1. This problem concerns the Arithmetic Hierarchy, which is at the top of the World-of-Computability-and-Complexity diagram. We say that a set of natural numbers, \(S \), is an element of \(\Sigma_k \) iff there is a ptime predicate \(\varphi \), such that,
\[
S = \{ n \mid \exists x_1 \forall x_2 \cdots Q_k x_k(\varphi(n, x_1, \ldots, x_k)) \},
\]
here \(Q_k \) is \(\forall \) if \(k \) is even and \(\exists \) if \(k \) is odd. Similarly, \(S \) is an element of \(\Pi_k \) iff,
\[
S = \{ n \mid \forall x_1 \exists x_2 \cdots Q'_k x_k(\psi(n, x_1, \ldots, x_k)) \},
\]
for some ptime predicate \(\psi \). Here \(Q'_k \) is \(\forall \) if \(k \) is odd and \(\exists \) if \(k \) is even.

(a) Prove that r.e. = \(\Sigma_1 \).
(b) Prove that co-r.e. = \(\Pi_1 \).

Define the Arithmetic Hierarchy to be \(\bigcup_{k=1}^{\infty} \Sigma_k \).
Classify the following sets by writing a formula that places them as low as you can in the arithmetic hierarchy. You do not have to prove that they cannot be placed in a lower class.

For example, \(\text{TOTAL} = \{ n \mid M_n \text{ halts on all inputs} \} \) is \(\Pi_2 \) because it can be written as
\[
\text{TOTAL} = \{ n \mid \forall x \exists z (\text{COMP}(n, x, L(z), R(z))) \}.
\]
(Here COMP\((n, x, c, y)\) is the ptime predicate meaning that \(c \) is a complete halting computation of TM \(M_n \) on input \(x \) and its output is \(y \).)

(c) \(\text{EMPTY} = \{ n \mid W_n = \emptyset \} \).
(d) \(\text{FINITE} = \{ n \mid W_n \text{ is finite} \} \).
(e) \(\text{PTM} = \{ M_i \mid \exists c \forall n (\text{TM } M_i \text{ runs in time } cn^c \text{ on all inputs of length } n) \} \).

2. Let \(\text{EMPTY-DFA} = \{ D \mid D \text{ a deterministic finite automaton and } L(D) = \emptyset \} \) and \(\text{EMPTY-NFA} = \{ N \mid N \text{ a nondeterministic finite automaton and } L(N) = \emptyset \} \).
Show that \(\text{EMPTY-DFA}, \text{EMPTY-NFA} \) and \(\text{EQUAL-DFA} \) are all NL complete.
3. Show that 2-SAT is NL-complete. I’d like you to do this using the following large hint:

Given a 2-CNF formula \(\varphi \), define the directed graph \(f(\varphi) = (V_\varphi, E_\varphi) \) as follows:

\[
V_\varphi = \{x_1, \overline{x_1}, \ldots, x_n, \overline{x_n}\}
\]
\[
E_\varphi = \{(u, v) \mid (\overline{u} \lor v) \text{ or } (v \lor \overline{u}) \text{ occurs in } \varphi.\}
\]

For example, for the formula \(\varphi \equiv (x \lor y) \land (\overline{y} \lor \overline{x}) \land (\overline{x} \lor z) \land (z \lor \overline{x}) \), the graph \(f(\varphi) \) is drawn below:

Recall that a directed graph is strongly connected iff for each pair of vertices \(v, w \) in the graph, there is a path from \(v \) to \(w \). A strongly connected component (SCC) of a directed graph is a maximal subgraph that is strongly connected.

The important observation about any 2CNF formula \(\varphi \) is the following:

\[
(\varphi \in \text{2-SAT}) \iff \forall x \in \text{VAR}(\varphi)("x, \overline{x} \text{ not in same SCC")}
\]

Using this observation, show that 2-SAT is NL complete. For extra credit, you may also prove the observation.

4. Prove that EMPTY-CFL is P-complete. First give an efficient algorithm for EMPTY-CFL. (It is possible to do this in linear time on a RAM.) For hardness, I suggest that you reduce MCVAL to EMPTY-CFL, where MCVAL is the monotone circuit-value problem which we will show in Lecture 8 is P-complete.