
There are very few natural problems that are:

• Known to be in NP, and

• Not known to be NP-complete, and

• Not known to be in P

Examples:

• Factoring natural numbers

• Graph Isomorphism

• Model Checking the µ-Calculus

Theorem 11.1 (Ladner) If P 6= NP then there exists an intermediate problem I ∈ NP − P that is not NP
complete.

Proof: Assume that P 6= NP.

We will construct I by a method called “delayed diagonalization”.

The construction will make sure that:

• I is not hard: SAT 6≤ I . R1, R3, R5, . . .

• I is not easy: I 6∈ P. R2, R4, R6, . . .

R2k+1 : “Mk isn’t a DSPACE[k log n] reduction from SAT to I”

R2k+2 : “Mk isn’t a DTIME[knk] recognizer of I”

Observation: If all the Ri’s are met, then we’re done.

1

Conditions to Satisfy: Ri, i = 1, . . .∞

R2k+1 : “Mk isn’t a DSPACE[k log n] reduction from SAT to I”

R2k+2 : “Mk isn’t a DTIME[knk] recognizer of I”

I

SAT

∅
verifying R1 verifying R2 verifying R3 verifying R4

On input w, recursively I(w) does following:

1. do for a total of |w| steps {
2. for i = 1 . . .∞ do {
3. for x = 1 . . .∞ do {
4. if (Ri verified on input x) then next i

5. } } }
6. if (i is even and w ∈ SAT) then ACCEPT
7. else REJECT

Note: In line 4, I simulates itself deterministically. Thus, to check if an input is in SAT it might need exponential
time. Thus, it might only find out exponentially later that condition Ri has been met. That’s why this method is
called delayed diagonalization. The key idea, is that if i is even we are simulating SAT, so if we do this long
enough we cannot be in P, whereas if i is odd then we are rejecting all inputs, so if we do this long enough we
cannot be NP complete. �

2

