Notation: $M_n(x) \downarrow$ means that TM M_n halts on input x. Let us assume that if $M_n(x) \downarrow$, then $M_n(x)$ is defined, i.e., the output, $M_n(x)$, is whatever string is left between \triangleright and the first \sqcup .

Thus, $M_n(x) \downarrow \Leftrightarrow M_n(x) \in \mathbf{N} \Leftrightarrow M_n(x) \neq \nearrow$

Fundamental Theorem of r.e. Sets: Let $S \subseteq N$. T.F.A.E.

1. S is the domain of a partial, recursive function,

i.e., for some
$$n \in \mathbf{N}$$
, $S = \{x \in \mathbf{N} \mid M_n(x)\downarrow\}$

2. $S = \emptyset$ or S is the range of a total, recursive function,

i.e., for some total, recursive $M_m(\cdot)$, $S = \emptyset$ or $S = M_m(\mathbf{N})$

- 3. S is the range of a partial, recursive function,
 - i.e., for some $r \in \mathbf{N}$, $S = M_r(\mathbf{N})$

4. *S* is r.e.,

i.e., for some $t \in \mathbf{N}$, $S = W_t$,

Proof: $S = \{x \mid M_n(x)\downarrow\} \Rightarrow S = \emptyset \lor \exists m(S = M_m(\mathbf{N}))$ **case 1:** $S = \emptyset$. Thus S satisfies (2). \checkmark **case 2:** $S \neq \emptyset$. let $a_0 \in S$.

Build TM M_m , which on input z does the following:

- 1. $x := L(z); \ y := R(z)$ // i.e., z = P(x, y)
- 2. run $M_n(x)$ for y steps
- 3. if it converges then return(x)
- 4. **else return** (a_0)

Claim: $S = M_m(\mathbf{N}) : M_m(\mathbf{N}) \subseteq S \checkmark$

 $M_m(\mathbf{N}) \supseteq S$: Suppose $x \in S$.

Thus $M_n(x)$ converges in some number y of steps.

Therefore, $M_m(P(x, y)) = x$.

[Non-computable step in above construction: no way to tell if we are in case 1 or case 2.]

$$S = \emptyset \text{ or } S = M_m(\mathbf{N}) \quad \Rightarrow \quad \exists r(S = M_r(\mathbf{N}))$$

If $S = \emptyset$ then $S = M_0(\mathbf{N})$ where M_0 is a Turing machine that halts on no inputs. r := 0

Otherwise, $S = M_m(\mathbf{N})$, i.e., S is the range of the partial, recursive function $M_m(\cdot)$. r := m

[Even though $M_m(\cdot)$ is total, it is still considered a **partial, recursive function**. However, of course, $M_m(\cdot)$ is not strictly partial.]

 $S = M_r(\mathbf{N}) \Rightarrow \exists t(S = W_t)$

Construct TM M_t , which on input x does the following:

1. **for**
$$i := 1$$
 to ∞ {

- 2. run $M_r(0), M_r(1), \ldots, M_r(i)$ for *i* steps each.
- 3. **if** any of these output x, **then return**(1)

[The above construction is called **dove-tailing**.]

Claim: $M_r(\mathbf{N}) = \mathcal{L}(M_t).$

Suppose $x \in M_r(\mathbf{N})$, i.e., $M_r(j) = x$, for some j,

computation takes k steps, for some k

At round $i = \max(j, k)$, $M_t(x)$ will halt and output "1".

Suppose $x \notin M_r(\mathbf{N})$, then $M_t(x)$ will never halt.

 $S = W_t \quad \Rightarrow \quad \exists n(S = \{x \in \mathbf{N} \mid M_n(x) \downarrow\})$

Construct TM M_n , which on input x does the following:

1. run $M_t(x)$ 2. if $(M_t(x) = 1)$ then return(1) 3. else run forever Recall that, $S = W_t = \mathcal{L}(M_t)$

Thus, $S = \operatorname{dom}(M_n(\cdot)) = \{x \mid M_n(x)\downarrow\}$.

Reductions = **Translations**

Def. S is reducible to $T (S \le T)$ iff there exists a "very easy to compute" function $f : \mathbf{N} \to \mathbf{N}$, s.t. $\forall w \in \mathbf{N} \quad (w \in S \iff f(w) \in T)$.

Note: Later we will require $f \in F(DSPACE[\log n])$.

