
Finite Model Theory and Descriptive Complexity

Consider the input (the object we are working on) to be a finite logical structure, e.g., a binary string, a graph, a
relational database . . .

Definition 6.1 FO is the set of first-order definable decision problems on finite structures. �

Let S ⊆ STRUCfin[Σ].

S ∈ FO iff for some ϕ ∈ L(Σ) S =
{
A ∈ STRUCfin[Σ]

∣∣ A |= ϕ
}

FO is a complexity class: the set of all first-order definable decision problems.
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Addition Q+ : STRUC[ΣAB] → STRUC[Σs]

A a1 a2 . . . an−1 an
B + b1 b2 . . . bn−1 bn

S s1 s2 . . . sn−1 sn

C(i) ≡ ∃j > i
(
A(j) ∧B(j) ∧ (∀k.j > k > i)(A(k) ∨B(k))

)
Q+(i) ≡ A(i) ⊕ B(i) ⊕ C(i)

Q+(k) ∈ FO
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Encode structure A ∈ STRUCfin[Σ] as binary string: bin(A).

Example:

• binary strings: bin(Aw) = w

• graphs: G = ({1, . . . , n}, E, s, t)
bin(G) = a11a12 . . . anns1s2 . . . slognt1 . . . tlogn
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Thm: FO ⊆ L = DSPACE[log n]

Proof: Given: ϕ ≡ ∃x1 ∀x2 · · · ∀x2k (ψ)

Build DSPACE[log n] TM M s.t.,

A |= ϕ ⇔ M(bin(A)) = 1

By induction on k.

Base case: k = 0.

ϕ ≡ E(s, t)

ϕ ≡ s ≤ t

4



Inductive step: ϕ ≡ ∃x1 ∀x2 (ϕ′); ϕ′ ≡ ∃x3 ∀x4 · · · ∀x2k (ψ)

By inductive assumption, there is logspace TM M ′,

A |= ϕ′ ⇔ M ′(bin(A)) = 1

Modify M ′ by adding 2dlog ne worktape cells.

Worktape of M : x1︸ ︷︷ ︸
dlogne

x2︸ ︷︷ ︸
dlogne

Worktape of M ′

M cycles through all values of x1 until it finds one such that for all x2, M ′ accepts. �
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Second-Order Logic, consists of first-order logic, plus new relation variables over which we may quantify.

∃Ar(ϕ): For some r-ary relation A, ϕ holds.

SO is the set of second-order expressible problems.

SO∃ is the set of second-order existential problems.

Φ3-color ≡ ∃R1 ∃Y 1 ∃B1 ∀x
[(
R(x) ∨ Y (x) ∨B(x)

)
∧ ∀y

(
E(x, y) → ¬

(
R(x) ∧R(y)

)
∧

¬
(
Y (x) ∧ Y (y)

)
∧

¬
(
B(x) ∧B(y)

)) ]
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SAT is the set of boolean formulas in conjunctive normal form (CNF) that admit a satisfying assignment.

ΦSAT ≡ ∃S1 ∀t∃x (C(t) → (P (t, x) ∧ S(x)) ∨ (N(t, x) ∧ ¬S(x)))

C(t) ≡ “t is a clause; otherwise t is a variable.”
P (t, x) ≡ “Variable x occurs positively in clause t.”
N(t, x) ≡ “Variable x occurs negatively in clause t.”

ϕ ≡ (x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2 ∨ x3) ∧

(x1 ∨ x2 ∨ x3)
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CLIQUE is the set of pairs 〈G, k〉 such that G is a graph having a complete subgraph of size k.

Let Inj(f) mean that f is an injective function, i.e., 1:1

Inj(f) ≡ ∀xy (f(x) = f(y) → x = y)

ΦCLIQUE ≡ ∃f 1.Inj(f)∀xy((x 6= y ∧ f(x) < k ∧ f(y) < k)→ E(x, y))

0
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Fagin’s Thm: NP = SO∃.

Proof: NP ⊇ SO∃:

Given SO∃ sentence: Φ ≡ ∃Rr1
1 . . . ∃Rrk

k ψ ∈ L(Σ)

Build NP machine N s.t. for all A ∈ STRUCfin[Σ],

A |= Φ ⇔ N(bin(A)) = 1 (??)

A ∈ STRUCfin[Σ], n = ||A||, N(bin(A)) nondeterministically:

write binary string of length nr1 representing R1,
nr2 representing R2,
· · · · · · ,
nrk representing Rk.

