Time and Space functions: $t, s : \mathbf{N} \to \mathbf{N}^+$

Definition 5.1 A set $A \subseteq U$ is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that,

- 1. $A = \mathcal{L}(M) \equiv \{w \in U \mid M(w) = 1\}, \text{ and }$
- 2. $\forall w \in U, M(w)$ halts within $c \cdot t(|w|)$ steps.

Definition 5.2 A set $A \subseteq U$ is in DSPACE[s(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that,

- 1. $A = \mathcal{L}(M)$, and
- 2. $\forall w \in U, M(w)$ uses at most $c \cdot s(|w|)$ work-tape cells.

(Input tape is "read-only" and not counted as space used.)

Example: PALINDROMES \in DTIME[n], DSPACE[n]. In fact, PALINDROMES \in DSPACE[log n]. [Exercise] **Definition 5.3** $f: U \to U$ is in F(DTIME[t(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that,

- 1. $f = M(\cdot);$
- 2. $\forall w \in U, M(w)$ halts within $c \cdot t(|w|)$ steps;
- 3. $|f(w)| \leq |w|^{O(1)}$, i.e., f is polynomially bounded.

Definition 5.4 $f: U \to U$ is in F(DSPACE[s(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that,

- 1. $f = M(\cdot);$
- 2. $\forall w \in U, M(w)$ uses at most $c \cdot s(|w|)$ work-tape cells;
- 3. $|f(w)| \leq |w|^{O(1)}$, i.e., f is polynomially bounded.

(Input tape is "read-only"; Output tape is "write-only". Neither is counted as space used.) \Box

Example: Plus $\in F(DTIME[n])$, Mult $\in F(DTIME[n^2])$

L \equiv DSPACE[log n]

$$P \equiv DTIME[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} DTIME[n^{i}]$$
$$PSPACE \equiv DSPACE[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} DSPACE[n^{i}]$$

These classes will become your good friends soon.

Theorem 5.5 For any functions $t(n) \ge n$, $s(n) \ge \log n$, we have

$$DTIME[t(n)] \subseteq DSPACE[t(n)]$$
$$DSPACE[s(n)] \subseteq DTIME[2^{O(s(n))}]$$

Proof: Let M be a DSPACE[s(n)] TM, let $w \in \Sigma_0^{\star}$, let n = |w|

M(w) has k tapes and uses at most cs(n) work-tape cells.

M(w) has at most $2^{k's(n)}$ possible configurations:

$$\begin{split} |Q| & \cdot & (n+cs(n)+2)^k & \cdot & |\Sigma|^{cs(n)} & < 2^{k's(n)} \\ \text{\# of states} & \cdot & \text{\# of head positions} & \cdot & \text{\# of tape contents} \end{split}$$

Thus, after $2^{k's(n)}$ steps, M(w) must be in an infinite loop.

Corollary 5.6 $L \subseteq P \subseteq PSPACE$

Using $O(\log n)$ workspace, we can keep track of and manipulate two pointers into the input.

Lecture 5

RAM = Random Access Machine

Memory:	κ	r_0	r_1	r_2	r_3	r_4	•••	r_i	•••
---------	----------	-------	-------	-------	-------	-------	-----	-------	-----

 $\kappa = program counter; \quad r_0 = accumulator$

Instruction	Operand	Semantics
READ	$ j \uparrow j = j$	$r_0 := (r_j \mid r_{r_j} \mid j)$
STORE	$j \mid \uparrow j$	$(r_j \mid r_{r_j}) := r_0$
ADD	$j \mid \uparrow j \mid = j$	$r_0 := r_0 + (r_j \mid r_{r_j} \mid j)$
SUB	$j \mid \uparrow j \mid = j$	$r_0 := r_0 - (r_j \mid r_{r_j} \mid j)$
HALF		$r_0 := \lfloor r_0/2 \rfloor$
JUMP	j	$\kappa := j$
JPOS	j	if $(r_0 > 0)$ then $\kappa := j$
JZERO	j	if $(r_0 = 0)$ then $\kappa := j$
HALT		$\kappa := 0$

Theorem 5.7 DTIME $[t(n)] \subseteq \text{RAM-TIME}[t(n)] \subseteq \text{DTIME}[(t(n))^3]$

Proof: Memorize program in finite control. Store all registers on one tape:

Store workspace for calculations on second tape:

\triangleright	1	0	0	,	1	0	1	1	
		κ'					Α		

Use the third tape for copying and pasting sections of the first tape.

