Parallel Computation and Inductive Definitions

Neil Immerman

College of Computer and Information Sciences University of Massachusetts, Amherst Amherst, MA, USA

people.cs.umass.edu/~immerman

 $Q_+: \text{STRUC}[\Sigma_{AB}] \to \text{STRUC}[\Sigma_s]$

 $Q_+: \text{STRUC}[\Sigma_{AB}] \to \text{STRUC}[\Sigma_s]$

$$C(i) \equiv (\exists j > i) \Big(A(j) \land B(j) \land (\forall k.j > k > i) (A(k) \lor B(k)) \Big)$$

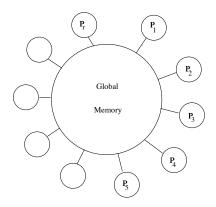
 $Q_+: \text{STRUC}[\Sigma_{AB}] \to \text{STRUC}[\Sigma_s]$

$$C(i) \equiv (\exists j > i) \Big(A(j) \land B(j) \land (\forall k.j > k > i) (A(k) \lor B(k)) \Big)$$

 $Q_+(i) \equiv A(i) \oplus B(i) \oplus C(i)$

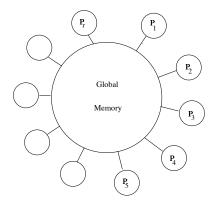
Parallel Machines:

$CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[n^{O(1)}]$



$CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[n^{O(1)}]$

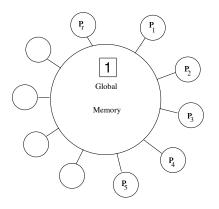
Assume array A[x] : x = 1, ..., r in memory.



 $CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[n^{O(1)}]$

Assume array A[x] : x = 1, ..., r in memory.

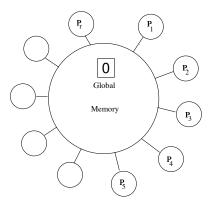
 $\forall x(A(x)) \equiv write(1);$



 $CRAM[t(n)] = CRCW-PRAM-TIME[t(n)]-HARD[n^{O(1)}]$

Assume array A[x] : x = 1, ..., r in memory.

 $\forall x(A(x)) \equiv \text{write}(1); \text{ proc } p_i : \text{if } (A[i] = 0) \text{ then write}(0)$



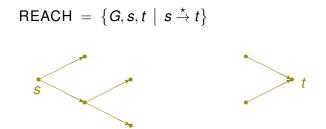
Arithmetic Hierarchy FO(N) co-r.e. complete r.e. complete FO-SAT FO-VALID co-r.e. FO∀(N) r.e. FO∃(N) Halt Halt Recursive Primitive Recursive SuccinctHornSAT EXPTIME complete EXPTIME $SO[2^{n^{O(1)}}]$ SO(LFP) OSAT PSPACE complete PSPACE $\operatorname{FO}[2^{n^{O(1)}}]$ $SO[n^{O(1)}]$ FO(PFP) SO(TC) PTIME Hierarchy SO NP complete co-NP complete SAT SAT SOE co-NP SO∀ NP $NP \cap co-NP$ P complete $FO[n^{O(1)}]$ Horn Р SAT FO(LFP) SO(Horn) $FO[(\log n)^{O(1)}]$ "truly NC $FO[\log n]$ feasible" AC^1 FO(CFL) sAC¹ 2SAT NL comp. FO(TC) SO(Krom) NL. 2COLOR L comp. FO(DTC) L FO(REGULAR) NC^1 FO(COUNT) ThC⁰ FO LOGTIME Hierarchy AC^0

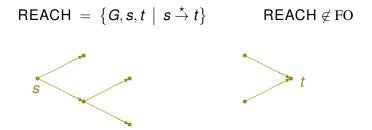
= CRAM[1]

FO

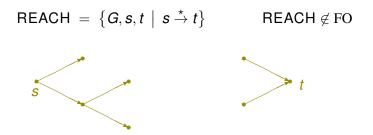
AC⁰

Logarithmic-Time Hierarchy

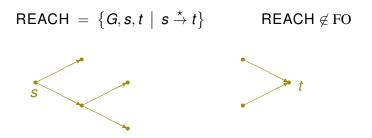




$$E^{\star}(x,y) \stackrel{\text{def}}{=} x = y \lor E(x,y) \lor \exists z (E^{\star}(x,z) \land E^{\star}(z,y))$$



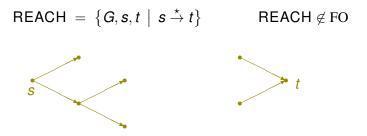
$$E^{\star}(x,y) \stackrel{\text{def}}{=} x = y \lor E(x,y) \lor \exists z (E^{\star}(x,z) \land E^{\star}(z,y))$$
$$\varphi_{tc}(R,x,y) \equiv x = y \lor E(x,y) \lor \exists z (R(x,z) \land R(z,y))$$



$$E^{\star}(x,y) \stackrel{\text{def}}{=} x = y \lor E(x,y) \lor \exists z (E^{\star}(x,z) \land E^{\star}(z,y))$$

 $\varphi_{tc}(R, x, y) \equiv x = y \lor E(x, y) \lor \exists z (R(x, z) \land R(z, y))$

