
last will have an impact on the lowest value of at least one register. Otherwise,

δx − ∆
loopx
j will be the same for every loop for each register Rj , representing

the situation where the lowest achievable value of register Rj is independent of
which loop’s execution occurs last.

The following example illustrates the computation of conditions (3) & (4).

Example 2. Suppose the decomposition of an abacus program in the form of a
simple loop with shortcuts consists of two loops. A single iteration of loop1 first
decrements R1 by 5 (i.e., the “first” five actions starting from the loop-orienting
node are decrements) and then increments it by 1. A single iteration of loop2

first decrements R1 by 3 and then increments it by 2. Effects on register R2

are as follows. A single iteration of loop1 first decrements R2 by 2 and then
increments it by 3; loop2 first decrements R2 by 1 and then increments it by 2.

Conditions (1) & (2) are easily computed. We need to compute condition (3)
for R1 since it undergoes a net decrement. In this example, the greatest partial
negative changes (δx1 ) are −5,−3 for x = 1, 2 respectively; the net changes,

∆
loopx
1 are −4,−1 for x = 1, 2 respectively. The expressions δxj −∆

loopx
j evaluate

to −1,−2 for x = 1, 2 respectively, and therefore the ordering of loops 1 and 2 in
increasing order of this value is {2, 1}. Consequently, the lowest possible value
of R1 will occur when loop2 is executed last, by Lemma 1. Thus, we first write
the conditions when loop2 is executed last: k2 > 0 and R0

1 − 4k1 − k2 + 1− 3 =
R0

1 − 4k1 − k2 − 2 ≥ 0. If loop2 is never executed, we have k2 = 0, k1 > 0 and
R0

1−4k1 +4−5 = R0
1−4k1−1 > 0. The disjunction corresponding to condition

(3) therefore is:

(k2 6= 0 ∧R0
1 − 4k1 − k2 − 2 ≥ 0) ∨ (k2 = 0 ∧ k1 6= 0 ∧R0

1 − 4k1 − 1 ≥ 0)

Condition (4) is computed by ordering the loops in increasing order of δx2 , which
takes the values −2,−1 for x = 1, 2 respectively. Thus the desired condition (4)
is:

(k1 6= 0 ∧R0
2 − 2 ≥ 0) ∨ (k1 = 0 ∧ k2 6= 0 ∧R0

2 − 1 ≥ 0)
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We could also use conditions (3*) and (4*) to compute a more conservative (not
complete) condition for executing k1 and k2 iterations of loops 1 & 2:

R0
1 − 4k1 − k2 − 2 ≥ 0 ∧R0

2 − 2 ≥ 0

These conditions do not use the loop orderings but miss only a small number
of initial register values which would also have allowed the required iterations of
both loops.

Accuracy of the Computed Conditions

In order to discuss when conditions (1-4) are accurate we first define order
independence:

Definition 11. (Order independence) A simple loop with shortcuts is order
independent if for every initial valuation of the registers at Sstart, the set of
register values possible at Sstart after any number of iterations does not depend
on the order in which those iterations are taken.

An equality constraint in a loop is considered spurious, if no loop created by
the shortcuts changes the register on which equality is required. During the ex-
ecution of the loop, the truth of such conditions will not change. Consequently,
such equality conditions do not introduce order dependence. In practice, these
conditions can be translated into conditions on register values just prior to en-
tering the loop.

A simple loop with shortcuts will have to be order dependent if one of the
following holds: (1) the lowest value achievable by a register during its execution
depends on the order in which shortcuts are taken. In this case, possible lowest
values will impose different constraints for each ordering; or, (2) a non-spurious
equality condition has to be satisfied to stay in a loop. In the latter case, the
non-deterministic branch leading to the shortcut that has the equality condition
will have to be taken at the precise iteration when equality is satisfied. In fact,
the disjunction of these two conditions is necessary and sufficient for a loop to
be order dependent.

Proposition 3. A simple loop with shortcuts is order dependent iff either (1)
the lowest value achievable by a register during its execution depends on the
order in which shortcuts are taken or (2) a non-spurious equality condition has
to be satisfied to continue a loop iteration.

