
Descriptive Complexity

Neil Immerman

February 25, 2015

first printing: Jan., 1999, Springer Graduate Texts in Computer Science

ii

This book is dedicated to Daniel and Ellie.

Preface

This book should be of interest to anyone who would like to understand computa-

tion from the point of view of logic. The book is designed for graduate students or

advanced undergraduates in computer science or mathematics and is suitable as a

textbook or for self study in the area of descriptive complexity. It is of particular

interest to students of computational complexity, database theory, and computer

aided verification. Numerous examples and exercises are included in the text, as

well as a section at the end of each chapter with references and suggestions for

further reading.

The book provides plenty of material for a one semester course. The core of

the book is contained in Chapters 1 through 7, although even here some sections

can be omitted according to the taste and interests of the instructor. The remain-

ing chapters are more independent of each other. I would strongly recommend

including at least parts of Chapters 9, 10, and 12. Chapters 8 and 13 on lower

bounds include some of the nicest combinatorial arguments. Chapter 11 includes

a wealth of information on uniformity; to me, the low-level nature of translations

between problems that suffice to maintain completeness is amazing and provides

powerful descriptive tools for understanding complexity. I assume that most read-

ers will want to study the applications of descriptive complexity that are introduced

in Chapter 14.

Map of the Book

Chapters 1 and 2 provide introductions to logic and complexity theory, respec-

tively. These introductions are fast-moving and specialized. (Alternative sources

are suggested at the end of these chapters for students who would prefer more back-

ground.) This background material is presented with an eye toward the descriptive

point of view. In particular, Chapter 1 introduces the notion of queries. In Chapter

2, all complexity classes are defined as sets of boolean queries. (A boolean query

iii

iv

is a query whose answer is a single bit: yes or no. Since traditional complexity

classes are defined as sets of yes/no questions, they are exactly sets of boolean

queries.)

Chapter 3 begins the study of the relationship between descriptive and com-

putational complexity. All first-order queries are shown to be computable in the

low complexity class deterministic logspace (L). Next, the notion of first-order re-

duction — a first-order expressible translation from one problem to another — is

introduced. Problems complete via first-order reductions for the complexity classes

L, nondeterministic logspace (NL), and P are presented.

Chapter 4 introduces the least-fixed-point operator, which formalizes the power

of making inductive definitions. P is proved equal to the set of boolean queries ex-

pressible in first-order logic plus the power to define new relations by induction.

It is striking that such a significant descriptive class is equal to P. We thus have a

natural, machine-independent view of feasible computation. This means we can

understand the P versus NP question entirely from a logical point of view: P is

equal to NP iff every second-order expressible query is already expressible in first-

order logic plus inductive definitions (Corollary 7.23).

Chapter 5 introduces the notion of parallel computation and ties it to descrip-

tive complexity. In parallel computation, we can take advantage of many different

processors or computers working simultaneously. The notion of quantification is

inherently parallel. I show that the parallel time needed to compute a query corre-

sponds exactly to its quantifier depth. The number of distinct variables occurring

in a first-order inductive query corresponds closely with the amount of hardware

— processors and memory — needed to compute this query. The most important

tradeoff in complexity theory — between parallel time and hardware — is thus

identical to the tradeoff between inductive depth and number of variables.

Chapter 6 introduces a combinatorial game that serves as an important tool for

ascertaining what can and cannot be expressed in logical languages. Ehrenfeucht-

Fraı̈ssé games offer a semantics for first-order logic that is equivalent to, but more

directly applicable than, the standard definitions. These games provide powerful

tools for descriptive complexity. Using them, we can often decide whether a given

query is or is not expressible in a given language.

Chapter 7 introduces second-order logic. This is much more expressive than

first-order logic because we may quantify over an exponentially larger space of

objects. I prove Fagin’s theorem as well as Stockmeyer’s characterization of the

polynomial-time hierarchy as the set of second-order describable boolean queries.

It follows from previous results that the polynomial-time hierarchy is the set of

boolean queries computable in constant time, but using exponentially much hard-

v

ware (Corollary 7.28). This insight exposes the strange character of the polynomial-

time hierarchy and of the class NP.

Chapter 8 uses Ehrenfeucht-Fraı̈ssé games to prove that certain queries are not

expressible in some restrictions of second-order logic. Since second-order logic is

so expressive, it is surprising that we can prove results about non-expressibility.

However, the restrictions needed on the second-order languages — in particular,

that they quantify only monadic relations — are crucial.

Chapter 9 studies the transitive-closure operator, a restriction of the least-

fixed-point operator. I show that transitive closure characterizes the power of

the class NL. When infinite structures are allowed, both the least-fixed-point and

transitive-closure operators are not closed under negation. In this case there is

a strict expressive hierarchy as we alternate applications of these operators with

negation. However, for finite structures I show that these operators are closed un-

der negation. A corollary is that nondeterministic space classes are closed under

complementation. This was a very unexpected result when it was proved. It con-

stitutes a significant contribution of descriptive complexity to computer science.