 φ_{tc}^{G} : binRel(G) \rightarrow binRel(G) is a monotone operator



$$E^{\star}(x,y) \stackrel{\text{def}}{=} x = y \lor E(x,y) \lor \exists z (E^{\star}(x,z) \land E^{\star}(z,y))$$

 $\varphi_{tc}(R, x, y) \equiv x = y \lor E(x, y) \lor \exists z (R(x, z) \land R(z, y))$

 φ_{tc}^{G} : binRel(G) \rightarrow binRel(G) is a monotone operator

 $E^{\star} = (LFP\varphi_{tc})$ $REACH = \{G, s, t \mid s \stackrel{\star}{\rightarrow} t\}$ $REACH \notin FO$ t

$$E^{\star}(x,y) \stackrel{\text{def}}{=} x = y \lor E(x,y) \lor \exists z (E^{\star}(x,z) \land E^{\star}(z,y))$$

 $\varphi_{tc}(R, x, y) \equiv x = y \lor E(x, y) \lor \exists z (R(x, z) \land R(z, y))$

 φ_{tc}^{G} : binRel(G) \rightarrow binRel(G) is a monotone operator

$$G \in \mathsf{REACH} \iff G \models (\mathsf{LFP}\varphi_{tc})(s, t) \qquad E^* = (\mathsf{LFP}\varphi_{tc})$$
$$\mathsf{REACH} = \{G, s, t \mid s \stackrel{\star}{\to} t\} \qquad \mathsf{REACH} \notin \mathsf{FO}$$

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

proof: Monotone means, for all $R \subseteq S$, $\varphi(R) \subseteq \varphi(S)$.

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

proof: Monotone means, for all $R \subseteq S$, $\varphi(R) \subseteq \varphi(S)$.

Let $I^0 \stackrel{\text{def}}{=} \emptyset$; $I^{r+1} \stackrel{\text{def}}{=} \varphi(I^r)$

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

proof: Monotone means, for all $R \subseteq S$, $\varphi(R) \subseteq \varphi(S)$.

Let $I^0 \stackrel{\text{def}}{=} \emptyset$; $I^{r+1} \stackrel{\text{def}}{=} \varphi(I^r)$ Thus, $\emptyset = I^0 \subseteq I^1 \subseteq \cdots \subseteq I^t$.

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

proof: Monotone means, for all $R \subseteq S$, $\varphi(R) \subseteq \varphi(S)$.

Let $I^0 \stackrel{\text{def}}{=} \emptyset$; $I^{r+1} \stackrel{\text{def}}{=} \varphi(I^r)$ Thus, $\emptyset = I^0 \subseteq I^1 \subseteq \cdots \subseteq I^t$.

Let *t* be min such that $I^t = I^{t+1}$. Note that $t \le n^k$ where $n = |V^G|$.

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

proof: Monotone means, for all $R \subseteq S$, $\varphi(R) \subseteq \varphi(S)$.

Let
$$I^0 \stackrel{\text{def}}{=} \emptyset$$
; $I^{r+1} \stackrel{\text{def}}{=} \varphi(I^r)$ Thus, $\emptyset = I^0 \subseteq I^1 \subseteq \cdots \subseteq I^t$.

Let *t* be min such that $I^t = I^{t+1}$. Note that $t \le n^k$ where $n = |V^G|$. $\varphi(I^t) = I^t$, so I^t is a fixed point of φ .

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

proof: Monotone means, for all $R \subseteq S$, $\varphi(R) \subseteq \varphi(S)$.

Let
$$I^0 \stackrel{\text{def}}{=} \emptyset$$
; $I^{r+1} \stackrel{\text{def}}{=} \varphi(I^r)$ Thus, $\emptyset = I^0 \subseteq I^1 \subseteq \cdots \subseteq I^t$.

Let *t* be min such that $I^t = I^{t+1}$. Note that $t \le n^k$ where $n = |V^G|$. $\varphi(I^t) = I^t$, so I^t is a fixed point of φ .

Suppose $\varphi(F) = F$.

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

proof: Monotone means, for all $R \subseteq S$, $\varphi(R) \subseteq \varphi(S)$.

Let
$$I^0 \stackrel{\text{def}}{=} \emptyset$$
; $I^{r+1} \stackrel{\text{def}}{=} \varphi(I^r)$ Thus, $\emptyset = I^0 \subseteq I^1 \subseteq \cdots \subseteq I^t$.

Let *t* be min such that $I^t = I^{t+1}$. Note that $t \le n^k$ where $n = |V^G|$. $\varphi(I^t) = I^t$, so I^t is a fixed point of φ .

Suppose $\varphi(F) = F$. By induction on *r*, for all *r*, $I^r \subseteq F$.

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

proof: Monotone means, for all $R \subseteq S$, $\varphi(R) \subseteq \varphi(S)$.

Let
$$I^0 \stackrel{\text{def}}{=} \emptyset$$
; $I^{r+1} \stackrel{\text{def}}{=} \varphi(I^r)$ Thus, $\emptyset = I^0 \subseteq I^1 \subseteq \cdots \subseteq I^t$.

Let *t* be min such that $I^t = I^{t+1}$. Note that $t \le n^k$ where $n = |V^G|$. $\varphi(I^t) = I^t$, so I^t is a fixed point of φ .