Proof. Sufficiency of the condition was discussed above. If the loop is order
dependent, then there is a register value that is reachable only via a “good”
subset of the possible orderings of shortcuts. Consider an ordering with the same
number of iterations of these shortcuts, not belonging to this subset. During
the execution of this sequence, there must be a first step after which a loop
iteration that could be completed in the good subset, cannot be completed in
the chosen ordering. This has to be either because an inequality > 0 is not
satisfied before a decrement, which implies (1) holds, or because Rj = 0 is
required to continue the iteration; this must have been possible in the good
loop orderings, but Rj > 0 must hold here, which implies case (2) holds.
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A naive approach of even expressing the necessary conditions for an order
dependent loop can be exponential in the number of shortcuts, even while con-
sidering just a single iteration of each loop. We can now see the computation
of ̂ as handling a very specific kind of order dependence, when the lowest value
of a register only depends on the last iteration to be executed.

Example 3. Consider loops l1, l2 in the decomposition of a simple loop with
monotone shortcuts in an abacus program. l1 increases R1 by 5 and R2 by 1. l2
first decreases R1 by 4 and then increases it by 5. l1, l2 are monotone shortcuts
but their combination is order dependent: at Sstart with R1 = 1, l2 cannot
be executed completely before executing l1. Expressing precise preconditions for
reachable register values thus requires a specification of the order in which the
shortcuts have to be taken.

Loops with non-spurious equality constraints are thus special cases of order
dependent loops. Although we did not encounter any loops with non-spurious
equality constraints in any of the test problems we considered, conditions (1-4)
can be extended to include equality conditions for the first and last iteration
of each loop. Because the registers increase or decrease monotonically, this will
make (1-4) sufficient (but not necessary) conditions for situations where equality
branches are required to stay in the loop. Unfortunately, in the worst case this
can also make (1-4) unsatisfiable. We can now present two results capturing the
accuracy of the conditions (1-4).

Proposition 4. If Π is an order independent simple loop with monotone short-
cuts, then Eqs. (1-4) provide necessary and sufficient conditions on the initial
and achievable register values.

Proof. By construction, the inequalities ensure that none of the register values
drops to zero, so that if a register value satisfies the inequalities, then it will be
reachable. This proves that the conditions are sufficient. Suppose that a regis-
ter value F̄ is reachable from R̄0, after k0, . . . km iterations of loop0, . . . , loopm

respectively. Eq. (2) cannot be violated, because the changes caused due to the
loops are fixed; Eq. (1) will be satisfied trivially. If R̄0, k0, . . . , km don’t satisfy
Eqs. (3-4), the lowest value achieved during the loop iterations will fall below
zero because the loop is order independent. Therefore, (1-4) must be satisfied.

Proposition 5. If Π is a simple loop with monotone shortcuts, then Eqs. (1-
4), together with constraints required for equality branches during the first and
last iterations of the shortcuts containing them give sufficient conditions on the
possible final register values in terms of their initial values.

Proof. By construction, conditions (1-4) and the equality constraints ensure that
every branch required to complete ki iterations of loop i will be satisfied.

In other words, if we don’t have order independence, the conditions (1-4) are
sufficient, but not necessary. In adversarial formulations however, if the next
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simple loop to be executed depends on non-deterministic actions, then we require
exactly the conditions (1-4) which ensure that all the stipulated iterations of
all the loops will be executed. In Section 6 we present several examples of this
scenario. This leads to the main result of this section, which is analogous to
Theorem 1 for simple loops.

Theorem 4. Let Π be an abacus program, all of whose strongly connected com-
ponents are simple loops with monotone shortcuts. Let S be any state in the
program, and F̄ a vector of register values. We can then compute a disjunction
of linear constraints on the initial register values for reaching S with the regis-
ter values F̄ . If all simple loops with shortcuts in Π are order independent, the
obtained precondition is necessary and sufficient.

Proof. Similar to the proof by decomposition for Theorem 1, using proposi-
tions 4 and 5.

Semantics of the Computed Conditions. Since we are working in the setting
where non-deterministic actions are allowed, the variable ki may implicitly
capture the number of times particular outcomes of non-deterministic actions
present in loopi must occur during its ki iterations. This may appear to be
measuring an inherently unpredictable property (non-determinism) and seem
to mitigate the utility of the computed preconditions. However, as we will see
in Section 6, non-deterministic abacus actions may stand for sensing actions;
while we may not be able to predict the outcome of each sensing action, it may
still be possible to know how many times a certain outcome is possible, which
is all that we need to use the conditions above. In addition, if ki’s are used as
parameters, the conditions above capture their tolerable values under which a
desired register value may be achieved.

In this section we addressed the problem of determining when a program
can reach a certain state with a given register vector by deriving constraints
between the initial and final register values for a given abacus program. In
order to achieve these results, we used the concept of order independence to
summarily deal with a collection of simple loops and the number of times each
had to be executed.

