Alternation

The concept of a nondeterministic acceptor of a boolean query has a long and rich history, going back to various kinds of nondeterministic automata.

It is important to remember that these are fictitious machines: we suspect that they cannot be built.

Open question: $\text{NP } ? = \text{co-NP} = \{ \overline{A} \mid A \in \text{NP} \}$

If one could really build an NP machine, then one could, with a single gate to invert its answer, also build a co-NP machine.

From a practical point of view, the complexity of a problem A and its complement, \overline{A} are identical.
Nondeterminism

Value(ID) := Value(LeftChild(ID)) \lor Value(RightChild(ID))
The states of an alternating Turing machine are split into: Existential states (\exists) and Universal states (\forall).

Def: An alternating TM in ID_0 accepts iff

1. ID_0 is in a final accepting state, or
2. ID_0 is in an \exists state and some next ID' accepts, or
3. ID_0 is in a \forall state, has at least one next ID, and all next ID’s accept.
From now on assume that our Turing machines have a **random access** read-only input. There is an **index tape** which can be written on and read like other tapes. Whenever the value h, written in binary, appears on the index tape, the read head will automatically scan bit h of the input.
Def: \(\text{ASPACE}[s(n)] \) and \(\text{ATIME}[t(n)] \) to be the set of problems accepted by alternating TM’s using \(O(s(n)) \) tape cells, \(O(t(n)) \) time, respectively, in any computation path on any input of length \(n \).

Alternation Thm: For \(s(n) \geq \log n \), and for \(t(n) \geq n \),

\[
\bigcup_{k=1}^{\infty} \text{ATIME}[(t(n))^k] = \bigcup_{k=1}^{\infty} \text{DSPACE}[(t(n))^k]
\]

\[
\text{ASPACE}[s(n)] = \bigcup_{k=1}^{\infty} \text{DTIME}[k^{s(n)}]
\]

Cor:

\[
\text{ASPACE}[\log n] = \text{P}
\]

\[
\text{ATIME}[n^{O(1)}] = \text{PSPACE}
\]
Def: the monotone, circuit value problem (MCVP) is the subset of CVP in which no negation gates occur.

Prop: MCVP is recognizable in ASPACE[$\log n$].

Proof: Let G be a monotone boolean circuit. For $a \in V^G$, define “EVAL(a),

1. if (InputOn(a)) then accept
2. if (InputOff(a)) then reject
3. if ($G \land (a)$) then universally choose child b of a
4. if ($G \lor (a)$) then existentially choose child b of a
5. Return(EVAL(b))

M simply calls EVAL(r). EVAL(a) returns “accept ” iff gate a evaluates to one.

Space used for naming vertices a, b: $O(\log n)$. □
Def: The quantified satisfiability problem (QSAT) is the set of true formulas of the following form:

\[\Psi = Q_1 x_1 Q_2 x_2 \cdots Q_r x_r (\varphi) \]

For any boolean formula \(\varphi \) on variables \(\pi \),

\[
\begin{align*}
\varphi \in \text{SAT} & \iff \exists \pi (\varphi) \in \text{QSAT} \\
\varphi \notin \text{SAT} & \iff \forall \pi (\neg \varphi) \in \text{QSAT}
\end{align*}
\]

Thus QSAT logically contains SAT and \(\overline{\text{SAT}} \).
Prop: QSAT is recognizable in ATIME[n].

Proof: Construct ATM, A, on input, $\Phi \equiv$

$$\exists x_1 \ \forall x_2 \ \ldots \ \exists x_{2k-1} \ \forall x_{2k} \ \bigwedge_{i=1}^{r} \bigvee_{j=1}^{s} \ell_{ij}$$

$$b_1 \ b_2 \ \ldots \ b_{2k-1} \ b_{2k} \ i \ j \ \ell_{ij}(b_1, \ldots, b_{2k})$$

Quantifiers:

- in \exists state, A writes a bit b_1 for x_1,
- in \forall state, A writes a bit b_2 for x_2, and so on.

Boolean operators:

- in \forall state, A chooses i,
- in \exists state, A chooses j

Final state: accept iff $\ell_{ij}(b_1, \ldots, b_{2k})$ is true.

$$A \text{ accepts } \Phi \iff \Phi \text{ is true.}$$

\square
Thm: For any $s(n) \geq \log n$,

$$\text{NSPACE}[s(n)] \subseteq \text{A TIME}[s(n)^2] \subseteq \text{DSPACE}[s(n)^2]$$

Proof: $\text{NSPACE}[s(n)] \subseteq \text{A TIME}[s(n)^2]$:

Let N be an $\text{NSPACE}[s(n)]$ Turing machine.

Let w be an input to N, $n = |w|$.

$$w \in \mathcal{L}(N) \iff \text{CompGraph}(N, w) \in \text{REACH}$$
\(w \in \mathcal{L}(N) \iff \text{CompGraph}(N, w) \in \text{REACH} \)

\[
P(d, x, y) \equiv \text{“In CompGraph}(N, w), \text{dist}(x, y) \leq 2^d”
\]

\[
P(d, x, y) \equiv \exists z (P(d - 1, x, z) \land P(d - 1, z, y))
\]

1. **Existentially**: choose middle ID \(z \).
2. **Universally**: \((x, y) := (x, z) \land (z, y)\)
3. Return(\(P(d - 1, x, y)\))

\[
T(d) = O(s(n)) + T(d - 1) = O(d \cdot s(n))
\]

\[
d = O(s(n))
\]

\[
T(d) = O((s(n))^2)
\]
\(\text{ATIME}[t(n)] \subseteq \text{DSPACE}[t(n)] \)

Let \(A \) be an \(\text{ATIME}[t(n)] \) machine, input \(w \), \(n = |w| \).

