
CS601 DTIME and DSPACE Lecture 5

Time and Space functions: t, s : N → N+

Definition 5.1 A set A ⊆ U is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M ,

and a constant c, such that,

1. A = L(M) ≡
{

w ∈ U
∣

∣ M(w) = 1
}

, and

2. ∀w ∈ U , M(w) halts within c · t(|w|) steps. �

Definition 5.2 A set A ⊆ U is in DSPACE[s(n)] iff there exists a deterministic, multi-tape TM,

M , and a constant c, such that,

1. A = L(M), and

2. ∀w ∈ U , M(w) uses at most c · s(|w|) work-tape cells.

(Input tape is “read-only” and not counted as space used.) �

Example: PALINDROMES ∈ DTIME[n],DSPACE[n].

In fact, PALINDROMES ∈ DSPACE[log n]. [Exercise]

1

CS601 F(DTIME) and F(DSPACE) Lecture 5

Definition 5.3 f : U → U is in F (DTIME[t(n)]) iff there exists a deterministic, multi-tape TM,

M , and a constant c, such that,

1. f = M(·);

2. ∀w ∈ U , M(w) halts within c · t(|w|) steps;

3. |f(w)| ≤ |w|O(1), i.e., f is polynomially bounded.

�

Definition 5.4 f : U → U is in F (DSPACE[s(n)]) iff there exists a deterministic, multi-tape TM,

M , and a constant c, such that,

1. f = M(·);

2. ∀w ∈ U , M(w) uses at most c · s(|w|) work-tape cells;

3. |f(w)| ≤ |w|O(1), i.e., f is polynomially bounded.

(Input tape is “read-only”; Output tape is “write-only”. Neither is counted as space used.) �

Example: Plus ∈ F (DTIME[n]), Mult ∈ F (DTIME[n2])

2

CS601 L, P, and PSPACE Lecture 5

L ≡ DSPACE[log n]

P ≡ DTIME[nO(1)] ≡

∞
⋃

i=1

DTIME[ni]

PSPACE ≡ DSPACE[nO(1)] ≡
∞
⋃

i=1

DSPACE[ni]

These classes will become your good friends soon.

3

Theorem 5.5 For any functions t(n) ≥ n, s(n) ≥ log n, we have

DTIME[t(n)] ⊆ DSPACE[t(n)]

DSPACE[s(n)] ⊆ DTIME[2O(s(n))]

Proof: Let M be a DSPACE[s(n)] TM, let w ∈ Σ⋆
0, let n = |w|

M(w) has k tapes and uses at most cs(n) work-tape cells.

M(w) has at most 2k
′s(n) possible configurations:

|Q| · (n+ cs(n) + 2)k · |Σ|cs(n) < 2k
′s(n)

of states · # of head positions · # of tape contents

Thus, after 2k
′s(n) steps, M(w) must be in an infinite loop. �

Corollary 5.6 L ⊆ P ⊆ PSPACE

4

CS601 PALINDROMES ∈ L Lecture 5

⊲ A B L E L B A ⊔ ⊲ ⊔

...
...

...
...

⊲ A B L E L B A ⊔ ⊲ 0 0 1 ⊔ 1 1 1

...
...

...
...

⊲ A B L E L B A ⊔ ⊲ 0 1 0 ⊔ 1 1 0

...
...

...
...

⊲ A B L E L B A ⊔ ⊲ 0 1 1 ⊔ 1 0 1

...
...

...
...

⊲ A B L E L B A ⊔ ⊲ 1 0 0 ⊔ 1 0 0

...
...

...
...

⊲ A B L E L B A ⊔ ⊲ 1 ⊔

Using O(logn) workspace, we can keep track of and manipulate two pointers into the input.

5

CS601 DTIME versus RAMTIME Lecture 5

RAM = Random Access Machine

Memory: κ r0 r1 r2 r3 r4 · · · ri · · ·

κ = program counter; r0 = accumulator

Instruction Operand Semantics

READ j | ↑ j | = j r0 := (rj | rrj | j)
STORE j | ↑ j (rj | rrj) := r0
ADD j | ↑ j | = j r0 := r0 + (rj | rrj | j)
SUB j | ↑ j | = j r0 := r0 − (rj | rrj | j)
HALF r0 := ⌊r0/2⌋
JUMP j κ := j
JPOS j if (r0 > 0) then κ := j
JZERO j if (r0 = 0) then κ := j
HALT κ := 0

6

Theorem 5.7 DTIME[t(n)] ⊆ RAM-TIME[t(n)] ⊆ DTIME[(t(n))3]

Proof: Memorize program in finite control. Store all registers on one tape:

⊲ 1 1 , 0 : 1 0 1 , 1 0 1 : 0 , 1 0 1 1 : 1 0 ⊔
κ r0 r5 r11

Store workspace for calculations on second tape:

⊲ 1 0 0 , 1 0 1 1 ⊔
κ′ A

Use the third tape for copying and pasting sections of the first tape.