A′ = (A, R1, R2, . . . , Rk); N accepts iff A′ |= ψ.

FO ⊆ L ⊆ NP
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NP ⊆ SO∃: Let N be an NTIME[nk] TM.

To Write: SO∃ sentence: Φ ≡ ∃C2k
0 . . . C2k

g−1∆
k (ϕ)

meaning: “∃ accepting computation C,∆ of N .”

To Show: A |= Φ ⇔ N(bin(A)) = 1

Fact: If have numeric relations and constants:

≤, Suc, min, max
ordering, successor, min elt., max elt.,

Then ϕ is universal: ϕ ≡ ∀x1 · · ·xt (α), α quantifier free
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Encoding N ’s Computation

Fix A, n = ||A||

Possible contents of a computation cell for N :

Γ = {γ0, . . . , γg−1} = (Q× Σ) ∪ Σ

Ci(s1, . . . , sk, t1, . . . , tk) means cell s̄ at time t̄ is symbol γi

∆(t̄) means the t̄+ 1st step of the computation makes choice “1”; otherwise it makes choice “0”.

Space
0 1 s̄ n− 1 n nk − 1 ∆

0 〈q0, w0〉 w1 · · · wn−1 t · · · t δ0
1 w0 〈q1, w1〉 · · · wn−1 t · · · t δ1

Time
...

...
...

...
...

t̄ a−1 a0 a1 δt

t̄+ 1 b δt+1

...
...

...
...

...
nk − 1 〈qf , 1〉 t · · · t t · · · t

Accepting computation of N on input w0w1 · · ·wn−1
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Write first-order sentence, ϕ(C,∆), saying that C,∆ codes a valid accepting computation of N .

ϕ ≡ α ∧ β ∧ η ∧ ζ

α ≡ row 0 codes input bin(A)

β ≡ ∀s̄, t̄, i 6= j (¬(Ci(s̄, t̄) ∧ Cj(s̄, t̄)))

η ≡ ∀t̄ ((row t+ 1 follows from row t via move ∆(t̄) of N ))

ζ ≡ last row of computation is accept ID

A |= Φ ⇔ N(bin(A)) = 1

Φ ≡ ∃C2k
0 C

2k
1 · · ·C2k

g−1∆
k(ϕ)

≡ “∃ an accepting compution: N (me) = 1”

α ≡ row 0 codes input bin(A)

Assume Σ has only single unary relation symbol, R.

0 1 n− 1 n nk − 1
〈q0, w0〉 w1 · · · wn−1 t · · · t

γ0 = 0; γ1 = 1; γ2 = t; γ3 = 〈q0, 0〉; γ4 = 〈q0, 1〉

α ≡ R(0)→ C4(0̄, 0̄)

∧ ¬R(0)→ C3(0̄, 0̄)

∧ ∀i > 0 (R(i)→ C1(0̄i, 0̄)

∧ ¬R(i)→ C0(0̄i, 0̄))

∧ ∀s̄ ≥ n (C2(s̄, 0̄))
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Most interesting case: η

a−1, a0, a1 leads to b via move δ of N : 〈a−1, a0, a1, δ〉
N→ b

η1 ≡ ∀t̄ . t̄ < max ∀s̄ . 0̄ < s̄ < max
∧

〈a−1,a0,a1,δ〉
N→b

(
¬δ∆(t̄) ∨

¬Ca−1(s̄− 1, t̄) ∨ ¬Ca0(s̄, t̄) ∨ ¬Ca1(s̄+ 1, t̄) ∨ Cb(s̄, t̄+ 1)
)

Here ¬δ is ¬ if δ = 1 and it is the empty symbol if δ = 0.

η ≡ η0 ∧ η1 ∧ η2

where η0 and η2 encode the same information when s̄ = 0 and max respectively. �
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Arithmetic Hierarchy FO(N) r.e. complete
Halt

co-r.e. complete
Halt

FO∃(N)
r.e.

FO∀(N)
co-r.e.

Recursive

Primitive Recursive

SO[2n
O(1)

] EXPTIME

QSAT PSPACE complete
FO[2n

O(1)

] SO[nO(1)] PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
Horn-
SAT P

FO[nO(1)]

FO(LFP)

FO[logO(1) n] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NL2SAT NL comp.FO(TC)

2COLOR L comp. LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy
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