There are very few natural problems that are:

- Known to be in NP, and
- Not known to be NP-complete, and
- Not known to be in P

Examples:

- Factoring natural numbers
- Graph Isomorphism
- Model Checking the μ -Calculus

Theorem 11.1 (Ladner) If $P \neq NP$ then there exists an intermediate problem $I \in NP - P$ that is not NP complete.

Proof: Assume that $P \neq NP$.

We will construct *I* by a method called "delayed diagonalization".

The construction will make sure that:

- *I* is not hard: SAT $\leq I$. R_1, R_3, R_5, \ldots
- *I* is not easy: $I \notin \mathbf{P}$. R_2, R_4, R_6, \ldots

 R_{2k+1} : " M_k isn't a DSPACE $[k \log n]$ reduction from SAT to I" R_{2k+2} : " M_k isn't a DTIME $[kn^k]$ recognizer of I"

Observation: If all the R_i 's are met, then we're done.

Conditions to Satisfy: R_i , $i = 1, ... \infty$

 R_{2k+1} : " M_k isn't a DSPACE $[k \log n]$ reduction from SAT to I" R_{2k+2} : " M_k isn't a DTIME $[kn^k]$ recognizer of I"

On input w, recursively I(w) does following:

- 1. do for a total of |w| steps {
- 2. **for** $i = 1...\infty$ **do** {
- 3. **for** $x = 1...\infty$ **do** {
- 4. **if** $(R_i \text{ verified on input } x)$ **then** next i
- 5. } } }
- 6. if (*i* is even and $w \in SAT$) then ACCEPT
- 7. else REJECT

Note: In line 4, I simulates itself deterministically. Thus, to check if an input is in SAT it might need exponential time. Thus, it might only find out exponentially later that condition R_i has been met. That's why this method is called delayed diagonalization. The key idea, is that if i is even we are simulating SAT, so if we do this long enough we cannot be in P, whereas if i is odd then we are rejecting all inputs, so if we do this long enough we cannot be NP complete.