CS601 DTIME and DSPACE Lecture 5

Time and Space functions: ¢, s : N — NT

Definition 5.1 A set A C U is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M,
and a constant ¢, such that,

LA = M) = {weU| Mw)=1}, and
2. Yw € U, M (w) halts within ¢ - (|w]|) steps. U

Definition 5.2 A set A C U is in DSPACE[s(n)] iff there exists a deterministic, multi-tape TM,
M, and a constant ¢, such that,

1. A = L(M), and

2. Yw € U, M(w) uses at most ¢ - s(|w|) work-tape cells.

(Input tape is “read-only” and not counted as space used.) U

Example: PALINDROMES € DTIME[n], DSPACE|n].
In fact, PALINDROMES € DSPACE|log n]. [Exercise]

CS601 F(DTIME) and F(DSPACE) Lecture 5

Definition 5.3 f : U — U is in F(DTIME[t(n)]) iff there exists a deterministic, multi-tape TM,
M, and a constant ¢, such that,

Lf = M)y

2. Yw € U, M (w) halts within ¢ - t(|w|) steps;

3. |f(w)] <

w|°M, i.e., f is polynomially bounded.

Definition 5.4 f : U — U is in F'(DSPACE][s(n)|) iff there exists a deterministic, multi-tape TM,
M, and a constant ¢, such that,

Lf = M)y

2. Yw € U, M(w) uses at most ¢ - s(|w|) work-tape cells;

3. |f(w)] <

w|®W, i.e., f is polynomially bounded.

(Input tape is “read-only”’; Output tape is “write-only”. Neither is counted as space used.) U

Example: Plus € F(DTIME[n]), Mult € F(DTIME|[n?))

CS601

L, P, and PSPACE Lecture 5

L = DSPACE][log n|
P = DTIME[R®Y] = | |DTIME[x]
=1
PSPACE = DSPACE[n°"] = | JDSPACE[n]]

i=1

These classes will become your good friends soon.

Theorem 5.5 For any functions t(n) > n, s(n) > logn, we have
DTIME[t(n)] C DSPACE[t(n)]

DSPACE[s(n)] € DTIME[20¢()]

Proof: Let M be a DSPACE[s(n)] TM, letw € 3§, letn = |w|
M (w) has k tapes and uses at most cs(n) work-tape cells.

M (w) has at most 2¥'*(") possible configurations:

Q| - (n+ecs(n)+2)F - |33]es(n) < 9K's(n)

of states - # of head positions - # of tape contents

Thus, after 2¥*(") steps, M (w) must be in an infinite loop.

Corollary 5.6 L C P C PSPACE

CS601 PALINDROMES € L Lecture 5

([EI[Aa[B[L[E[L[BA[U] [[>][U]

>|A[B|L|E|L[B[[A]|u]| [eJOJOJTOJJI]I]T]

>|A|B|L|E|L|[B][A|uU] [pJO]JI]O[UJ]I]I]O]

>|A|B|L|E|[L]|B]A|uU] [pJO]I]I]U]JI]O]T]

o] A[B|L|[E]|L]|B|A|u]| [s]1]O]JO][U][TI]O]O]

[EI[A[BIL]E[L[BJAU] [[P]]L][U]

Using O(logn) workspace, we can keep track of and manipulate two pointers into the input.

CS601

DTIME versus RAMTIME

Lecture 5

RAM = Random Access Machine

Memory: | k |ro | ri [ro [rs[ra | -+ [

K = program counter;

ro = accumulator

Instruction | Operand Semantics

READ il =j ro=01rg 1))
STORE Jl 17 (rj | rv;) := 10

ADD Jjltjl =4 ro=ro+(rlr,[J)
SUB Jjltjl =4 ro=ro—(rjlry,|J)
HALF ro := |r0/2]

JUMP j K:i=]

JPOS j if (rp > 0) then x := j
JZERO j if (ro =0) then xk := j
HALT k:=0

Theorem 5.7 DTIME[t(n)] € RAM-TIME[t(n)] C DTIME[(¢(n))?]

