12 Turing Machines with Oracles

Let A C {0, 1}* be any decision problem.

A TM, M with oracle A, written M has an oracle tape. When it writes w on its oracle tape and enters a query
state, it finds out on the next step whether w € A.

Let P4, NP4, etc., be the complexity classes of polynomial-time TM’s with oracle, A, nondeterministic polynomial-
time TM’s with oracle, A, etc.

The idea of using oracles, is that most of the proof methods we have been using tend to go through when the same
oracle, A, is given to all TM’s being considered. We say that a statement about Turing Machines, S, relatives,
if forall A C {0,1}*, S & S4, where S4 is the statement S where all TM’s are given the oracle A. Most
theorems we have proved so far in 601 relativize.

The main result of today is:

Theorem 12.1 [Baker, Gill and Solovay] There exist oracles A, B, s.t. PA=NP* and PP # NP5,

Corollary 12.2 The statements “P = NP” and “P # NP” do not relativize.

Proof: Let A = QSAT, or any other PSPACE-complete problem.

Claim 12.3 PQSAT ¢ NpQSAT _ pgpacE

To prove Claim|[12.3] just observe that PSPACE C PRSAT 4ng NpQSAT ¢ pSpACE.

We construct the oracle, B, by hiding useful information among the 2" strings of length n such that an NP machine
can guess and find it, but a P machine cannot.

We now construct an oracle Bs.t., PP £ NP,

def

Let the undecidable problem UHALT <= {1" | n € HALT}.

We will construct B C {0, 1}* to have at most one string of each length, so that
UHALT = {1"|3we B (jw|=n)}.

That is, B will have a string of length n iff n € UHALT. It thus follows that UHALT € NP?.

However, we will hide these strings in such a way that for each unary language accepted by PTIME TM, M;,
M;(17)B receives a “yes” on some query for at most finitely many r. That is, all but finitely many of the strings in
B are hidden from each fixed unary languages in PZ. Thus a unary language is in P iff it is in P?, so UHALT ¢
P~

To construct B, let Cy, C, Cy, ... be the set of clocked, ptime TM’s where C; simultates M;, but also keeps a

clock that runs for at most in’ steps for all inputs, w, of length n. If the clock runs out before M;(w) halts, then
C;(w) halts and rejects.

We construct B inductively. Assume that B, is the initial segment of B consisting of strings of length < n and
that ,, is a set of fewer than 2("~ " strings that have been previously excluded, i.e., we will never put them into
B.

For a total of 2! steps, until you run out of time, foreachi = 0, 1, . . . oo, for each unary input, 17, j = 1,2, ... n,
simulate C’iB "(19). Let E,, 1 be E,, together with all the queried strings w of length at least n. These strings were
not in B,, when queried by C’iB"(lj), and they will be kept forever out of B, so all these simulations remain
unchanged when we add strings to B.

By construction, F,, 1 contains fewer than 2" strings. Let w,, € {0,1}" — E,, ;.
If n € HALT, let B,y = B, U {w,}; otherwise, let B,,.1 = B,,.

Why does this construction work? Note, that for each fixed ¢, it takes time less than i*n*™! to complete the
simulation of Cj,(17) for all k < i and j < n. Let N; be such that 2¥i=1 > §2N/™!, Thus, CF never gets a positive
answer to a query concerning a string of length greater than V;. U

	Turing Machines with Oracles

