
12 Turing Machines with Oracles

Let A ⊆ {0, 1}? be any decision problem.

A TM, M with oracle A, written MA has an oracle tape. When it writes w on its oracle tape and enters a query
state, it finds out on the next step whether w ∈ A.

Let PA,NPA, etc., be the complexity classes of polynomial-time TM’s with oracle, A, nondeterministic polynomial-
time TM’s with oracle, A, etc.

The idea of using oracles, is that most of the proof methods we have been using tend to go through when the same
oracle, A, is given to all TM’s being considered. We say that a statement about Turing Machines, S, relatives,
if for all A ⊆ {0, 1}?, S ⇔ SA, where SA is the statement S where all TM’s are given the oracle A. Most
theorems we have proved so far in 601 relativize.

The main result of today is:

Theorem 12.1 [Baker, Gill and Solovay] There exist oracles A,B, s.t. PA = NPA and PB 6= NPB.

Corollary 12.2 The statements “P = NP” and “P 6= NP” do not relativize.

Proof: Let A = QSAT, or any other PSPACE-complete problem.

Claim 12.3 PQSAT ⊆ NPQSAT = PSPACE

To prove Claim 12.3, just observe that PSPACE ⊆ PQSAT and NPQSAT ⊆ PSPACE.

We construct the oracle, B, by hiding useful information among the 2n strings of length n such that an NP machine
can guess and find it, but a P machine cannot.

1

We now construct an oracle B s.t. , PB 6= NPB.

Let the undecidable problem UHALT def
=

{
1n

∣∣ n ∈ HALT
}

.

We will construct B ⊆ {0, 1}? to have at most one string of each length, so that

UHALT =
{
1n

∣∣ ∃w ∈ B (|w| = n)
}
.

That is, B will have a string of length n iff n ∈ UHALT. It thus follows that UHALT ∈ NPB.

However, we will hide these strings in such a way that for each unary language accepted by PTIME TM, Mi,
Mi(1

r)B receives a “yes” on some query for at most finitely many r. That is, all but finitely many of the strings in
B are hidden from each fixed unary languages in PB. Thus a unary language is in P iff it is in PB, so UHALT 6∈
PB.

To construct B, let C0, C1, C2, . . . be the set of clocked, ptime TM’s where Ci simultates Mi, but also keeps a
clock that runs for at most ini steps for all inputs, w, of length n. If the clock runs out before Mi(w) halts, then
Ci(w) halts and rejects.

We construct B inductively. Assume that Bn is the initial segment of B consisting of strings of length < n and
that En is a set of fewer than 2(n−1) strings that have been previously excluded, i.e., we will never put them into
B.

For a total of 2n−1 steps, until you run out of time, for each i = 0, 1, . . .∞, for each unary input, 1j , j = 1, 2, . . . n,
simulate CBn

i (1j). Let En+1 be En together with all the queried strings w of length at least n. These strings were
not in Bn when queried by CBn

i (1j), and they will be kept forever out of B, so all these simulations remain
unchanged when we add strings to B.

By construction, En+1 contains fewer than 2n strings. Let wn ∈ {0, 1}n − En+1.

If n ∈ HALT, let Bn+1 = Bn ∪ {wn}; otherwise, let Bn+1 = Bn.

Why does this construction work? Note, that for each fixed i, it takes time less than i2ni+1 to complete the
simulation of Ck(1

j) for all k ≤ i and j ≤ n. Let Ni be such that 2Ni−1 > i2N i+1
i . Thus, CB

i never gets a positive
answer to a query concerning a string of length greater than Ni. �

2

	Turing Machines with Oracles

