Fundamental Th. of Reductions: If S < T, then,

1. If T"isr.e., then Sisr.e..
2. If T is co-r.e., then S is co-r.e..

3. If T is Recursive, then .S is Recursive.

Proof: S<T AN T e€re. = Scre.
Let f: S <T,ie., Ve(x € S & f(x)eT), T=W,.

From M; compute the TM M, which on input x does the following: (a). compute f(z); (b) run

M;(f(z))

(zef) & (f(x)eT) & (M(f(z))=1) & (My(z)=1)

Therefore, S = Wj, and S is r.e. as desired.

In other words, Ps = pr o f. We are given the Turing machines that compute the partial recursive
function pr and the total recursive function f. From these, we can easily construct the Turing
machine, M;/, which computes pg.

Observation4.l f: S<T < f:S<T.

Thus, Tecore. = Tere. = Sere. = S € core.
T € Recursive = (T e€re. AN T €core.) =

(Sere. N Secore) = S e&Recursive O

Moral:  Suppose S < T'. Then,

e If T'is easy, then so is .S.

e If Sis hard, thensois 7.
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Proposition 4.2 For S C Nor S C {0,1}*, S is re. complete iff S is co-r.e. complete.

Proof: Suppose S is r.e. complete. Thus, S € re.and VB €re. B < S.
Thus S € co-re.. Also, forall B € re., B < S. Thus, B < S.
Thus, all co-r.e. sets are reducible to S. Thus S is r.e. complete.

The proof of the converse is similar, i.e., essentially identical.



The Arithmetic Hierarchy is at the top of the World-of-Computability-and-Complexity diagram.
Definition 4.3 Let S C N. S is an element of X, iff there is a decidable predicate ¢, such that,

S = {n| @u)(Vao) - (Qrar)e(n, a1, .., 2x) },

here (), is V if k is even and 3 if k is odd.

Similarly, S is an element of IIj iff,

S = {n ’ (V1) (Fag) - (Qpzi)(n, 21, . .., 3p) },

for some decidable predicate ). Here ()}, is V if k is odd and J if k is even.

Define the Arithmetic Hierarchy (AH) to be U Y. Note that AH is thus also equal to U 1I,. O
k=1 k=1

Proposition 4.4 >, =r.e. and I1; = co-re..

Proof: Let WW; be an arbitrary r.e. set. Observe that

W; = {n|3ceN COMP(i,n,c1)}.

Here COMP(i, n, c,y) is the very useful decidable predicate meaning that ¢ is an encoding of a
complete halting computation of TM M;(n) and the output is y, i.e., M;(n) = y.

Thus, W; € X.

Conversely, suppose that S € ¥, i.e.,

S ={n | (3z) ¢(n,z)}, for a decidable predicate, .

We can build a TM, Mg which accepts exactly S by doing the following:
forz =0tooo, if (¢(n,z)): return(1).

Thus, we have shown that r.e. = >;.

From the definition of >; and II; it follows that >; = co-1I;. Thus, co-r.e. = II;. O