Proof: Memorize program in finite control. Store all registers on one tape:

(T[T Jof:Jujoft].[t]oft]:[O[.Jt[o[t[t][:]t]O]u]
’45 "o T's 1

Store workspace for calculations on second tape:

(o] t[oJOf. Jt[O]t[T]U]
K/ A

Use the third tape for copying and pasting sections of the first tape.

o Jrfofrjrf:jrfofu]

(ol frjofrf.[r]o]1

To T's T11
Each register contains at most n + t(n) bits. [O(log n) would be more realistic.]

The total number of tape cells used is at most ~ 2t(n)(n + t(n)) = O((t(n))?).

Each step takes at most O((£(n))?) steps to simulate.

| CS601 Nondeterministic TM Lecture 5

Nondeterministic Turing Machines choose one of two possible moves each step.

guess.tm S g q
0
1
L g, U —]q¢U —1]s0— |s 1 —
> 5>, —
comment gorgq guess O or 1 ‘ the rest

Nondeterministic Guess Machine is a typical example:

e Write down an arbitrary string, g € {0, 1}*: the guess.
e Proceed with the rest of the computation, using g if desired.

o Accept iff there exists some guess that leads to acceptance.

g [>]O0][u]]
>

s [>[O]T[[U]]
g [>]0[1[[U]]
s [>]ofr]t[[u]]
g [>[0[T[1][[]
s [>]Of1]1]O] [1[U]]
¢ []0]T]1]0] 1]
guess.tm S q q
0
1
U gal—la_|q7|—|7_ 8707_> |8717_>
> §,>, —
comment gorq ‘ guess O or 1 the rest

Definition 5.8 The set accepted by a NTM, N:

L(N) = {weU | somerunof N(w) halts with output “1”}

The time taken by N on w € L£(N) is the number of steps in the shortest computation of N (w)
that accepts. U

Unfortunately, this is a mathematical fiction.

As far as we know, you can’t really build a nondeterministic Turing Machine.

10

~
c

N
o

O O O O O O O O O «1 O O O O O O 0O 0O o o o o o
%\M\Q.................M\‘ M\
)
—
—
-
N
b

bs

ba

b

CS601 NTIME and NP Lecture 5

NTIME[t(n)] = problems accepted by NTMs in time O(t(n))

NTIME[n°"] = | JNTIME[n']

i=1

NP

Theorem 5.9 For any function t(n),

DTIME[t(n)] € NTIME[t(n)] € DSPACE[t(n)] € DTIME[29¢()]

Corollary 5.10 L C P C NP C PSPACE

Corollary 5.11 The definition of Recursive and r.e. are unchanged if we use nondeterministic
instead of deterministic Turing machines.

12

NSPACE]|s(n)] is the set of problems accepted by NTMs using at most O(s(n)) space on each
branch. [Can run in time #(n) < 20¢M)]

t(n)

| P 91

O O O OO OO0 OO0 OO0 OO r OO0 OO0 oo oo o

o~
S
o~
no
SY
W
o~
=~
o
=
2

13

Definition 5.12 REACH = {G | s 5t}

Prop: REACH € NL = NSPACElogn|
1. b:=s
2. forc:=1to n=1|V]| do { W o
3 if b =t then accept
4. a:=1b
5 choose new b bl 4
6 if (~E(a,b)) then reject } accept!
7. reject

14

Def: Problem 7' is complete for complexity class C iff

1. TeC, and
2.VAe C(ALT)

Reductions now must be in F'(L).

15

co-r-e. complete Arithmetic Hierarchy FO(N) Te. complete
K K
- FOY(N) re. FOJ(N) -
Recursive
Primitive Recursive
. EXPTIME
SO(LFP) so[2""]
QSAT PSPACE complete
PSPACE
FO[2"""] FO(PFP) SO(TC) SO[nCW]
co-NP complete PTIME Hierarchy SO NP complete
SAT SAT
co-NP SOV NP SO-
NP N co-NP
o(1) .7 "%+, P complete
FO [n] ~Horn-* P
FO(LFP) SO(Horn)

FO[(log n)°W] “truly NC
FOllog n] feasible” B AC!
FO(CFL) SAC!
FO(TC) SO(Krom):~2SAT NL comp._—7 NL

FO(REGULAR) NC!

FO(COUNT) ThC®

FO LOGTIME Hierarchy AC?

16