Note: f translates membership questions for S to membership questions for T. Thus, **S** is no harder than **T**.

$$\forall w \in \mathbf{N} \quad \chi_S(w) = \chi_T(f(w))$$

$$\forall w \in \mathbf{N} \quad (w \in S \iff f(w) \in T)$$

Sometimes the " \Leftrightarrow " in the definition of reductions makes students think that reductions go both ways, but that is not true, they only go from S to T. The reason for the " \Leftrightarrow " is that one arrow tells us that if $f(w) \in T$ then $w \in S$, and the arrow in the other direction tells us that if $f(w) \notin T$ then $w \notin S$. Thus the answer to the question, "Is $f(w) \in T$?", is also the answer to the question, "Is $w \in S$?".

Proposition 3.1 $K \le A_{0,17} = \{n \mid M_n(0) = 17\}$

Proof: We want to build an easy-to-compute program translator $f_1 : \mathbf{N} \to \mathbf{N}$ such that,

Want: $\forall z \in \mathbf{N} \quad (z \in K) \quad \Leftrightarrow \quad (f_1(z) \in A_{0,17})$

Want: $\forall z \in \mathbf{N} \quad (M_z(z) = 1) \quad \Leftrightarrow \quad (M_{f_1(z)}(0) = 17).$

Define $f_1(z)$ to be the following Turing Machine program, on input x,

- if x ≠ 0: return(34)
 run M_z(z)
 if (M_z(z) = 1): return(17)
- 4. **return**(68)

Recall that we write $M_{f_1(z)}$ for the Turing Machine whose program is $f_1(z)$. Thus,

$$z \in K \Leftrightarrow M_z(z) = 1 \Leftrightarrow M_{f_1(z)}(0) = 17 \Leftrightarrow f_1(z) \in A_{0,17}$$

[In the proof of the above series of equivalences, note that if $M_z(z) = \nearrow$, then $M_{f_1(z)}(0) = \nearrow$.]

Proposition 3.2 $A_{0,17} \leq K$

Proof: We want to build any easy-to-compute program translator $f_2 : \mathbf{N} \to \mathbf{N}$ such that,

Want: $\forall z \in \mathbf{N} \quad (z \in A_{0,17}) \Leftrightarrow (f_2(z) \in K)$ Want: $\forall z \in \mathbf{N} \quad (M_z(0) = 17) \Leftrightarrow (M_{f_2(z)}(f_2(z)) = 1)$

Define $f_2(z)$ to be the following Turing Machine program, on input x,

- 1. run $M_z(0)$
- 2. if $(M_z(0) = 17)$: return(1)
- 3. **return**(0)

Thus,

$$z \in A_{0,17} \Leftrightarrow M_z(0) = 17 \Leftrightarrow \forall x \in N \left(M_{f_2(z)}(x) = 1 \right) \Leftrightarrow M_{f_2(z)}(f_2(z)) = 1 \Leftrightarrow f_2(z) \in K$$

[In the proof of the above series of equivalences, note that if $M_z(0) = \nearrow$, then $M_{f_2(z)}(x) = \nearrow$ for all inputs x.]

Def. Let $C \subseteq \mathbf{N}$. *C* is **r.e.-complete** iff

- 1. $C \in r.e.$, and
- 2. $\forall A \in \text{r.e.} (A \leq C)$

Intuition: *C* is a "hardest" r.e. set.

Th: *K* is r.e. complete.

Proof: We already know that K is r.e.

Let A be an arbitrary r.e. set, i.e., $A = W_i$ for some i.

Wanted: total recursive f, s.t.: $\forall n(n \in A \Leftrightarrow f(n) \in K)$

Define total, recursive f which on input n computes:

$M_{f(n)} =$	Erase input	Write <i>n</i>	M_i
--------------	-------------	----------------	-------

 $M_{f(n)}$ ignores its input and instead runs $M_i(n)$.

$$n \in A \iff M_i(n) = 1 \iff \forall x(M_{f(n)}(x) = 1)$$
$$\Leftrightarrow M_{f(n)}(f(n)) = 1 \iff f(n) \in K \checkmark$$

Prop: Suppose *C* is r.e.-complete and:

1. $S \in \text{r.e.}$, and

2. $C \leq S$

then S is r.e.-complete.

Proof: Show: $\forall A \in \text{r.e.} (A \leq S)$

Know: $\forall A \in \text{r.e.} (A \leq C)$

Follows by transitivity of \leq : $A \leq C \leq S$.

Cor: $A_{0,17}$ is r.e.-complete.