Suppose $\varphi(F) = F$. By induction on r, for all $r, I^r \subseteq F$. base case: $I^0 = \emptyset \subseteq F$.

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

proof: Monotone means, for all $R \subseteq S$, $\varphi(R) \subseteq \varphi(S)$.

Let
$$I^0 \stackrel{\text{def}}{=} \emptyset$$
; $I^{r+1} \stackrel{\text{def}}{=} \varphi(I^r)$ Thus, $\emptyset = I^0 \subseteq I^1 \subseteq \cdots \subseteq I^t$.

Let *t* be min such that $I^t = I^{t+1}$. Note that $t \le n^k$ where $n = |V^G|$. $\varphi(I^t) = I^t$, so I^t is a fixed point of φ .

Suppose $\varphi(F) = F$. By induction on r, for all $r, I^r \subseteq F$. base case: $I^0 = \emptyset \subseteq F$.

inductive case: Assume $I^j \subseteq F$

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

proof: Monotone means, for all $R \subseteq S$, $\varphi(R) \subseteq \varphi(S)$.

Let
$$I^0 \stackrel{\text{def}}{=} \emptyset$$
; $I^{r+1} \stackrel{\text{def}}{=} \varphi(I^r)$ Thus, $\emptyset = I^0 \subseteq I^1 \subseteq \cdots \subseteq I^t$.

Let *t* be min such that $I^t = I^{t+1}$. Note that $t \le n^k$ where $n = |V^G|$. $\varphi(I^t) = I^t$, so I^t is a fixed point of φ .

Suppose $\varphi(F) = F$. By induction on r, for all $r, l^r \subseteq F$. base case: $l^0 = \emptyset \subseteq F$.

inductive case: Assume $l^j \subseteq F$

By monotonicity, $\varphi(I^{j}) \subseteq \varphi(F)$, i.e., $I^{j+1} \subseteq F$.

Thm. If $\varphi : \operatorname{Rel}^k(G) \to \operatorname{Rel}^k(G)$ is monotone, then $\operatorname{LFP}(\varphi)$ exists and can be computed in P.

proof: Monotone means, for all $R \subseteq S$, $\varphi(R) \subseteq \varphi(S)$.

Let
$$I^0 \stackrel{\text{def}}{=} \emptyset$$
; $I^{r+1} \stackrel{\text{def}}{=} \varphi(I^r)$ Thus, $\emptyset = I^0 \subseteq I^1 \subseteq \cdots \subseteq I^t$.

Let *t* be min such that $I^t = I^{t+1}$. Note that $t \le n^k$ where $n = |V^G|$. $\varphi(I^t) = I^t$, so I^t is a fixed point of φ .

Suppose $\varphi(F) = F$. By induction on r, for all $r, l^r \subseteq F$. base case: $l^0 = \emptyset \subseteq F$.

inductive case: Assume $I^{j} \subseteq F$

By monotonicity, $\varphi(I^{j}) \subseteq \varphi(F)$, i.e., $I^{j+1} \subseteq F$.

Thus $I^t \subseteq F$ and $I^t = LFP(\varphi)$.

$$\varphi_{tc}(R, x, y) \equiv x = y \lor E(x, y) \lor \exists z (R(x, z) \land R(z, y))$$

$$\varphi_{tc}(R, x, y) \equiv x = y \lor E(x, y) \lor \exists z (R(x, z) \land R(z, y))$$

$$I^{1} = \varphi_{tc}^{G}(\emptyset) = \{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\}$$

$$\begin{array}{lll} \varphi_{tc}(R,x,y) &\equiv & x = y \ \lor \ E(x,y) \ \lor \ \exists z (R(x,z) \land R(z,y)) \\ I^1 = \varphi^G_{tc}(\emptyset) &= & \left\{ (a,b) \in V^G \times V^G \ \big| \ \operatorname{dist}(a,b) \leq 1 \right\} \\ I^2 = (\varphi^G_{tc})^2(\emptyset) &= & \left\{ (a,b) \in V^G \times V^G \ \big| \ \operatorname{dist}(a,b) \leq 2 \right\} \end{array}$$

=

: =

÷

$$\begin{array}{lll} \varphi_{tc}(R,x,y) &\equiv x = y \lor E(x,y) \lor \exists z (R(x,z) \land R(z,y)) \\ I^{1} = \varphi^{G}_{tc}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 1\} \\ I^{2} = (\varphi^{G}_{tc})^{2}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 2\} \\ I^{3} = (\varphi^{G}_{tc})^{3}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 4\} \end{array}$$

$$I^{r} = (\varphi_{tc}^{G})^{r}(\emptyset) = \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 2^{r-1}\}$$

.

