CS601: Homework 1 Due in class Thursday, Jan. 31, 2019

Cooperation: Students should talk to each other about the subject matter of this class and help each other. It is
fine to discuss the problems and ask questions about them. I encourage such questions in class and office hours.
However, there is a line past which you must not go, e.g., sharing or copying a solution is not okay and could
result in failure. If a significant part of one of your solutions is due to someone else, or something you’ve read
then you must acknowledge your source! Failure to do so is a serious academic violation, likely to result in
failure of the course or worse. Furthermore, all solutions must be written by yourself, in your own words. You
may get an idea from somewhere or someone and acknowledge that, but you must still understand it and explain
it yourself. A copied solution, even with the source acknowledged will be considered plagiarism. The exception
is if it is in quotation marks and cited specifically. But in this case, don’t bother because you won’t get credit for
quoting someone else’s solution.

Furthermore, please do not look up answers to problems, especially not on the web. The only appropriate
places to look things up are in the text and your notes, and the notes I post. To do a problem, ask for clarifications
until you understand the problem. Try it on small examples, play with it, make sure you understand the problem
or ask a simple question about a small instance of the problem.

General Strategy for doing the homeworks: My desire for the homeworks is that they help you understand
the concepts from lecture and readings, i.e., that these concepts not only seem believable, but you can employ
them.

For almost all the problems I give, you should be able to look at a few tiny examples, and try to solve the problem
on those examples. If you can do it for the tiny examples, then you are part way to giving a rule that will solve
the problem in general. If you cannot solve or are confused by what the problem means on one of your small
examples, then that would be a great time to ask a question about it. Please be careful not to ask a question on
Piazza that might give away a partial solution to a hw problem. When in doubt, ask the question privately and if
it’s fine, I will open it up so everyone can see the question and its answer.

Problems:

1. We will think of a Turing Machine input as a binary string, w € {0, 1}*, which appears between the left
marker, ‘“>" and the infinite string of blanks, L. The following problems show that we can ignore the type
of the input: if we want to think of the input as a binary string, w, that’s what it is. If we want to think
of it as a natural number, fine, it’s ((w). If we want to think of it as a pair of natural numbers, fine it’s

(L(¢(w)), R(¢(w))), etc.

(a) Show that the following pairing function given by Cantor is a 1:1 correspondence between N x N and
N:
(41

[Hint: look at enough examples to get an understanding of what this function does. Then give a clear,
simple proof that this map is indeed 1:1 and onto. I don’t care how formal you are as long as your
argument is very clear and convincing. It may help to recall that ) . , ¢ = n(n+1)/2. You might want
to show the existence of the “inverses” of the pairing function. These are functions L, R : N — N
with the properties that

Vi,j,k € N(P(L(k),R(k)) =k & L(P(i,j) =1 & R(P(i,j)) =)



(b) Construct a simple, easy to compute 1:1 and onto map, ¢, from the set of binary strings to the naturals,
ie, ¢ : {0,1}* B N. [If you are not sure what “N” is, check the 601 symbol table: https:
//people.cs.umass.edu/~immerman/cs601l/symbolTable.pdfl]

In Lecture 2 we defined partial recursive functions, total recursive functions, recursive sets, r.e. sets and co-
r.e. sets. We showed that all Turing machines can be listed out as My, My, ..., M,, ..., where the subscript,
n, is a natural number, which may also be thought of as a binary string, w = (~*(n), which is a binary
encoding of the the program that M, runs, i.e., n is the program.

As Turing proved, there is a universal TM, U, with the property that for all i, j € N, U(i, j) = M;(j), i.e.,
the universal machine on input (i, j) exactly simulates M; on input j

We also defined W; = L(M;) = {w | M;(w) =1}, i.e., the set accepted by TM M, is the ith r.e. set. The
set of all r.e. sets is thus r.e. = {Wy, Wy, ...}

We defined the diagonal set, K = {z | 1 € M} We proved that K is r.e., but that it’s complement,
K={i|i¢gW;}isnotre.
Please read the notes for lectures 1 and 2 posted on the syllabus page.

Even though the proofs so far are reasonably simple, the concepts are deep and take a while to absorb. The
goal of this homework is to help you do that.

2. Let Aty = {(i,7) | Mi(j) =1}.

(a) Show directly from the definition of r.e., that Aqy is r.e., i.e., that p4,,, is a partial recursive function.

(b) Show from the fact that K is not r.e., that Apy is not recursive. Do this by contradiction: assume that
Aty 1s recursive, i.e., you have a TM, M 4, that computes Y 4,,,. Next modify M4 to build a TM that
computes X x.

3. (Where the name “recursively enumerable” comes from.)

(a) Show that every finite set, F, is r.e.

(b) Suppose that W; is infinite. Given M;, show how to build a TM computing a total recursive function,
fi,» such that f; enumerates W, i.e.,

Wi = A{fi(0), fi(1), fi(2), .. .}

Can you always construct f; so thatitis a 1:1 function?

"Note that the text uses slighly different notation in that they give U an extra first argument consisting of the number of steps that the
simulation of M;(j) should run for.


https://people.cs.umass.edu/~immerman/cs601/symbolTable.pdf
https://people.cs.umass.edu/~immerman/cs601/symbolTable.pdf