These methods could also be applied to deterministic programs but the meth-
ods we proposed in Section 5.1 will be more accurate in general. This is because
simple loops with shortcuts that are created by deterministic actions are highly
order dependent: they include non-spurious equality conditions due to which the
order of execution of loops is determined exactly by the initial register values.

6. Example Plans and Preconditions

We implemented the algorithm for finding preconditions for simple loops
and order independent nested loops due to shortcuts, and applied it to var-
ious plans with loops that have been discussed in the literature (references
are included with the descriptions below). Existing approaches solve different
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1)=0

move(T2, D3); unload(T2); move(T2,L);move(T2,D2)

#(monitor,atD2)>0

#(server,atD1)>0

load(s, T1: server(s) & atD1(s))

move(T1, L)

unload(T1)

move(T1,D1)

move(T2,L)

load(m, T2: monitor(m)& atD2(m))

load(s, T2:server(s) & atL(s))

Figure 7: Solution plan for the transport problem

subsets of these problems, but almost uniformly without termination guaran-
tees (Levesque, 2005; Bonet et al., 2009).

Our system takes as input an abacus program or a generalized plan with
cardinality changes marked for each action. For every strongly connected com-
ponent, it first determines if it is a simple loop. If not, it determines whether
the component is a simple loop with shortcuts. In order to do so it searches
for a loop-orienting node, removal of which would make the entire component
acyclic. If no such node exists, or if the shortcuts are found to be non-monotone
then the input cannot be handled using our methods and failure is reported.
Reachability conditions are constructed for simple loops and simple loops with
monotone shortcuts as described in the previous sections. Table 1 shows timing
results for 10 different plans.

Plan Representation. Figs. 7, 8 and 9 show solution plans for some of the test
problems. In order to make the plans easy to read, we show only actions. The
default flow of control continues line by line (semicolons are used as linebreaks).
Edges are shown when an action may have multiple outcomes and are labeled
with the conditions that must hold prior to action application for that edge to be
taken (as with abacus programs). Only the edges required to continue executing
the plan are drawn; the preconditions must ensure that these edges are always
taken. For clarity, in some cases we label only one of the outcomes of an action,
and the others are assumed to have the complement of that label. Actions are
written as “ActionName(args:argument-formula(args))”. Any object satisfying
an action’s argument formula may be chosen for executing the plan. The desired
halt nodes are indicated with the action “Stop”.

Transport. In the transport problem (Srivastava et al., 2008) two trucks have
to deliver sets of packages through a “Y”-shaped roadmap. Locations D1, D2
and D3 are present at the three terminal points of the Y; location L is at the
intersection of its prongs. Initially, an unknown number of servers and monitors
are present at D1 and D2 respectively; trucks T1 (capacity 1) and T2 (capacity
2) are also at D1 and D2 respectively. The goal is to deliver all objects to D3,
but only in pairs with one of each kind.

The problem is modeled using the predicates {server, monitor, atDi, inTi,
atL, T1, T2}. As discussed in the previous section, role-counts in this represen-
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move(T2, D3)

unload(T2); move(T2,L); move(T2,D2)

move(T2, D1)

move(T2,L)

move(T2,L)

server lost

load(m, T2: monitor(m)& atD2(m))

#(monitor,atD2)=0

load(s,T2: server(s)& atD1(s))

load(s, T2:server(s) & atL(s))

move(T1, L); unload(T1); move(T1,D1)

forkLift(s, T2)

heavy
forkLift(s, T2)

forkLift(s, T1)heavy

load(s, T1: server(s) & atD1(s)) Stop
#(server,atD1)=0

heavy

Figure 8: Solution plan for the conditional version of transport

tation can be treated as register values and actions as abacus actions on these
roles. The plan shown in Fig. 7 first moves a server from D1 to L using T1.
T2 picks up a monitor at D2, moves to L, picks up the server left by T1 and
transports both to D3. The first action, load, uses as its arguments an object s
(satisfying server(s)∧ atD1(s)), and the constant T1 representing the truck T1.
It decrements the count of the role {server, atD1} and consequently has two
outcomes depending on its value. Note that the second load action in the plan
also has two outcomes, but only the one used in the plan is shown. In order
to reach the Stop state with the goal condition, we require that final values of
s1 =#{server, atD1} and m2 =#{monitor, atD2} be zero. Let s3=#{server,
atD3} and m3=#{monitor, atD3}. The changes caused due to one iteration of
the loop are +1 for m3, s3 and −1 for s1,m1. Using the method developed in
proposition 2, the necessary and sufficient condition for reaching the goal after
l iterations of the loop is that there should be equal numbers of objects of both
types initially: m0

2 = l = s0
1.