\triangleright	0	:	1	0	1	,	1	0	1	:	0	,	1	0	1	1	:	1	0	
r_0 r_5						5	r_{11}													

Each register contains at most n + t(n) bits.

 $[O(\log n)$ would be more realistic.]

The total number of tape cells used is at most $2t(n)(n + t(n)) = O((t(n))^2)$.

Each step takes at most $O((t(n))^2)$ steps to simulate.

7

Nondeterministic Turing Machines choose one of two possible moves each step.

guess.tm	s	g	q
0			
1			
	$g,\sqcup,-\mid q,\sqcup,-$	$s,0,\rightarrow ~ ~s,1,\rightarrow$	
\triangleright	$s, \triangleright, \rightarrow$		
comment	g or q	guess 0 or 1	the rest

Nondeterministic Guess Machine is a typical example:

- Write down an arbitrary string, $g \in \{0, 1\}^*$: the guess.
- Proceed with the rest of the computation, using g if desired.
- Accept iff there exists some guess that leads to acceptance.

s	\triangleright						
s	\triangleright						
g	\triangleright						
s	\triangleright	0 🗆					
g	\triangleright	0 🗆					
s	\triangleright	0 1	\Box				
g	\triangleright	0 1	\Box				
s	\triangleright	0 1	1	\Box	\prod		
g	\triangleright	0 1	1	\Box			
:	÷	÷	:				
s	\triangleright	0 1	1	0		•••	1 🗆
q	\triangleright	0 1	1	0		•••	1 🗆

guess.tm	s	g	q
0			
1			
	$g,\sqcup,-\mid q,\sqcup,-$	$s,0,\rightarrow ~ ~s,1,\rightarrow$	
\triangleright	$s, \triangleright, \rightarrow$		
comment	g or q	guess 0 or 1	the rest

Definition 5.8 The **set** accepted by a NTM, *N*:

 $\mathcal{L}(N) \equiv \{w \in U \mid \text{some run of } N(w) \text{ halts with output "1"} \}$

The time taken by N on $w \in \mathcal{L}(N)$ is the number of steps in the shortest computation of N(w) that accepts.

Unfortunately, this is a mathematical fiction.

As far as we know, you can't **really** build a nondeterministic Turing Machine.

NTIME $[t(n)] \equiv$ problems accepted by NTMs in time O(t(n))

NP
$$\equiv$$
 NTIME $[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} \text{NTIME}[n^i]$

Theorem 5.9 For any function t(n),

 $DTIME[t(n)] \subseteq NTIME[t(n)] \subseteq DSPACE[t(n)] \subseteq DTIME[2^{O(t(n))}]$

Corollary 5.10 $L \subseteq P \subseteq NP \subseteq PSPACE$

Corollary 5.11 *The definition of* **Recursive** *and* **r.e.** *are unchanged if we use nondeterministic instead of deterministic Turing machines.*

NSPACE[s(n)] is the set of problems accepted by NTMs using at most O(s(n)) space on each branch. [Can run in time $t(n) \leq 2^{O(s(n))}$.]

Definition 5.12 REACH = $\{G \mid s \stackrel{\star}{\rightarrow} t\}$

Prop: REACH \in NL = NSPACE[log n]

- 1. b := s
- 2. for c := 1 to n = |V| do {a3. if b = t then accepta4. a := bb5. choose new bb6. if $(\neg E(a, b))$ then reject }accept!
- 7. reject

Def: Problem T is **complete** for complexity class **C** iff

- 1. $T \in \mathbf{C}$, and
- 2. $\forall A \in \mathbf{C} (A \leq T)$

Reductions now must be in F(L).