:

÷

÷

$$\begin{split} \varphi_{tc}(R,x,y) &\equiv x = y \lor E(x,y) \lor \exists z (R(x,z) \land R(z,y)) \\ I^{1} &= \varphi_{tc}^{G}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 1\} \\ I^{2} &= (\varphi_{tc}^{G})^{2}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 2\} \\ I^{3} &= (\varphi_{tc}^{G})^{3}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 4\} \\ \vdots &= \vdots & \vdots \\ I^{r} &= (\varphi_{tc}^{G})^{r}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 2^{r-1}\} \\ \vdots &= \vdots & \vdots \\ (\varphi_{tc}^{G})^{\lceil 1 + \log n \rceil}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq n\} \end{split}$$

$$\begin{split} \varphi_{tc}(R,x,y) &\equiv x = y \lor E(x,y) \lor \exists z (R(x,z) \land R(z,y)) \\ I^{1} &= \varphi_{tc}^{G}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 1\} \\ I^{2} &= (\varphi_{tc}^{G})^{2}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 2\} \\ I^{3} &= (\varphi_{tc}^{G})^{3}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 4\} \\ \vdots &= \vdots & \vdots \\ I^{r} &= (\varphi_{tc}^{G})^{r}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq 2^{r-1}\} \\ \vdots &= \vdots & \vdots \\ (\varphi_{tc}^{G})^{\lceil 1 + \log n \rceil}(\emptyset) &= \{(a,b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a,b) \leq n\} \\ \mathrm{LFP}(\varphi_{tc}) &= \varphi_{tc}^{\lceil 1 + \log n \rceil}(\emptyset); & \mathrm{REACH} \in \mathrm{IND}[\log n] \end{split}$$

$$\begin{split} \varphi_{tc}(R, x, y) &\equiv x = y \lor E(x, y) \lor \exists z (R(x, z) \land R(z, y)) \\ I^{1} &= \varphi_{tc}^{G}(\emptyset) &= \{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 1\} \\ I^{2} &= (\varphi_{tc}^{G})^{2}(\emptyset) &= \{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2\} \\ I^{3} &= (\varphi_{tc}^{G})^{3}(\emptyset) &= \{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 4\} \\ \vdots &= \vdots & \vdots \\ I^{r} &= (\varphi_{tc}^{G})^{r}(\emptyset) &= \{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq 2^{r-1}\} \\ \vdots &= \vdots & \vdots \\ (\varphi_{tc}^{G})^{\lceil 1 + \log n \rceil}(\emptyset) &= \{(a, b) \in V^{G} \times V^{G} \mid \operatorname{dist}(a, b) \leq n\} \\ \mathrm{LFP}(\varphi_{tc}) &= \varphi_{tc}^{\lceil 1 + \log n \rceil}(\emptyset); & \mathrm{REACH} \in \mathrm{IND}[\log n] \\ \mathrm{Next we will show that} & \mathrm{IND}[t(n)] = \mathrm{FO}[t(n)]. \end{split}$$

$\varphi_{tc}(R, x, y) \equiv x = y \lor E(x, y) \lor \exists z (R(x, z) \land R(z, y))$

1. Dummy universal quantification for base case:

$$\varphi_{tc}(R, x, y) \equiv (\forall z. M_1)(\exists z)(R(x, z) \land R(z, y))$$
$$M_1 \equiv \neg(x = y \lor E(x, y))$$

$\varphi_{tc}(R, x, y) \equiv x = y \vee E(x, y) \vee \exists z (R(x, z) \land R(z, y))$

1. Dummy universal quantification for base case:

$$\varphi_{tc}(R, x, y) \equiv (\forall z. M_1)(\exists z)(R(x, z) \land R(z, y))$$
$$M_1 \equiv \neg(x = y \lor E(x, y))$$

2. Using \forall , replace two occurrences of *R* with one:

$$\varphi_{tc}(R, x, y) \equiv (\forall z.M_1)(\exists z)(\forall uv.M_2)R(u, v)$$
$$M_2 \equiv (u = x \land v = z) \lor (u = z \land v = y)$$

$\varphi_{tc}(R, x, y) \equiv x = y \lor E(x, y) \lor \exists z (R(x, z) \land R(z, y))$

1. Dummy universal quantification for base case:

$$\varphi_{tc}(R, x, y) \equiv (\forall z. M_1)(\exists z)(R(x, z) \land R(z, y))$$
$$M_1 \equiv \neg(x = y \lor E(x, y))$$

2. Using \forall , replace two occurrences of *R* with one:

$$\varphi_{tc}(R, x, y) \equiv (\forall z.M_1)(\exists z)(\forall uv.M_2)R(u, v)$$
$$M_2 \equiv (u = x \land v = z) \lor (u = z \land v = y)$$

3. Requantify x and y.

$$M_3 \equiv (x = u \land y = v)$$

 $\varphi_{tc}(R, x, y) \equiv [(\forall z.M_1)(\exists z)(\forall uv.M_2)(\exists xy.M_3)] R(x, y)$

Every FO inductive definition is equivalent to a quantifier block.

$\varphi_{tc}(R, x, y) \equiv [(\forall z.M_1)(\exists z)(\forall uv.M_2)(\exists xy.M_3)]R(x, y)$

$\varphi_{tc}(R, x, y) \equiv [(\forall z.M_1)(\exists z)(\forall uv.M_2)(\exists xy.M_3)]R(x, y)$

 $\varphi_{tc}(\boldsymbol{R}, \boldsymbol{x}, \boldsymbol{y}) \equiv [QB_{tc}]\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{y})$

- $\varphi_{tc}(R, x, y) \equiv [(\forall z.M_1)(\exists z)(\forall uv.M_2)(\exists xy.M_3)]R(x, y)$
- $\varphi_{tc}(\boldsymbol{R}, \boldsymbol{x}, \boldsymbol{y}) \equiv [QB_{tc}]\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{y})$