Transport Conditional. In the conditional version of the transport problem (Sri-
vastava et al., 2010b), objects left at L may get lost, and servers may be heavy,
in which case the forkLift action has to be used instead of the load action. Fig. 8
shows a solution plan found by merging togther plans which encountered and
dealt with different non-deterministic action outcomes (Srivastava et al., 2010b).
If a server is not found when T2 reaches L, the plan proceeds by moving T2 to
D1, loading a server, and then proceeding to D3. Note that the shortcut for the
“server lost” has a sub-branch, corresponding to the server being heavy. The
plan can be decomposed into 8 simple loops. Of these, 4, which use the “server
lost” branch use one extra server (loops 0, 5, 6 and 7 in the inequality below).
Let role-counts s2,m2, s3,m3 be as in the previous problem. Then, the obtained
applicability conditions are:
sf3 = mf

3 =
∑7

i=0 ki; mf
2 = m0

2 −
∑7

i=0 ki = 0

sf1 = s01 −
∑7

i=0 ki − k0 − k5 − k6 − k7 = 0
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mv(R, b: −empty(b))
#(−empty) = 0

Stop

PickObj(o: in(o,b))

senseType(o)

collect(o,c: forPaper(c)& −full(c)) collect(o,c: forGlass(c)& −full(c))

glasspaper

#(forPaper, −full)>0 #(forGlass, −full)>0

empty(b)

Figure 9: Solution plan for the recycling problem

These conditions show that every possible loop decrements the role-counts s
and m; however, in order to have all objects at D3 the conditions now require
extra servers to be kept at D1, amounting to the number of times a server was
lost.

Recycling. In this problem a recycling agent must inspect a set of bins, and
from each bin, collect paper and glass objects in their respective containers. The
solution plan includes nested loops due to shortcuts (Fig. 9), with the start state
at PickObj. senseType is a sensing action, and the collect actions decrement the
available capacity of each container, represented as the role-count of {forX,
¬full} where X is paper or glass. Let e, fg, fp, p, g denote the role-counts
of non-empty bins, glass container capacity, paper container capacity, paper
objects and glass objects respectively. Let l1 denote the number of iterations of
the topmost loop, l2 of the paper loop and l3 of the glass loop. The applicability
conditions are:

ef = e0 − l1 = 0, fpf = fp0 − l2 ≥ 0,

pf = p0 + l2, fgf = fg0 − l3 ≥ 0, gf = g0 + l3.

Note that the non-negativity constraints guarantee termination of all the loops.

Accumulator. The accumulator problem (Levesque, 2005) consists of two accu-
mulators and two actions: incr acc(i) increments register i by one and test acc(),
tests if the given accumulator’s value matches an input k. Given the goal
acc(2) = 2k − 1 where k is the input, Kplanner computes the following plan:

incr acc(1);
repeat {incr acc(1); incr acc(2); incr acc(2)}
until test acc(1);
incr acc(2)

Although the plan is correct for all k ≥ 1, Kplanner can only determine
that it will work for a user-provided range of values. This problem can be mod-
eled directly using registers for accumulators and asserting the goal condition on
the final values after l iterations of the loop (even though there are no decrement
operations). We get

acc(1) = l + 1; acc(2) = 2l + 1 = 2k − 1.

This implies that l = k − 1 ≥ 0 iterations are required to reach the goal.
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Problem Time (s) Problem Time(s)

Accumulator 0.01 Prize-A(7) 0.02
Corner-A 0.00 Recycling 0.02
Diagonal 0.01 Striped Tower 0.02
Hall-A 0.01 Transport 0.01
Prize-A(5) 0.01 Transport (conditional) 0.06

Table 1: Timing results for computing preconditions

Further Test Problems and Discussion. We tested our algorithms with many
other plans with loops. Table 1 shows a summary of the timing results. The
runs were conducted on a 2.5GHz AMD dual core system. Problems Hall-A,
Prize-A(5) and Prize-A(7) (Bonet et al., 2009) concern grid world navigation
tasks. In Hall-A the agent must traverse a quadrilateral arrangement of cor-
ridors of rooms; the prize problems require a complete grid traversal of 5 × n
and 7 × n grids, respectively. Note that at least one of the dimensions in the
representation of each of these problems is taken to be unknown and unbounded.
Our implementation computed correct preconditions for plans with simple loops
for solving these problems. In Hall-A, for instance, it correctly determined that
the numbers of rooms in each corridor can be arbitrary and independent of the
other corridors. The Diagonal problem is a more general version of the Corner
problem (Bonet et al., 2009) where the agent must start at an unknown position
in a rectangular grid, reach the north-east corner and then reach the southwest
corner by repeatedly moving one step west and one step south. In this case,
our method correctly determines that the grid must be square for the plan to
succeed. In Striped Tower (Srivastava et al., 2008), our approach correctly de-
termines that an equal number of blocks of each color is needed in order to
create a tower of blocks of alternating colors. In all the problems, termination
of loops is guaranteed by non-negativity constraints such as those above.

