
Theorem 9.1 REACH ∈ NL

Proof: Fix G, let Nd =
∣∣{v ∣∣ distance(s, v) ≤ d

}∣∣
Claim: The following problems are in NL:

1. DIST(x, d): distance(s, x) ≤ d

2. NDIST(x, d;m): if m = Nd then ¬DIST(x, d)

Proof:

1. Guess the path of length ≤ d from s to x.

2. Guess m vertices, v 6= x, with DIST(v, d).

c := 0;
for v := 1 to n do { // nondeterministically

( DIST(v, d) && v 6= x; c+ + ) ||
( no-op )

}
if (c == m) then ACCEPT

�
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Claim: We can compute Nd in NL.

Proof: By induction on d.

Base case: N0 = 1

Inductive step: Suppose we have Nd.

1. c := 0;

2. for v := 1 to n do { // nondeterministically

3. ( DIST(v, d+ 1); c+ +) ||
4. (∀z (NDIST(z, d;Nd) ∨ (z 6= v ∧ ¬E(z, v))))

5. }
6. Nd+1 := c

�

G ∈ REACH ⇔ NDIST(t, n;Nn) �

Theorem 9.2 [Immerman-Szelepcsényi] If s(n) ≥ log n, Then, NSPACEs(n) = co-NSPACEs(n)

Proof: Let A ∈ NSPACEs(n); A = L(N)

w ∈ A ⇔ CompGraph(N,w) ∈ REACH

|w| = n; |CompGraph(N,w)| = 2O(s(n))

Testing if CompGraph(N,w) ∈ REACH takes space,

log(|CompGraph(N,w)|) = log(2O(s(n)))

= O(s(n))

�
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PSPACE

PSPACE = DSPACE[nO(1)] = NSPACE[nO(1)]

• PSPACE consists of what we could compute with a feasible amount of hardware, but with no time limit.

• PSPACE is a large and very robust complexity class.

• With polynomially many bits of memory, we can search any implicitly-defined graph of exponential size.
This leads to complete problems such as reachability on exponentially-large graphs.

• We can search the game tree of any board game whose configurations are describable with polynomially-
many bits and which lasts at most polynomially many moves. This leads to complete problems concerning
winning strategies.

3



PSPACE-Complete Problems

Def: The quantified satisfiability problem (QSAT) is the set of true formulas of the following form:

Ψ = Q1x1Q2x2 · · · Qrxr (ϕ)

For any boolean formula ϕ on variables x,

ϕ ∈ SAT ⇔ ∃x (ϕ) ∈ QSAT

ϕ 6∈ SAT ⇔ ∀x (¬ϕ) ∈ QSAT

Thus QSAT logically contains SAT and SAT.

Fact 9.3 QSAT is PSPACE-complete.

Proof: QSAT is in PSPACE because we can use n bits of space to systematically search the 2n possible assign-
ments to the variables of the formula ϕ to check if it is true. For example, if ϕ = ∃x1ψ(x1), then to check if ϕ is
true, we first check if ψ(0) is true. If so, the answer is “yes”; else we reuse the same space to accept iff ψ(1) is
true. Thus each new variable only requires one more bit of space.

To show that QSAT is PSPACE hard, we reduce SUCCINCT REACH to QSAT. The main point is that given a
succinct representation of a graph, G, we must write the quantified boolean formula ϕ(G) which will be true iff
there is a path in G of length at most 2n from s to t.

Inductively, we write the formula Pd(x, y) meaning that there is a path from x to y of length at most d, inductively
as follows:

Pd(x, y) ≡ ∃z(Pd/2(x, z) ∧ Pd/2(z, y)) .

Note that x, y, and z are written with n bits each. Next, using a universal boolean quantifier, we shorten the
formula by writing Pd/2 only once:

Pd(x, y) ≡ ∃z ∀b (∃x′, y′.((b ∧ x′ = x ∧ y′ = z) ∨ (¬b ∧ x′ = z ∧ y′ = y))) (Pd/2(x
′, y′))

For the base case, d = 1, we have to show that a boolean circuit can be evaluated by a formula in QSAT. This
formula simply guesses the values of all the gates of the circuit and asserts that they are evaluated correctly and
the root is true, i.e., evaluates to 1. �
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Geography is a two-person game.

1. E “chooses” the start vertex v1.

2. A chooses v2, having an edge from v1

3. E chooses v3, having an edge from v2, etc.

No vertex may be chosen twice. Whoever moves last wins.

Amherst

Texas

Tulsa

Selma

Africa
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Let GEOGRAPHY be the set of positions in geography games s.t. ∃ has a winning strategy.

Proposition 9.4 GEOGRAPHY is PSPACE-complete.

Proof: GEOGRAPHY ∈ PSPACE: search the polynomial-depth game tree. A polynomial-size stack
suffices.

Show: QSAT ≤ GEOGRAPHY

Given formula, ϕ, build graph Gϕ s.t. ∃
chooses existential variables; ∀ chooses
universal variables.

ϕ ≡ ∃a∀b∃c

[(a ∨ b) ∧

(b̄ ∨ c) ∧

(b ∨ c̄)]

(b v c)

(b v c)

(a v b)

b

a

a

b

c

c

�
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Definition 9.5 A succinct representation of a graph is G(n,C, s, t) = (V,E, s, t)

where C is a boolean circuit with 2n inputs and

V =
{
w

∣∣ w ∈ {0, 1}n}
E =

{
(w,w′)

∣∣ C(w,w′) = 1
}

�

SUCCINCT REACH =
{

(n,C, s, t)
∣∣ G(n,C, s, t) ∈ REACH

}
Proposition 9.6 SUCCINCT REACH ∈ PSPACE

Why?

Remember Savitch’s Thm:

REACH ∈ NSPACE[log n] ⊆ DSPACE[(log n)2]

SUCCINCT REACH ∈ NSPACE[n] ⊆ DSPACE[n2] ⊆ PSPACE

�

Proposition 9.7 SUCCINCT REACH is PSPACE-complete.

Proof: Let M be a DSPACE[nk] TM, input w, n = |w|

M(w) = 1 ↔ CompGraph(M,w) ∈ REACH

CompGraph(n,w) = (V,E, s, t)

V =
{

ID = 〈q, h, p〉
∣∣ q ∈ States(N), h ≤ n, |p| ≤ c nk

}
E =

{
(ID1, ID2)

∣∣ ID1(w) −→
M

ID2(w)
}

s = initial ID
t = accepting ID

�
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Succinct Representation of CompGraph(n,w):

V =
{

ID = 〈q, h, p〉
∣∣ q ∈ States(N), h ≤ n, |p| ≤ c nk

}
E =

{
(ID1, ID2)

∣∣ ID1(w) −→
M

ID2(w)
}

Let V = {0, 1}c′nk

Build circuit Cw: on input u, v ∈ V , accept iff u −→
M

v.

M(w) = 1 ⇔ G(c′nk, Cw, s, t) ∈ SUCCINCT REACH �
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