 $\varphi_{tc}^{r}(\emptyset) \equiv [QB_{tc}]^{r}(false)$

 $\varphi_{tc}(R, x, y) \equiv [(\forall z.M_1)(\exists z)(\forall uv.M_2)(\exists xy.M_3)]R(x, y)$

 $\varphi_{tc}(\boldsymbol{R}, \boldsymbol{x}, \boldsymbol{y}) \equiv [QB_{tc}]\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{y})$

 $\varphi_{tc}^{r}(\emptyset) \equiv [QB_{tc}]^{r}(false)$

Thus, for any structure $\mathcal{A} \in \text{STRUC}[\Sigma_g]$,

$$\begin{split} \mathcal{A} \in \mathsf{REACH} & \Leftrightarrow & \mathcal{A} \models (\mathrm{LFP}\varphi_{\mathit{tc}})(\mathit{s}, \mathit{t}) \\ & \Leftrightarrow & \mathcal{A} \models ([\mathrm{QB}_{\mathit{tc}}]^{\lceil 1 + \log \|\mathcal{A}\| \rceil} \, \mathsf{false})(\mathit{s}, \mathit{t}) \end{split}$$

- CRAM[t(n)] = concurrent parallel random access machine;polynomial hardware, parallel time <math>O(t(n))
 - IND[t(n)] = first-order, depth t(n) inductive definitions
 - FO[t(n)] = t(n) repetitions of a block of restricted quantifiers:
 - $QB = [(Q_1 x_1.M_1) \cdots (Q_k x_k.M_k)]; M_i$ quantifier-free

$$\varphi_n = \underbrace{[QB][QB]\cdots[QB]}_{t(n)} M_0$$

Thm. For all constructible, polynomially bounded t(n),

$$\operatorname{CRAM}[t(n)] = \operatorname{IND}[t(n)] = \operatorname{FO}[t(n)]$$

Thm. For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: $CRAM[t(n)] \supseteq FO[t(n)]$: For QB with *k* variables, keep in memory current value of formula on all possible assignments, using n^k bits of global memory.

Thm. For all constructible, polynomially bounded t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

proof idea: CRAM[t(n)] \supseteq FO[t(n)]: For QB with k variables, keep in memory current value of formula on all possible assignments, using n^k bits of global memory. Simulate each next quantifier in constant parallel time.

Thm. For all constructible, polynomially bounded t(n),

 $\operatorname{CRAM}[t(n)] = \operatorname{IND}[t(n)] = \operatorname{FO}[t(n)]$

proof idea: CRAM[t(n)] \supseteq FO[t(n)]: For QB with k variables, keep in memory current value of formula on all possible assignments, using n^k bits of global memory. Simulate each next quantifier in constant parallel time.

CRAM[t(n)] \subseteq FO[t(n)]: Inductively define new state of every bit of every register of every processor in terms of this global state at the previous time step.

Thm. For all constructible, polynomially bounded t(n),

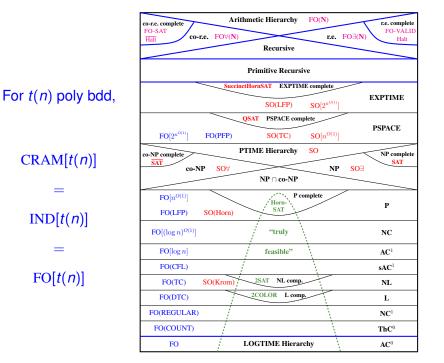
CRAM[t(n)] = IND[t(n)] = FO[t(n)]

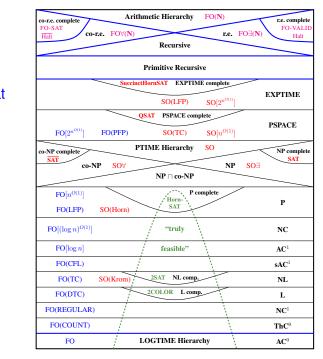
proof idea: CRAM[t(n)] \supseteq FO[t(n)]: For QB with k variables, keep in memory current value of formula on all possible assignments, using n^k bits of global memory. Simulate each next quantifier in constant parallel time.

 $CRAM[t(n)] \subseteq FO[t(n)]$: Inductively define new state of every bit of every register of every processor in terms of this global state at the previous time step.

Thm. For all t(n), even beyond polynomial,

 $\operatorname{CRAM}[t(n)] = \operatorname{FO}[t(n)]$





Remember that

for all t(n),

CRAM[t(n)]

FO[*t*(*n*)]

Number of Variables Determines Amount of Hardware

Thm. For $k = 1, 2, ..., DSPACE[n^k] = VAR[k + 1]$

Since variables range over a universe of size *n*, a constant number of variables can specify a polynomial number of gates.

Since variables range over a universe of size *n*, a constant number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

Since variables range over a universe of size *n*, a constant number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

A bounded number, k, of variables, is $k \log n$ bits and corresponds to n^k gates, i.e., polynomially much hardware.

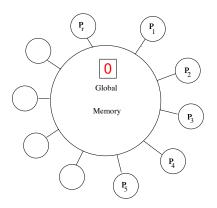
Since variables range over a universe of size *n*, a constant number of variables can specify a polynomial number of gates.

The proof is just a more detailed look at CRAM[t(n)] = FO[t(n)].

