

12 Turing Machines with Oracles

Let $A \subseteq \{0, 1\}^*$ be any decision problem.

A TM, M with oracle A , written M^A has an **oracle tape**. When it writes w on its oracle tape and enters a query state, it finds out on the next step whether $w \in A$.

Let P^A , NP^A , etc., be the complexity classes of polynomial-time TM's with oracle, A , nondeterministic polynomial-time TM's with oracle, A , etc.

The **idea** of using oracles, is that most of the proof methods we have been using tend to go through when the same oracle, A , is given to all TM's being considered. We say that a statement about Turing Machines, S , **relativizes**, if for all $A \subseteq \{0, 1\}^*$, $S \Leftrightarrow S^A$, where S^A is the statement S where all TM's are given the oracle A . Most theorems we have proved so far in 601 relativize.

The main result of today is:

Theorem 12.1 [Baker, Gill and Solovay] *There exist oracles A, B , s.t. $P^A = NP^A$ and $P^B \neq NP^B$.*

Corollary 12.2 *The statements “ $P = NP$ ” and “ $P \neq NP$ ” do not relativize.*

Proof: Let $A = \text{QSAT}$, or any other PSPACE-complete problem.

Claim 12.3 $P^{\text{QSAT}} \subseteq NP^{\text{QSAT}} = \text{PSPACE}$

To prove Claim 12.3, just observe that $\text{PSPACE} \subseteq P^{\text{QSAT}}$ and $NP^{\text{QSAT}} \subseteq \text{PSPACE}$.

We construct the oracle, B , by hiding useful information among the 2^n strings of length n such that an NP machine can guess and find it, but a P machine cannot.

We now construct an oracle B s.t., $\text{P}^B \neq \text{NP}^B$.

Let the undecidable problem $\text{UHALT} \stackrel{\text{def}}{=} \{1^n \mid n \in \text{HALT}\}$.

We will construct $B \subseteq \{0, 1\}^*$ to have at most one string of each length, so that

$$\text{UHALT} = \{1^n \mid \exists w \in B (|w| = n)\}.$$

That is, B will have a string of length n iff $n \in \text{UHALT}$. It thus follows that $\text{UHALT} \in \text{NP}^B$.

However, we will hide these strings in such a way that for each unary language accepted by PTIME TM, M_i , $M_i(1^r)^B$ receives a “yes” on some query for at most finitely many r . That is, all but finitely many of the strings in B are hidden from each fixed unary languages in P^B . Thus a unary language is in P iff it is in P^B , so $\text{UHALT} \notin \text{P}^B$.

To construct B , let C_0, C_1, C_2, \dots be the set of **clocked, ptime TM's** where C_i simulates M_i , but also keeps a clock that runs for at most $i n^i$ steps for all inputs, w , of length n . If the clock runs out before $M_i(w)$ halts, then $C_i(w)$ halts and rejects.

We construct B inductively. Assume that B_n is the initial segment of B consisting of strings of length $< n$ and that E_n is a set of fewer than $2^{(n-1)}$ strings that have been previously excluded, i.e., we will never put them into B .

For a **total** of 2^{n-1} steps, until you run out of time, for each $i = 0, 1, \dots \infty$, for each unary input, 1^j , $j = 1, 2, \dots n$, simulate $C_i^{B_n}(1^j)$. Let E_{n+1} be E_n together with all the queried strings w of length at least n . These strings were not in B_n when queried by $C_i^{B_n}(1^j)$, and they will be kept forever out of B , so all these simulations remain unchanged when we add strings to B .

By construction, E_{n+1} contains fewer than 2^n strings. Let $w_n \in \{0, 1\}^n - E_{n+1}$.

If $n \in \text{HALT}$, let $B_{n+1} = B_n \cup \{w_n\}$; otherwise, let $B_{n+1} = B_n$.

Why does this construction work? Note, that for each fixed i , it takes time less than $i^2 n^{i+1}$ to complete the simulation of $C_k(1^j)$ for all $k \leq i$ and $j \leq n$. Let N_i be such that $2^{N_i-1} > i^2 N_i^{i+1}$. Thus, C_i^B never gets a positive answer to a query concerning a string of length greater than N_i . \square