Problems:

1. Let EMPTY-DFA = $\{D \mid D \text{ a deterministic finite automaton and } \mathcal{L}(D) = \emptyset\}$ and EMPTY-NFA = $\{N \mid N \text{ a nondeterministic finite automaton and } \mathcal{L}(N) = \emptyset\}$ and EQIV-DFA = $\{(D, E) \mid D, E \text{ DFAS}; \mathcal{L}(D) = \mathcal{L}(E)\}$

Show that EMPTY-DFA, EMPTY-NFA and EQIV-DFA are all NL complete.

A Horn formula is a CNF formula such that each clause has at most one positive literal. For example, the following clauses are Horn clauses: (x₁), (x
₁), (x
₁ ∨ x₂ ∨ x₃), (x
₁ ∨ x₂ ∨ x₃)), (x
₁ ∨ x₂ ∨ x₃), (x
₁ ∨ x

Show that HORNSAT is P complete.

[Hint: there is a linear-time algorithm for Horn-Sat. For a given Horn formula, φ , start with the truth assignment that makes all the variables false. If this doesn't satisfy φ , then there must be a unit, positive clause, (x_i) . Assign x_i true, thus forever satisfying this clause which you may now delete. Continue.

For the hardness of HornSAT, look at the analogy of Fagin's Theorem where the TIME $[n^k]$ TM is deterministic. What's different? Do something similar to the proof of Cook's Theorem from Fagin's Theorem.]

3. Show that the following problem is PSPACE-complete:

 $\Sigma^* NFA = \{ N \mid N \text{ is an NFA}; \mathcal{L}(N) = \Sigma^* \}$