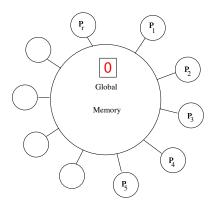
A bounded number, k, of variables, is $k \log n$ bits and corresponds to n^k gates, i.e., polynomially much hardware.

A second-order variable of arity *r* is n^r bits, corresponding to 2^{n^r} gates.

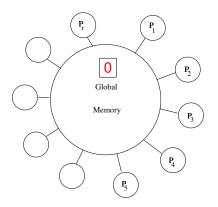
Given φ with *n* variables and *m* clauses, is $\varphi \in 3$ -SAT?



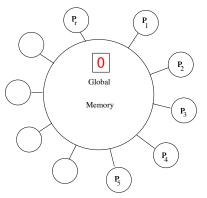
Given φ with *n* variables and *m* clauses, is $\varphi \in 3$ -SAT? With $r = m2^n$ processors, recognize 3-SAT in constant time!



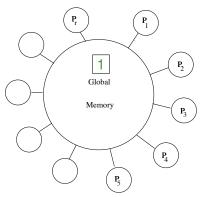
Given φ with *n* variables and *m* clauses, is $\varphi \in 3$ -SAT? With $r = m2^n$ processors, recognize 3-SAT in constant time! Let *S* be the first *n* bits of our processor number.



Given φ with *n* variables and *m* clauses, is $\varphi \in 3\text{-SAT}$? With $r = m2^n$ processors, recognize 3-SAT in constant time! Let *S* be the first *n* bits of our processor number. If processors *S*1,... *Sm* notice that truth assignment *S* makes all *m* clauses of φ true, then $\varphi \in 3\text{-SAT}$,



Given φ with *n* variables and *m* clauses, is $\varphi \in 3$ -SAT? With $r = m2^n$ processors, recognize 3-SAT in constant time! Let *S* be the first *n* bits of our processor number. If processors *S*1,... *Sm* notice that truth assignment *S* makes all *m* clauses of φ true, then $\varphi \in 3$ -SAT, so *S*1 writes a 1.



Thm. SO[t(n)] = CRAM[t(n)]-HARD[$2^{n^{O(1)}}$].

Thm. SO[t(n)] = CRAM[t(n)]-HARD[$2^{n^{O(1)}}$].

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block containing both first-order and second-order quantifiers. The proof is similar to FO[t(n)] = CRAM[t(n)].

Thm. SO[
$$t(n)$$
] = CRAM[$t(n)$]-HARD[$2^{n^{O(1)}}$].

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block containing both first-order and second-order quantifiers. The proof is similar to FO[t(n)] = CRAM[t(n)].

Cor.

SO = PTIME Hierarchy =
$$CRAM[1]$$
-HARD $[2^{n^{O(1)}}]$

Thm. SO[
$$t(n)$$
] = CRAM[$t(n)$]-HARD[$2^{n^{O(1)}}$].

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block containing both first-order and second-order quantifiers. The proof is similar to FO[t(n)] = CRAM[t(n)].

Cor.

SO = PTIME Hierarchy = CRAM[1]-HARD[
$$2^{n^{O(1)}}$$
]
SO[$n^{O(1)}$] = PSPACE = CRAM[$n^{O(1)}$]-HARD[$2^{n^{O(1)}}$]

Thm. SO[
$$t(n)$$
] = CRAM[$t(n)$]-HARD[$2^{n^{O(1)}}$].

proof: SO[t(n)] is like FO[t(n)] but using a quantifier block containing both first-order and second-order quantifiers. The proof is similar to FO[t(n)] = CRAM[t(n)].

Cor.

SO	=	PTIME Hierarchy	=	CRAM[1]-HARD[2 ^{n^{O(1)}]}
SO[<i>n</i> ^{O(1)}]	=	PSPACE	=	$CRAM[n^{O(1)}]-HARD[2^{n^{O(1)}}]$
SO[2 ^{<i>n</i>^{O(1)}]}	=	EXPTIME	=	$CRAM[2^{n^{O(1)}}]-HARD[2^{n^{O(1)}}]$

Parallel Time versus Amount of Hardware

- $PSPACE = FO[2^{n^{O(1)}}] = CRAM[2^{n^{O(1)}}]-HARD[n^{O(1)}]$
 - = $SO[n^{O(1)}]$ = $CRAM[n^{O(1)}]$ -HARD $[2^{n^{O(1)}}]$

Parallel Time versus Amount of Hardware

$$PSPACE = FO[2^{n^{O(1)}}] = CRAM[2^{n^{O(1)}}] - HARD[n^{O(1)}]$$
$$= SO[n^{O(1)}] = CRAM[n^{O(1)}] - HARD[2^{n^{O(1)}}]$$

We would love to understand this tradeoff.

$$PSPACE = FO[2^{n^{O(1)}}] = CRAM[2^{n^{O(1)}}]-HARD[n^{O(1)}]$$

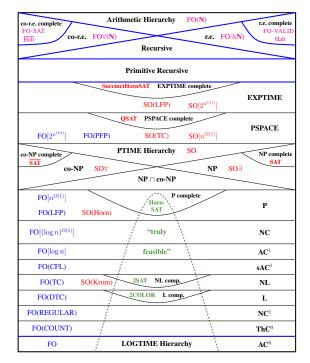
= $SO[n^{O(1)}]$ = $CRAM[n^{O(1)}]$ -HARD[$2^{n^{O(1)}}$]

- We would love to understand this tradeoff.
- ► Is there such a thing as an inherently sequential problem?, i.e., is NC ≠ P?

$$PSPACE = FO[2^{n^{O(1)}}] = CRAM[2^{n^{O(1)}}]-HARD[n^{O(1)}]$$

= $SO[n^{O(1)}]$ = $CRAM[n^{O(1)}]$ -HARD[$2^{n^{O(1)}}$]

- We would love to understand this tradeoff.
- ► Is there such a thing as an inherently sequential problem?, i.e., is NC ≠ P?
- Same tradeoff as number of variables vs. number of iterations of a quantifier block.