⊲ 0 : 1 0 1 , 1 0 1 : 0 , 1 0 1 1 : 1 0 ⊔
r0 r5 r11

Each register contains at most n+ t(n) bits. [O(logn) would be more realistic.]

The total number of tape cells used is at most 2t(n)(n + t(n)) = O((t(n))2).

Each step takes at most O((t(n))2) steps to simulate. �

7

CS601 Nondeterministic TM Lecture 5

Nondeterministic Turing Machines choose one of two possible moves each step.

guess.tm s g q
0

1

⊔ g,⊔,− | q,⊔,− s, 0,→ | s, 1,→
⊲ s, ⊲,→

comment g or q guess 0 or 1 the rest

Nondeterministic Guess Machine is a typical example:

• Write down an arbitrary string, g ∈ {0, 1}⋆: the guess.

• Proceed with the rest of the computation, using g if desired.

• Accept iff there exists some guess that leads to acceptance.

8

s ⊲ ⊔

s ⊲ ⊔

g ⊲ ⊔

s ⊲ 0 ⊔

g ⊲ 0 ⊔

s ⊲ 0 1 ⊔

g ⊲ 0 1 ⊔

s ⊲ 0 1 1 ⊔

g ⊲ 0 1 1 ⊔

...
...

...
...

s ⊲ 0 1 1 0 · · · 1 ⊔

q ⊲ 0 1 1 0 · · · 1 ⊔

guess.tm s g q
0

1

⊔ g,⊔,− | q,⊔,− s, 0,→ | s, 1,→
⊲ s, ⊲,→

comment g or q guess 0 or 1 the rest

9

Definition 5.8 The set accepted by a NTM, N :

L(N) ≡
{

w ∈ U
∣

∣ some run of N(w) halts with output “1”
}

The time taken by N on w ∈ L(N) is the number of steps in the shortest computation of N(w)
that accepts. �

Unfortunately, this is a mathematical fiction.

As far as we know, you can’t really build a nondeterministic Turing Machine.

10

2s

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

t(n)

t(n)

b1 b2 b3 · · · bt(n)

11

CS601 NTIME and NP Lecture 5

NTIME[t(n)] ≡ problems accepted by NTMs in time O(t(n))

NP ≡ NTIME[nO(1)] ≡

∞
⋃

i=1

NTIME[ni]

Theorem 5.9 For any function t(n),

DTIME[t(n)] ⊆ NTIME[t(n)] ⊆ DSPACE[t(n)] ⊆ DTIME[2O(t(n))]

Corollary 5.10 L ⊆ P ⊆ NP ⊆ PSPACE

Corollary 5.11 The definition of Recursive and r.e. are unchanged if we use nondeterministic

instead of deterministic Turing machines.

12

NSPACE[s(n)] is the set of problems accepted by NTMs using at most O(s(n)) space on each

branch. [Can run in time t(n) ≤ 2O(s(n)).]

2s

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

t(n)

t(n)

b1 b2 b3 b4 · · · bt(n)

13

Definition 5.12 REACH =
{

G
∣

∣ s
⋆
→ t

}

�

1

3

11

10

8

6

7

2

5

4

9

s t

Prop: REACH ∈ NL = NSPACE[logn]

1. b := s

2. for c := 1 to n = |V | do {

3. if b = t then accept

4. a := b

5. choose new b

6. if (¬E(a, b)) then reject }

7. reject

a 2

b 4

accept!

14

Def: Problem T is complete for complexity class C iff

1. T ∈ C, and

2. ∀A ∈ C (A ≤ T)

Reductions now must be in F (L).

15

Arithmetic Hierarchy FO(N) r.e. complete

K
co-r.e. complete

K
r.e. FO∃(N)co-r.e. FO∀(N)

Recursive

Primitive Recursive

SO(LFP) SO[2n
O(1)

]
EXPTIME

QSAT PSPACE complete

FO[2n
O(1)

] FO(PFP) SO(TC) SO[nO(1)]
PSPACE

PTIME Hierarchy SO NP complete

SAT

co-NP complete

SAT
NP SO∃co-NP SO∀

NP ∩ co-NP

P complete
Horn-
SAT

P
FO[nO(1)]

FO(LFP) SO(Horn)

FO[(logn)O(1)] NC“truly

feasible”FO[logn] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC) SO(Krom)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

16

