
Notation: Mn(x)↓means that TMMn halts on input x. Let us assume that ifMn(x)↓, thenMn(x)
is defined, i.e., the output, Mn(x), is whatever string is left between . and the first t.

Thus, Mn(x)↓ ⇔ Mn(x) ∈ N ⇔ Mn(x) 6=↗

Fundamental Theorem of r.e. Sets: Let S ⊆ N. T.F.A.E.

1. S is the domain of a partial, recursive function,

i.e., for some n ∈ N, S =
{
x ∈ N

∣∣ Mn(x)↓
}

2. S = ∅ or S is the range of a total, recursive function,

i.e., for some total, recursive Mm(·), S = ∅ or S =Mm(N)

3. S is the range of a partial, recursive function,

i.e., for some r ∈ N, S = Mr(N)

4. S is r.e.,

i.e., for some t ∈ N, S = Wt,

Proof: S =
{
x

∣∣ Mn(x)↓
}
⇒ S = ∅ ∨ ∃m(S =Mm(N))

case 1: S = ∅. Thus S satisfies (2).

case 2: S 6= ∅. let a0 ∈ S.

Build TM Mm, which on input z does the following:

1. x := L(z); y := R(z) // i.e., z = P (x, y)

2. run Mn(x) for y steps

3. if it converges then return(x)

4. else return(a0)

1



Claim: S = Mm(N) : Mm(N) ⊆ S

Mm(N) ⊇ S : Suppose x ∈ S.

Thus Mn(x) converges in some number y of steps.

Therefore, Mm(P (x, y)) = x.

[Non-computable step in above construction: no way to tell if we are in case 1 or case 2.]

S = ∅ or S =Mm(N) ⇒ ∃r(S = Mr(N))

If S = ∅ then S =M0(N) where M0 is a Turing machine that halts on no inputs. r := 0

Otherwise, S =Mm(N), i.e., S is the range of the partial, recursive function Mm(·). r := m

[Even though Mm(·) is total, it is still considered a partial, recursive function. However, of
course, Mm(·) is not strictly partial.]

S = Mr(N) ⇒ ∃t(S = Wt)

Construct TM Mt, which on input x does the following:

1. for i := 1 to∞ {
2. run Mr(0),Mr(1), . . . ,Mr(i) for i steps each.

3. if any of these output x, then return(1)}

[The above construction is called dove-tailing.]

Claim: Mr(N) = L(Mt).

Suppose x ∈Mr(N), i.e., Mr(j) = x, for some j,

computation takes k steps, for some k

At round i = max(j, k), Mt(x) will halt and output “1”.

Suppose x 6∈Mr(N), then Mt(x) will never halt.

S = Wt ⇒ ∃n(S =
{
x ∈ N

∣∣ Mn(x)↓
}
)

Construct TM Mn, which on input x does the following:

1. run Mt(x)

2. if (Mt(x) = 1) then return(1)

3. else run forever

2



Recall that, S = Wt = L(Mt)

Thus, S = dom(Mn(·)) =
{
x

∣∣ Mn(x)↓
}

. �

3



Reductions = Translations

Def. S is reducible to T (S ≤ T ) iff there exists a “very easy to compute” function f : N →
N, s.t.∀w ∈ N (w ∈ S ⇔ f(w) ∈ T ).

Note: Later we will require f ∈ F (DSPACE[log n]).

Note: f translates membership questions for S to membership questions for T . Thus, S is no
harder than T.

∀w ∈ N χS(w) = χT (f(w))

∀w ∈ N (w ∈ S ⇔ f(w) ∈ T )

Sometimes the “⇔” in the definition of reductions makes students think that reductions go both
ways, but that is not true, they only go from S to T . The reason for the “⇔” is that one arrow tells
us that if f(w) ∈ T then w ∈ S, and the arrow in the other direction tells us that if f(w) 6∈ T then
w 6∈ S. Thus the answer to the question, “Is f(w) ∈ T ?”, is also the answer to the question, “Is
w ∈ S?”.

Proposition 3.1 K ≤ A0,17 =
{
n

∣∣ Mn(0) = 17
}

Proof: We want to build an easy-to-compute program translator f1 : N→ N such that,

Want: ∀z ∈ N (z ∈ K) ⇔ (f1(z) ∈ A0,17)

Want: ∀z ∈ N (Mz(z) = 1) ⇔ (Mf1(z)(0) = 17).

Define f1(z) to be the following Turing Machine program, on input x,

1. if x 6= 0: return(34)

2. run Mz(z)

3. if (Mz(z) = 1): return(17)

4. return(68)

Recall that we write Mf1(z) for the Turing Machine whose program is f1(z). Thus,

z ∈ K ⇔ Mz(z) = 1 ⇔ Mf1(z)(0) = 17 ⇔ f1(z) ∈ A0,17

[In the proof of the above series of equivalences, note that if Mz(z) =↗, then Mf1(z)(0) =↗.] �

4



Proposition 3.2 A0,17 ≤ K

Proof: We want to build any easy-to-compute program translator f2 : N→ N such that,

Want: ∀z ∈ N (z ∈ A0,17) ⇔ (f2(z) ∈ K)

Want: ∀z ∈ N (Mz(0) = 17) ⇔ (Mf2(z)(f2(z)) = 1)

Define f2(z) to be the following Turing Machine program, on input x,

1. run Mz(0)

2. if (Mz(0) = 17): return(1)

3. return(0)

Thus,

z ∈ A0,17 ⇔ Mz(0) = 17 ⇔ ∀x ∈ N (Mf2(z)(x) = 1) ⇔ Mf2(z)(f2(z)) = 1 ⇔ f2(z) ∈ K

[In the proof of the above series of equivalences, note that if Mz(0) =↗, then Mf2(z)(x) =↗ for
all inputs x.] �

5



Def. Let C ⊆ N. C is r.e.-complete iff

1. C ∈ r.e., and

2. ∀A ∈ r.e. (A ≤ C)

Intuition: C is a “hardest” r.e. set.

Th: K is r.e. complete.

Proof: We already know that K is r.e.

Let A be an arbitrary r.e. set, i.e., A = Wi for some i.

Wanted: total recursive f , s.t.: ∀n(n ∈ A ⇔ f(n) ∈ K)

Define total, recursivef which on input n computes:

Mf(n) = Erase input Write n Mi

Mf(n) ignores its input and instead runs Mi(n).

n ∈ A ⇔ Mi(n) = 1 ⇔ ∀x(Mf(n)(x) = 1)

⇔ Mf(n)(f(n)) = 1 ⇔ f(n) ∈ K

6



Prop: Suppose C is r.e.-complete and:

1. S ∈ r.e., and

2. C ≤ S

then S is r.e.-complete.

Proof: Show: ∀A ∈ r.e. (A ≤ S)

Know: ∀A ∈ r.e. (A ≤ C)

Follows by transitivity of ≤: A ≤ C ≤ S. �

Cor: A0,17 is r.e.-complete.

7