SO[*t*(*n*)]

CRAM[t(n)]-HARD-[$2^{n^{O(1)}}$]

Recent Breakthroughs in Descriptive Complexity

Theorem [Ben Rossman] Any first-order formula with any numeric relations (\leq , +, ×, ...) that means "I have a clique of size *k*" must have at least *k*/4 variables.

Creative new proof idea using Håstad's Switching Lemma gives the essentially optimal bound.

This lower bound is for a fixed formula, if it were for a sequence of polynomially-sized formulas, i.e., a fixed-point formula, it would follow that CLIQUE \notin P and thus P \neq NP.

Best previous bounds:

- k variables necessary and sufficient without ordering or other numeric relations [I 1980].
- Nothing was known with ordering except for the trivial fact that 2 variables are not enough.

Recent Breakthroughs in Descriptive Complexity

Theorem [Martin Grohe] Fixed-Point Logic with Counting captures Polynomial Time on all classes of graphs with excluded minors.

Grohe proves that for every class of graphs with excluded minors, there is a constant k such that two graphs of the class are isomorphic iff they agree on all k-variable formulas in fixed-point logic with counting.

Using Ehrenfeucht-Fraïssé games, this can be checked in polynomial time, $(O(n^k(\log n)))$. In the same time we can give a canonical description of the isomorphism type of any graph in the class. Thus every class of graphs with excluded minors admits the same general polynomial time canonization algorithm: we're isomorphic iff we agree on all formulas in C_k and in particular, you are isomorphic to me iff your C_k canonical description is equal to mine.

Thm. REACH is complete for NL = NSPACE[log n].

Proof: Let $A \in NL$, $A = \mathcal{L}(N)$, uses $c \log n$ bits of worktape. Input w, n = |w|

$$w \mapsto \text{CompGraph}(N, w) = (V, E, s, t)$$

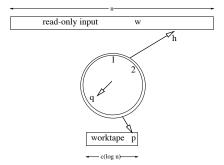
$$V = \{ \mathrm{ID} = \langle q, h, p \rangle \mid q \in \mathrm{States}(N), h \leq n, |p| \leq c \lceil \log n \rceil \}$$

$$E = \{(\mathrm{ID}_1, \mathrm{ID}_2) \mid \mathrm{ID}_1(w) \xrightarrow{N} \mathrm{ID}_2(w)\}$$

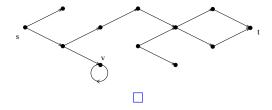
s = initial ID

t = accepting ID

NSPACE[log n] Turing Machine



Claim. $w \in \mathcal{L}(N) \Leftrightarrow \text{CompGraph}(N, w) \in \text{REACH}$



$Cor: NL \subseteq P$

Proof: $\mathsf{REACH} \in \mathsf{P}$

P is closed under (logspace) reductions.

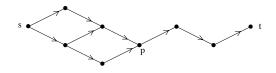
i.e.,
$$(B \in P \land A \leq B) \Rightarrow A \in P$$

Prop. NSPACE[s(n)] \subseteq NTIME[$2^{O(s(n))}$] \subseteq DSPACE[$2^{O(s(n))}$]

We can do much better!

Savitch's Theorem

$\mathsf{REACH} \in \mathsf{DSPACE}(\log n)^2$



proof:

$$\begin{array}{rcl} G \in \mathsf{REACH} & \Leftrightarrow & G \models \mathsf{PATH}_n(s,t) \\ \mathsf{PATH}_1(x,y) & \equiv & x = y \ \lor \ E(x,y) \\ \mathsf{PATH}_{2d}(x,y) & \equiv & \exists z \left(\mathsf{PATH}_d(x,z) \ \land \ \mathsf{PATH}_d(z,y)\right) \end{array}$$

 $S_n(d)$ = space to check paths of dist. *d* in *n*-nodegraphs

$$S_n(n) = \log n + S_n(n/2)$$

= $O((\log n)^2)$

 $DSPACE[s(n)] \subseteq NSPACE[n] \subseteq DSPACE[(s(n))^2]$

proof: Let $A \in \text{NSPACE}[s(n)]; \quad A = \mathcal{L}(N)$

 $w \in A$ \Leftrightarrow CompGraph $(N, w) \in \mathsf{REACH}$

$$|w| = n;$$
 $|CompGraph(N, w)| = 2^{O(s(n))}$

Testing if $CompGraph(N, w) \in REACH$ takes space,

$$(\log(|\operatorname{CompGraph}(N, w)|))^2 = (\log(2^{O(s(n))}))^2$$
$$= O((s(n))^2)$$

From *w* build CompGraph(N, *w*) in DSPACE[s(n)].

