There are very few natural problems that are:

e Known to be in NP, and
e Not known to be NP-complete, and

e Not known to be in P

Examples:

e Factoring natural numbers
e Graph Isomorphism
e Model Checking the p-Calculus

Theorem 11.1 (Ladner) If P # NP then there exists an intermediate problem I € NP — P that is not NP
complete.

Proof: Assume that P = NP.

b

We will construct I by a method called “delayed diagonalization™.

The construction will make sure that:

e [isnothard: SAT £ 1. Ry, R3, Rs5, . ..

e [isnoteasy: [¢P. Ry, Ry, R, . ..

Rok11 : “Mj, isn’t a DSPACE|k log n| reduction from SAT to [”
Rop o : “My isn’t a DTIME[kn*] recognizer of I

Observation: If all the R;’s are met, then we’re done.

Conditions to Satisfy: R;,, i=1,...00
Rogy1 : “Mjy, isn’t a DSPACE][k log n| reduction from SAT to I”
Rop o 1 “M,, isn’t a DTIME[kn*] recognizer of I”

SAT

() ——
verifying R, verifying R, verifying R verifying R,

On input w, recursively /(w) does following:

. do for a total of |w| steps {
: fori =1...00 do {

forz=1...00 do {

-1}
. if (2 is even and w € SAT) then ACCEPT

1
2
3
4, if (R; verified on input z) then next ¢
5
6
7. else REJECT

Note: In line 4, I simulates itself deterministically. Thus, to check if an input is in SAT it might need exponential
time. Thus, it might only find out exponentially later that condition R; has been met. That’s why this method is
called delayed diagonalization. The key idea, is that if ¢ is even we are simulating SAT, so if we do this long
enough we cannot be in P, whereas if 7 is odd then we are rejecting all inputs, so if we do this long enough we
cannot be NP complete. 0