7. Related Work

Although various approaches have studied the utility and generation of plans
with loops, very few provide any guarantees of termination or progress for their
solutions. Approaches for cyclic and strong cyclic planning (Cimatti et al.,
2003) attempt to generate plans with loops for achieving temporally extended
goals and for handling actions which may fail. Loops in strong cyclic plans are
assumed to be static, with the same likelihood of a loop exit in every iteration.
The structure of these plans is such that it is always possible–in the sense of
graph connectivity–to exit all loops and reach the goal; termination is there-
fore guaranteed if this can be assumed to occur eventually. Among more recent
work, Kplanner (Levesque, 2005) attempts to find plans with loops that gen-
eralize a single numeric planning parameter. It guarantees that the obtained
solutions will work in a user-specified interval of values of this parameter. Dis-
till (Winner and Veloso, 2007) identifies loops from example traces but does
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not address the problem of preconditions or termination of its learned plans.
Bonet et al. (2009) derive plans for problems with fixed sizes, but the controller
representation that they use can be seen to work across many problem instances.
They also do not address the problem of determining the problem instances on
which their plans will work, or terminate.

Finding preconditions of linear segments of plans has been well studied in
the planning literature (Fikes et al., 1972). Approaches for regression (Reiter,
2001; Fritz and McIlraith, 2007) in planning directly address the problem of
computing preconditions of acyclic plan segments. However, there has been
no concerted effort towards finding preconditions of plans with loops. Static
analysis of programs deals with similar problems of finding program precondi-
tions (Dijkstra, 1975). However, these methods typically work with the weaker
notion of partial correctness (Hoare, 1969), where a program is guaranteed to
provide correct results if it terminates. Methods like Terminator (Cook et al.,
2006) specifically attempt to prove termination of loops, but do not provide
precise preconditions or the number of iterations required for termination.

8. Conclusions and Future Work

In this paper we presented an approach for formulating and studying the
problem of determining when a certain loop of actions can be guaranteed to (a)
terminate, and (b) lead to a desired result. We showed how this problem can be
studied effectively as the problem of reachability of desired states in the context
of primitive actions that can only increase, decrease or non-deterministically
change the value of some counters. Although this approach is the first to address
this problem comprehensively, it is very efficient and scalable for commonly
encountered loops of actions in planning. In addition to finding preconditions
of computed plans, it can also be used as a component in the synthesis of plans
with safe loops.

We established tractability results of reachability analysis for several classes
of plans or programs with such actions. For simple loops of actions, this problem
admits very efficient algorithms; slight extensions to this class of loops (i.e.,
simple loops with shortcuts), however, were found to be general enough to
capture the full power of Turing machines and therefore had an undecidable
reachability problem (Theorem 2) in general. On the other hand, the property
of monotonicty in this case does permit development algorithms for determining
reachability, with their accuracy depending upon the notion of order dependence
(Prop. 4). Order dependence itself is not very restrictive in non-deterministic
situations from an adversarial point of view, where the exact sequence of non-
deterministic outcomes of actions cannot be predicted, and we need to plan for
the worst case.

These results contribute to the understanding of the factors that make these
problems difficult: when order dependence cannot be overcome by conservative
approximations, and when the property of monotonicity does not hold. Al-
though non-monotone simple loops with shortcuts have an undecidable reacha-
bility problem in the worst case, in some cases the problems of reachability, and
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at the least termination, can be answered. Further identification of tractable
classes of non-monotone simple loops with shortcuts is left for future work.
Computation and expression of order dependent preconditions are also impor-
tant directions for future work on pushing the theoretical limits of solvability of
these problems.

We showed one approach for interpreting planning actions as abacus actions
in this paper. The underlying methods for determining reachability in abacus
programs, however, can be used whenever actions can be interpreted as incre-
menting or decrementing counters. Development of more general reductions, for
instance by using description logic to construct roles in planning problems, is
also an important direction for future work.
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