$\overline{\mathsf{REACH}} \in \mathrm{NL}$

proof: Fix G, let $N_d = |\{v \mid \text{distance}(s, v) \leq d\}|$

Claim: The following problems are in NL:

1. dist
$$(x, d)$$
: distance $(s, x) \leq d$

2. NDIST(x, d; m): if $m = N_d$ then $\neg dist(x, d)$

proof:

- 1. Guess the path of length $\leq d$ from *s* to *x*.
- 2. Guess *m* vertices, $v \neq x$, with dist(*v*, *d*).

```
c := 0;
for v := 1 to n do { // nondeterministically
(dist(v, d) && v \neq x; c + +) ||
(no-op)
}
if (c == m) then ACCEPT
```

Claim. We can compute N_d in NL.

proof: By induction on *d*.

Base case: $N_0 = 1$

Inductive step: Suppose we have N_d .

1.
$$c := 0$$
;
2. for $v := 1$ to n do { // nondeterministically
3. (dist($v, d + 1$); $c + +$) ||
4. ($\forall z (NDIST(z, d; N_d) \lor (z \neq v \land \neg E(z, v)))$)
5. }
6. $N_{d+1} := c$

$$G \in \overline{\mathsf{REACH}} \Leftrightarrow \mathsf{NDIST}(t, n; N_n)$$

Thm. NSPACE[s(n)] = co-NSPACE[s(n)]. proof: Let $A \in NSPACE[s(n)]$; $A = \mathcal{L}(N)$

 $w \in A$ \Leftrightarrow CompGraph $(N, w) \in \mathsf{REACH}$

$$|w| = n;$$
 $|CompGraph(N, w)| = 2^{O(s(n))}$

Testing if CompGraph(N, w) $\in \overline{\mathsf{REACH}}$ takes space,

$$log(|CompGraph(N, w)|) = log(2^{O(s(n))}) \\ = O(s(n))$$

Diagonalization: more of the same resource gives us more:

```
DTIME[n] \stackrel{\frown}{\neq} DTIME[n^2],
same for DSPACE, NTIME, NSPACE, ...
```

Diagonalization: more of the same resource gives us more:

```
DTIME[n] \stackrel{\frown}{\neq} DTIME[n^2],
same for DSPACE, NTIME, NSPACE, ...
```

Natural Complexity Classes have Natural Complete Problems

SAT for NP, CVAL for P, QSAT for PSPACE, ...

Diagonalization: more of the same resource gives us more:

```
DTIME[n] \stackrel{\frown}{\downarrow} DTIME[n^2],
same for DSPACE, NTIME, NSPACE, ...
```

Natural Complexity Classes have Natural Complete Problems

SAT for NP, CVAL for P, QSAT for PSPACE, ...

 Major Missing Idea: concept of work or conservation of energy in computation, i.e,

in order to solve SAT or other hard problem we must do a certain amount of computational work.

► [Sipser]: strict first-order alternation hierarchy: FO.

- ► [Sipser]: strict first-order alternation hierarchy: FO.
- ► [Beame-Håstad]: hierarchy remains strict up to FO[log *n*/log log *n*].

- ► [Sipser]: strict first-order alternation hierarchy: FO.
- ► [Beame-Håstad]: hierarchy remains strict up to FO[log *n*/log log *n*].
- $NC^1 \subseteq FO[\log n / \log \log n]$ and this is tight.

- ► [Sipser]: strict first-order alternation hierarchy: FO.
- ► [Beame-Håstad]: hierarchy remains strict up to FO[log *n*/log log *n*].
- $NC^1 \subseteq FO[\log n / \log \log n]$ and this is tight.
- Does REACH require FO[log n]? This would imply NC¹ ≠ NL.

Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.

- Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.
- We conjecture that SAT requires $DTIME[\Omega(2^{\epsilon n})]$ for some $\epsilon > 0$, but no one has yet proved that it requires more than DTIME[n].

- Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.
- We conjecture that SAT requires DTIME[Ω(2^{εn})] for some ε > 0, but no one has yet proved that it requires more than DTIME[n].
- Basic trade-offs are not understood, e.g., trade-off between time and number of processors. Are any problems inherently sequential? How can we best use mulitcores?

- Much is known about approximation, e.g., some NP complete problems, e.g., Knapsack, Euclidean TSP, can be approximated as closely as we want, others, e.g., Clique, can't be.
- We conjecture that SAT requires $DTIME[\Omega(2^{\epsilon n})]$ for some $\epsilon > 0$, but no one has yet proved that it requires more than DTIME[n].
- Basic trade-offs are not understood, e.g., trade-off between time and number of processors. Are any problems inherently sequential? How can we best use mulitcores?
- SAT solvers are impressive new general purpose problem solvers, e.g., used in model checking, AI planning, code synthesis. How good are current SAT solvers? How much can they be improved?

Fact: For constructible t(n), FO[t(n)] = CRAM[t(n)]

Fact: For $k = 1, 2, ..., VAR[k + 1] = DSPACE[n^k]$

The complexity of computing a query is closely tied to the complexity of describing the query.

$$P = NP \iff FO(LFP) = SO$$

 $ThC^0 = NP \iff FO(MAJ) = SO$
 $P = PSPACE \iff FO(LFP) = SO(TC)$

