Notation: M, (z)] means that TM M, halts on input x. Let us assume that if M,,(x)], then M,,(x)
is defined, i.e., the output, M, (x), is whatever string is left between > and the first L.

Thus, M,(z)l < M,(x)eN < M,(z)#/

Fundamental Theorem of r.e. Sets: Let S C N. T.FA.E.

1. S is the domain of a partial, recursive function,

i.e., for some n € N, S ={zeN ‘ M, ()|}

2. S = () or S is the range of a total, recursive function,

i.e., for some total, recursive M,,(-), S=0orS=M,N)

3. S is the range of a partial, recursive function,

i.e., for some r € N, S = M,(N)
4. Sisre.,
i.e., for some t € N, S =W,

Proof: S ={z | M,(z)l} = S=0V Im(S=M,(N))

case 1: S = (). Thus S satisfies (2). \/
case 2: S # (). letag € S.

Build TM M,,,, which on input z does the following:

1. z:= L(2); y:= R(2) //ie., z= P(z,y)
2. run M, (z) for y steps
3. if it converges then return(x)

4, else return(a)

Claim: § — M, (N): M, (N)C S V
M,,(N) DS : Suppose x € S.

Thus M,,(x) converges in some number y of steps.

Therefore, M,,(P(z,y)) = x. v

[Non-computable step in above construction: no way to tell if we are in case 1 or case 2.]

S=@orS=M,(N) = IS = M(N))
If S = () then S = My(N) where M is a Turing machine that halts on no inputs. 7 := 0

Otherwise, S = M,,(N), i.e., S is the range of the partial, recursive function M,,(-). 7 :=m

[Even though M, (+) is total, it is still considered a partial, recursive function. However, of
course, M,,(-) is not strictly partial.]

S = MN) = 3S=W)

Construct TM M,, which on input x does the following:

1. fori:=1to o {
2. run M, (0), M, (1), ..., M,.(i) for i steps each.
3. if any of these output x, then return(1)}

[The above construction is called dove-tailing.]

Claim: M, (N) = L(M,).
Suppose x € M,.(N), i.e., M,(j) = z, for some 7,

computation takes & steps, for some k
At round i = max(j, k), M, (z) will halt and output “1”. V
Suppose x ¢ M,.(N), then M;(x) will never halt. \/

S=W, = (S = {zeN | M(z)l})

Construct TM M,,, which on input x does the following:

1. run M,(z)
2. if (My(x) =1) then return(1)
3. else run forever

Recall that, S = W,

Thus,

S = dom(M,(-) =

Reductions = Translations

Def. S is reducible to 7' (S < T') iff there exists a “very easy to compute” function f : N —
N.,stVweN (wesS <« f(w)el).

Note: Later we will require f € F(DSPACE|logn|).

Note: [translates membership questions for S to membership questions for 7". Thus, S is no
harder than T.

VweN xg(w) = xr(f(w))
VweN (weS & flw)eT)

Sometimes the “<” in the definition of reductions makes students think that reductions go both
ways, but that is not true, they only go from S to 7". The reason for the “<” is that one arrow tells
us that if f(w) € T then w € S, and the arrow in the other direction tells us that if f(w) ¢ T then

w ¢ S. Thus the answer to the question, “Is f(w) € T'?”, is also the answer to the question, “Is
we ST,

Proposition 3.1 K < Agi; = {n | M,(0) =17}

Proof: We want to build an easy-to-compute program translator f; : N — N such that,
Want: VzeN (Z c K) = (fl(Z) S A0,17)
Want: VzeN (M.(2)=1) & (My(0)=17).

Define f1(z) to be the following Turing Machine program, on input z,

if © # 0: return(34)

run M, (z)

if (M,(z) = 1): return(17)
return(68)

Lol

Recall that we write My, () for the Turing Machine whose program is f1(z). Thus,

zeK & M. (2)=1 & My)(0) =17 & fi(2) € Agar

[In the proof of the above series of equivalences, note that if M. (z) =7, then My, (,)(0) =] O

Proposition 3.2 A7 < K

Proof: We want to build any easy-to-compute program translator f; : N — N such that,
Want: VzeN (z€Ap17) & (faz) € K)
Want: VzeN (M,(0)=17) & (M (fa(2) =1)

Define f5(z) to be the following Turing Machine program, on input z,

1. run M., (0)
2. if (M,(0) = 17): return(1)
3. return(0)

Thus,

z € A0717 = MZ(O) =17 & Vx € N(MfQ(Z)(ZL') = 1) = MfQ(Z)(fz(Z)) =1 < fQ(Z) eK

[In the proof of the above series of equivalences, note that if M (0) =7, then Mj,(,)(xz) =~ for
all inputs z.] U

Def. LetC' C N. C('isre.-complete iff

1. C €re., and

2. VAere. (A<(O)

Intuition: C is a “hardest” r.e. set.

Th: K isr.e. complete.

Proof: We already know that K is r.e.

Let A be an arbitrary r.e. set, i.e., A = W; for some 1.

Wanted: total recursive f,s.t.. Vn(n€ A & f(n) € K)

Define total, recursive f which on input n computes:

My = Erase input Write n M;

M,y ignores its input and instead runs M;(n).

neA & Mn)=1 & Vae(Myy(r)=1)

o M =1 = fwex v

Prop: Suppose C'is r.e.-complete and:

1. S€re., and

2.0<LS

then S is r.e.-complete.

Proof: Show: VA cre.(A<YS)

Know: VA € re. (A < C)

Follows by transitivity of <: A< (C < S.

Cor: Ay ;7 isre.-complete.