\(\text{CompGraph}(A, w) \) has depth \(c(t(n)) \) and size \(2^{c(t(n))} \), for some constant \(c \).

Search this and/or graph systematically using \(c(t(n)) \) extra bits of space.

\[\text{ATIME}[t(n)] \subseteq \text{DSPACE}[t(n)] \]
Evaluate computation graph of $\text{ATIME}[t(n)]$ machine using $t(n)$ space to cycle through all possible computations of A on input w.
Example: \(\text{ATIME}[t(n)] \subseteq \text{DSPACE}[t(n)] \)
Thm: $\text{ASPACE}[s(n)] = \text{DTIME}[2^{O(s(n))}]$

Proof: $\text{ASPACE}[s(n)] \subseteq \text{DTIME}[2^{O(s(n))}]$:

Let A be an $\text{ASPACE}[s(n)]$ machine, w an input, $n = |w|$. CompGraph($A(w)$) has size $\leq 2^{O(s(n))}$

Marking algorithm evaluates this in $\text{DTIME}[2^{O(s(n))}]$.

![Diagram](image-url)
DTIME[$2^{O(s(n))}$] ⊆ ASPACE[$s(n)$]:

Let M be DTIME[$2^{k(s(n))}$] TM, w an input, $n = |w|$.

alternating procedure $C(t, p, a)$ accepts iff contents of cell p at time t in M’s computation on input w is symbol a.

$C(t + 1, p, b)$ holds iff the three symbols a_{-1}, a_0, a_1 in tape positions $p − 1, p, p + 1$ lead to a “b” in position p in one step of M’s computation.

$$C(t + 1, p, b) \equiv \bigvee_{(a_{−1}, a_0, a_1) \not\rightarrow_b} \bigwedge_{i \in \{−1,0,1\}} C(t, p + i, a_i)$$

Space needed is $O(\log 2^{k(s(n))}) = O(s(n))$.

Note that M accepts w iff $C(2^{k(s(n))}, 1, \langle q_f, 1 \rangle)$

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{t}</td>
<td>$\langle q_f, 1 \rangle$ \square \ldots \square \square \square \square \square</td>
</tr>
<tr>
<td>$\bar{t} + 1$</td>
<td>$a_{−1}$ a_0 a_1 \square \ldots \square \square \square \square \square \square \square \square</td>
</tr>
</tbody>
</table>

$$C(t + 1, p, b) \equiv \bigvee_{(a_{−1}, a_0, a_1) \not\rightarrow_b} \bigwedge_{i \in \{−1,0,1\}} C(t, p + i, a_i)$$

This completes the proof of the Alternation Thm. □
<table>
<thead>
<tr>
<th>Class</th>
<th>FO ([n^{O(1)}])</th>
<th>FO(LFP)</th>
<th>SO(Horn)</th>
<th>FO((\log n)^{O(1)})</th>
<th>FO[\log n]</th>
<th>FO(CFL)</th>
<th>FO(TC)</th>
<th>FO(DTC)</th>
<th>FO(REGULAR)</th>
<th>FO(COUNT)</th>
<th>FO</th>
<th>LOGTIME Hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPTIME</td>
<td>SQ(n^{O(1)})</td>
<td></td>
</tr>
<tr>
<td>PSPACE</td>
<td>FO(2^{n^{O(1)}})</td>
<td>FO(PFP)</td>
<td>SO(TC)</td>
<td>SO(n^{O(1)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>FO(n^{O(1)})</td>
<td>FO(LFP)</td>
<td>SO(Horn)</td>
<td>FO((\log n)^{O(1)})</td>
<td>FO[\log n]</td>
<td>FO(CFL)</td>
<td>FO(TC)</td>
<td>FO(DTC)</td>
<td>FO(REGULAR)</td>
<td>FO(COUNT)</td>
<td>FO</td>
<td>LOGTIME Hierarchy</td>
</tr>
<tr>
<td>SAT</td>
<td>FO</td>
<td>LOGTIME Hierarchy</td>
</tr>
<tr>
<td>NC</td>
<td>FO</td>
<td>LOGTIME Hierarchy</td>
</tr>
<tr>
<td>AC^1</td>
<td>FO</td>
<td>LOGTIME Hierarchy</td>
</tr>
<tr>
<td>sAC^1</td>
<td>FO</td>
<td>LOGTIME Hierarchy</td>
</tr>
<tr>
<td>NL</td>
<td>FO</td>
<td>LOGTIME Hierarchy</td>
</tr>
<tr>
<td>L</td>
<td>FO</td>
<td>LOGTIME Hierarchy</td>
</tr>
<tr>
<td>NC^1</td>
<td>FO</td>
<td>LOGTIME Hierarchy</td>
</tr>
<tr>
<td>ThC^0</td>
<td>FO</td>
<td>LOGTIME Hierarchy</td>
</tr>
<tr>
<td>AC^0</td>
<td>FO</td>
<td>LOGTIME Hierarchy</td>
</tr>
</tbody>
</table>