\ CS601 Nondeterministic TM Lecture 5 \

Nondeterministic Turing Machines choose one of two possible moves each step.

guess.tm S g q
0
1
U g,U,—|q,U,—1]s0— |s1,—
> 5>, —
| comment | gorgq | guessOor1 | therest |

Nondeterministic Guess Machine is a typical example:

e Write down an arbitrary string, g € {0, 1}*: the guess.
e Proceed with the rest of the computation, using g if desired.

e Accept iff there exists some guess that leads to acceptance.

[1[1]0] [1[0}
g [>]0]1[1]0] [1[4]]
guess.tm S q q
0
1
U gal—la_|Q7|—|7_ 8707_> |8717_>
> 5>, —
| comment | gorq | guessOorl | therest |

Definition 5.1 The set accepted by a NTM, N:

LN) = {weU ‘ some run of /V(w) halts with output “1”

The time taken by N on w € L(N) is the number of steps in the shortest computation of V(w) that accepts. [

Unfortunately, this is a mathematical fiction.

As far as we know, you can’t really build a nondeterministic Turing Machine.

Lecture 5

NTIME[¢(n)]

CS601

~~
=

N—’

-

@\

S O O O O O o o - O O O O O o o o o o o o o

RIREELIEE LR

t(n)

bi(n)

by b3

by

We start by assuming that you know the following:
Fact 5.2 Cook’s Thm: CNF-SAT is NP-complete.
Prop: 3-SAT is NP-complete.

Proof: Show SAT < 3-SAT.

Example: C = (LLVvieyVv---Vig)

C' = (VL Vd) A (dVElsVdy) A (dyVLlyVds) A
(ds V U5V dy) A (dy V lg V £7)

Claim5.3 (' € SAT & C" € 3-SAT
Do this construction for each clause independently.

Working assumption: 3-SAT requires 2" time.

Proposition 5.4 3-COLOR is NP-complete (NPC).

Proof: Saw previously that 3-COLOR < NP.

Show 3-SAT < 3-COLOR:

p= Cy, NCy N --- NCy € 3-CNF, var(p) = {xl,xg,...,xn}

Must build graph G(¢) s.t.

0 €3-SAT < G(y)€3-COLOR

(1 encodes clause Cy = (T1 V 25 V T3)

Claim 5.5 Triangle a1, by, dy serves as an “or”-gate: d; may be colored “true” iff at least one of its inputs 1, xs
is colored “true’.

A three coloring of the literals can be extended to color G; iff the corresponding truth assignment makes C; true.
OJ

Proposition 5.6 CLIQUE is NP-complete.
Proof: Show SAT < CLIQUE.

o= Ci NCy AN -+ NCLeE3CNF, C)= (11 VT3VT,), var(y) = {xl,xz,...,xn}

Must build graph g(¢) s.t. ¢ € SAT & g() € CLIQUE

Cl
CZ
O O O ©
O O O ©
O O O ©
Ct o o e o © OO e o
X, X, X, X, X, X,

glp) = (Vg(so)7Eg(sO)’]{g(so))’ BICP) — ¢ 41
vIle) — (C'x L)yU{wp}, L:{xl,...,xn,il,...,fn}; C:{Cla'-'act}

B9 = {({e1,01), {ca,65)) | e1 # caand by # Lo} U {(wo, (c, €)), ({c, €),wp) | ¢ occursin c}

Subset Sum = {ml,...,mT,T € N

Proposition 5.7 Subset Sum is NP-Complete.

Show 3-SAT < Subset Sum.

o= Cy NCy N --- NC; € 3-CNF, var(p) = {xl,mg,...,xn}

Build f € FL such that forall ¢, ¢ € 3-SAT & f(¢) € Subset Sum

Ty Tog - wz, C7 Cy C
|1 1 1 3 3 3
T 1 0 0 1 0 1 Clz<$1 \/I‘_Q\/Qig)
1|1 O 0 O 1 0
) 0 1 0 0 1 1 02:(1'_1\/172\/$n)
T2 | 0 1 0O 1 O 0
S B S C o Cy= (1 Vaa VT,)
z, | 0 O 1 0 1 0
z,| 0 O 1 0 O 1
ap | 0 O 0 1 0 0
bp | 0 O 0 1 0 0
a | 0 O 0O O 1 0
b, | 0 O 0O 0 1 0
a | 0 0 0O 0 O 1
b | 0 O 0O 0 O 1

Knapsack: n objects; I/ = max weight I can carry in my knapsack.

object | 01 09 On,
weight | w; wo w, | >0
value | v; vy Up,

Optimization Problem:

choose S C {1, ...

,n} to maximizeZvi such that Zwi < W
i€S i€S

Decision Problem: Given w,v, W,V canlget total value > V while total weightis < W?

Proposition 5.8 Knapsack is NP-Complete.

Proof:

Let [= (my,...m,,T) be a Subset Sum instance.

Problem: 375 C {1,...

f) = {my,...my,mq,...,

,n} (Zml =

€S

my, T,T) is

Claim: I € Subset Sum <

7)

a Knapsack instance.

f(I) € Knapsack

35 C {1,. (Zmlz) &

35 C {1,

€S

(z:mZ > T A Zmz < T)

€S €S

Fact 5.9 Even though Knapsack is NP-Complete there is an efficient dynamic programming algorithm that can
closely approximate the maximum possible V.

Knapsack and Subset Sum are NP complete decision problems when we have to get the answer exactly right
on all polynomially many digits. We can efficiently get it right to 10 (in fact to log n) digits of accuracy.

