Thm: REACH is complete for NL.

Proof: Let $A \in NL$, $A = \mathcal{L}(N)$, uses $c \log n$ bits of worktape. Input w, n = |w|

$$w \mapsto \text{CompGraph}(N, w) = (V, E, s, t)$$

$$V = \{ ID = \langle q, h, p \rangle \mid q \in States(N), h \le n, |p| \le c \lceil \log n \rceil \}$$
$$E = \{ (ID_1, ID_2) \mid ID_1(w) \xrightarrow[N]{} ID_2(w) \}$$
$$s = initial ID$$

$$t = \text{accepting ID}$$

Claim: $w \in \mathcal{L}(N) \Leftrightarrow \text{CompGraph}(N, w) \in \text{REACH}$

Cor:

Proof: REACH \in P

P is closed under (logspace) reductions.

i.e., $(B \in \mathbf{P} \land A \leq B) \Rightarrow A \in \mathbf{P}$

NSPACE vs. DSPACE

Proposition 6.1 NSPACE $[s(n)] \subseteq$ NTIME $[2^{O(s(n))}] \subseteq$ DSPACE $[2^{O(s(n))}]$

We can do much better!

Theorem 6.2 [Savich] REACH \in DSPACE[$(\log n)^2$]

Proof:

 $\begin{array}{rcl} G \in \mathbf{REACH} & \Leftrightarrow & G \models \mathbf{PATH}(s,t,n) \\ \mathbf{PATH}(x,y,1) & \equiv & x = y \ \lor \ E(x,y) \\ \mathbf{PATH}(x,y,2d) & \equiv & \exists z \left(\mathbf{PATH}(x,z,d) \ \land \ \mathbf{PATH}(z,y,d) \right) \end{array}$

 $S_n(d)$ = space to check paths of dist. d in n-nodegraphs

$$S_n(n) = \log n + S_n(n/2)$$
$$= O((\log n)^2)$$

г			
L	_	_	

Savitch's Thm: For $s(n) \ge \log n$,

 $DSPACE[s(n)] \subseteq NSPACE[s(n)] \subseteq DSPACE[(s(n))^2]$

Proof: Let $A \in \text{NSPACE}[s(n)]; \quad A = \mathcal{L}(N)$

 $w \in A \qquad \Leftrightarrow \qquad \mathsf{CompGraph}(N,w) \in \mathsf{REACH}$

|w| = n; $|CompGraph(N, w)| = 2^{O(s(n))}$

Testing if $CompGraph(N, w) \in REACH$ takes space,

$$(\log(|\mathbf{CompGraph}(N, w)|))^2 = (\log(2^{O(s(n))}))^2$$

= $O((s(n))^2)$

From w build CompGraph(N, w) in DSPACE[s(n)].

Theorem 6.3 $\overline{\text{REACH}} \in \text{NL}$

Proof: Fix G, let $N_d = |\{v \mid \text{distance}(s, v) \leq d\}|$

Claim: The following problems are in NL:

- 1. DIST(x, d): distance $(s, x) \le d$
- 2. NDIST(x, d; m): if $m = N_d$ then \neg DIST(x, d)

Proof:

- 1. Guess the path of length $\leq d$ from s to x.
- 2. Guess m vertices, $v \neq x$, with DIST(v, d).

```
c := 0;
for v := 1 to n do { // nondeterministically
(DIST(v, d) && v \neq x; c + +) ||
( no-op )
}
if (c == m) then ACCEPT
```

Claim: We can compute N_d in NL.

Proof: By induction on *d*.

Base case: $N_0 = 1$

Inductive step: Suppose we have N_d .

c := 0;
 for v := 1 to n do { // nondeterministically

3. (DIST(v, d + 1); c + +) || 4. ($\forall z (\text{NDIST}(z, d; N_d) \lor (z \neq v \land \neg E(z, v)))$) 5. } 6. $N_{d+1} := c$

$$G \in \overline{\text{REACH}} \quad \Leftrightarrow \quad \text{NDIST}(t, n; N_n) \qquad \Box$$

Theorem 6.4 [Immerman-Szelepcsényi] If $s(n) \ge \log n$, Then, NSPACE[s(n)] = co-NSPACE[s(n)]

 $\begin{array}{ll} \textbf{Proof: Let } A \in \textbf{NSPACE}[s(n)]; & A = \mathcal{L}(N) \\ \\ w \in A & \Leftrightarrow & \textbf{CompGraph}(N,w) \in \textbf{REACH} \\ \\ |w| = n; & |\textbf{CompGraph}(N,w)| = 2^{O(s(n))} \end{array}$

Testing if $\text{CompGraph}(N, w) \in \overline{\text{REACH}}$ takes space,

$$\log(|\mathsf{CompGraph}(N, w)|) = \log(2^{O(s(n))})$$
$$= O(s(n))$$

-	-	-	-	
L				
L				
L				
L				