Theorem 9.1 REACH € NL

Proof: Fix G,let Ny = |{v | distance(s,v) < d}|

Claim: The following problems are in NL:

1. DIST(z,d): distance(s,z) < d
2. NDIST(z,d;m): if m = N, then =DIST(x, d)

Proof:

1. Guess the path of length < d from s to x.

2. Guess m vertices, v # x, with DIST (v, d).

c:=0;

forv:=1ton do{ //nondeterministically
(DIST(v,d) && v # x;c++) |
(no-op)

}

if (c == m) then ACCEPT

Claim: We can compute /N, in NL.

Proof: By induction on d.
Base case: Ny =1
Inductive step: Suppose we have N;.

1. ¢:=0;

2. forv:=1ton do{ // nondeterministically

(DIST(v,d+1);¢c++) ||
(Vz (NDIST(z,d; Ng) V (2 #vA—-E(z,v))))
¥

. Nd+1 =cC

o v W

G € REACH <« NDIST(t,n; N,)

Theorem 9.2 [Immerman-Szelepcsényi] If s(n) > logn, Then, NSPACEs(n) = co-NSPACEs(n)

Proof: Let A € NSPACEs(n); A= L(N)

weA & CompGraph(N,w) € REACH

lw| = n; |CompGraph(N, w)| = 20¢()

Testing if CompGraph(/V, w) € REACH takes space,

log(|CompGraph(N, w)|) = log(20¢))
= O(s(n))

PSPACE
PSPACE = DSPACEn°Y] = NSPACE[n°Y)]

e PSPACE consists of what we could compute with a feasible amount of hardware, but with no time limit.
e PSPACE is a large and very robust complexity class.

e With polynomially many bits of memory, we can search any implicitly-defined graph of exponential size.
This leads to complete problems such as reachability on exponentially-large graphs.

e We can search the game tree of any board game whose configurations are describable with polynomially-
many bits and which lasts at most polynomially many moves. This leads to complete problems concerning
winning strategies.

PSPACE-Complete Problems

Def: The quantified satisfiability problem (QSAT) is the set of true formulas of the following form:

U = Qir; Qs -+ Qpx, (90)

For any boolean formula ¢ on variables 7,

¢ € SAT < Jz(p) € QSAT
0 & SAT & VZ(—p) € QSAT

Thus QS AT logically contains SAT and SAT.

Fact 9.3 QSAT is PSPACE-complete.

Proof: QSAT is in PSPACE because we can use n bits of space to systematically search the 2" possible assign-
ments to the variables of the formula ¢ to check if it is true. For example, if ¢ = Jx11(z1), then to check if ¢ is
true, we first check if ¢(0) is true. If so, the answer is “yes”; else we reuse the same space to accept iff ¢)(1) is
true. Thus each new variable only requires one more bit of space.

To show that QS AT is PSPACE hard, we reduce SUCCINCT REACH to QSAT. The main point is that given a
succinct representation of a graph, G, we must write the quantified boolean formula ¢(G) which will be true iff
there is a path in G of length at most 2" from s to ¢.

Inductively, we write the formula P,(x, y) meaning that there is a path from z to y of length at most d, inductively
as follows:

FPo(z,y) = F2(Pap(r,2) A Pap(z,y)) -

Note that x,y, and z are written with n bits each. Next, using a universal boolean quantifier, we shorten the
formula by writing P4/, only once:

Py(z,y) = FVoEF2",y (bA' =2 ANy =2)V(mbAZ =2AY =y))) (P, y))

For the base case, d = 1, we have to show that a boolean circuit can be evaluated by a formula in QSAT. This
formula simply guesses the values of all the gates of the circuit and asserts that they are evaluated correctly and
the root is true, i.e., evaluates to 1. O

Geography is a two-person game.

1. F “chooses” the start vertex v.
2. A chooses v9, having an edge from v,

3. I chooses v3, having an edge from s, etc.

No vertex may be chosen twice. Whoever moves last wins.

Let GEOGRAPHY be the set of positions in geography games s.t. 7 has a winning strategy.

Proposition 9.4 GEOGRAPHY is PSPACE-complete.

Proof: @ GEOGRAPHY € PSPACE: search the polynomial-depth game tree. A polynomial-size stack
suffices.

Show: QSAT < GEOGRAPHY

Given formula, ¢, build graph G, s.t.

chooses existential variables; V chooses (a v b)
universal variables.
¢ = daVbdc b
'V b) A _

[(il) (bvc)

(bve) A

(bve)

C (bvc)
O

Definition 9.5 A succinct representation of a graphis G(n,C,s,t) = (V, E,s,t)
where C'is a boolean circuit with 2n inputs and

V = {w|we{0,1}"}

E = {(ww) | Clw,w)=1}

SUCCINCT REACH = {(n,C,s,t) | G(n,C,s,t) € REACH}
Proposition 9.6 SUCCINCT REACH € PSPACE
Why?
Remember Savitch’s Thm:

REACH € NSPACE[log n] € DSPACE([(log n)?]

SUCCINCT REACH € NSPACE[n] C DSPACE[n?] C PSPACE

Proposition 9.7 SUCCINCT REACH is PSPACE-complete.
Proof: Let M be a DSPACE[n*] TM, inputw, n = |w|
M(w)=1 <+ CompGraph(M,w) € REACH

CompGraph(n,w) = (V,E,s,t)

{ID = (¢, h,p) | q € States(N),h <n,|p| < cn*}

& <
I

= {(IDy,ID,) | ID;(w) — IDy(w) }
initial ID
accepting ID

~ O
I

Succinct Representation of CompGraph(n, w):

V = {ID= (g h,p) | q € States(N),h <n,|p| <cn"}

E = {(IDy,IDy) | ID;(w) — IDy(w)}

Let V = {0,1}<""

Build circuit C,: on input u, v € V, accept iff u — .

Mw)=1 < G(dn* C,,s,t) € SUCCINCT REACH

Arithmetic Hierarchy FO(N)

r.e. complete
Halt

co-r.e. complete

FOV(N) FO4(N)

Recursive

Primitive Recursive

SO[27""] EXPTIME

QSAT PSPACE complete
FO[2"""] SO[nCW)] PSPACE

PTIME Hierarchy SO

co-NP complete NP complete
SAT . SAT
co-NP SOV S0 NP
NP N co-NP
Oo(1) ,+° "+, P complete

FO [n] . Horn-* P
FO(LFP)

FO [1Og0(1) n] :,' “truly ““ NC
FO [10g TL] :' feasible” “‘ ACl
FO(CFL) ," “‘ sAC!

FO(TC) TZSAT NLcomp,—T NL

FO(DTC) 2COLOR W L
FO(REGULAR) NC!
FO(COUNT) ThC?
FO LOGTIME Hierarchy ACO