Chapter 10 studies the complexity class polynomial space, PSPACE, which is

the set of all boolean queries that can be computed using a polynomial amount of

hardware, but with no restriction on time. Thus PSPACE is beyond the realm of

what is feasibly computable. It is obvious that NP is contained in PSPACE, but it

is not known whether PSPACE is larger than NP. Indeed, it is not even known that

PSPACE is larger than P. PSPACE is a very robust complexity class. It has several

interesting descriptive characterizations, which expose more information about the

tradeoff between inductive depth and number of variables.

Chapter 11 studies precomputation — the work that may go into designing the

program, formula, or circuit before any input is seen. Precomputation — even less

well understood than time and hardware — has an especially crisp formulation in

descriptive complexity.

In order for a structure such as a graph to be input to a real or idealized ma-

chine, it must be encoded as a character string. Such an encoding imposes an

ordering on the universe of the structure, e.g., on the vertices of the graph. All

first-order, descriptive characterizations of complexity classes assume that a total

ordering relation on the universe is available in the languages. Without such an

ordering, simple lower bounds from Chapter 6 show that certain trivial properties

— such as computing the PARITY of the cardinality of the universe — are not

expressible. However, the ordering relation allows us to distinguish isomorphic

structures which all plausible queries should treat the same. In addition, an or-

dering relation spoils the power of Ehrenfeucht-Fraı̈ssé games for most languages.

vi

The mathematically rich search for a suitable alternative to ordering is described in

Chapter 12.

Chapter 13 describes some interesting combinatorial arguments that provide

lower bounds on descriptive complexity. The first is the optimal lower bound due to

Håstad on the quantifier depth needed to express PARITY. One of many corollaries

is that the set of first-order boolean queries is a strict subset of L. The second two

lower bounds are weaker: they use Ehrenfeucht-Fraı̈ssé games without ordering

and thus, while quite interesting, do not separate complexity classes.

Chapter 14 describes applications of descriptive complexity to databases and

computer-aided verification. Relational databases are exactly finite logical struc-

tures, and commercial query languages such as SQL are simple extensions of first-

order logic. The complexity of query evaluation, the expressive power of query

languages, and the optimization of queries are all important practical issues here,

and the tools that have been developed previously can be brought to bear on these

issues.

Model checking is a burgeoning subfield of computer-aided verification. The

idea is that the design of a circuit, protocol, or program can be automatically trans-

lated into a transition system, i.e., a graph whose vertices represent global states

and whose edges represent possible atomic transitions. Model checking means

deciding whether such a design satisfies a simple correctness condition such as,

“Doors are not opened between stations”, or, “Division is always performed cor-

rectly”. In descriptive complexity, we can see on the face of such a query what the

complexity of checking it will be.

Finally, Chapter 15 sketchs some directions for future research in and appli-

cations of descriptive complexity.

Acknowledgements:

I have been intending to write this book for more years than I would like to

admit. In the mean time, many researchers have changed and extended the field so

quickly that it is not possible for me to really keep up. I have tried to give pointers

to some of the many topics not covered.

I am grateful to everyone who has found errors or made suggestions or en-

couraged me to write this book. All the errors remaining are mine alone. There

will be a page on the world wide web with corrections, recent developments, etc.,

concerning this book and descriptive complexity in general. Just search for ”Neil

Immerman” on the web and you will find it. All comments, corrections, etc., will

be greatly appreciated.

vii

Some of the people who have already provided help and helpful comments

are: Natasha Alechina, Jose Balcázar, Dave Mix Barrington, Jonathan Buss, Russ

Ellsworth, Miklos Erdelyi-Szabo, Ron Fagin, Erich Grädel, Jens Gramm, Mar-

tin Grohe, Brian Hanechak, Lauri Hella, Janos Makowsky, Yiannis Moschovakis,

John Ridgway, Jose Antonio Medina, Gleb Naumovich, Sushant Patnaik, Nate

Segerlind, Richard Shore, Wolfgang Thomas, and especially Kousha Etessami.

I am grateful to David Gries for taking his role as an editor of this series so

seriously that he read this book in detail, making numerous helpful comments and

corrections.

Thanks to the following institutions for financial support during the long pro-

cess of writing this book: NSF Grant CCR-9505446, Cornell University Computer

Science Department, and the DIMACS special year in logic and algorithms.

I want to acknowledge my debt to the many inspiring teachers that I have

had over the years. I have a vivid memory of Larry Carter on crutches because he

had broken a blood vessel in his leg during the previous afternoon’s soccer game

hopping back and forth in front of the room as he built a Turing machine to multiply

two numbers. This was at an NSF sponsored summer program at the University of

New Hampshire in 1969. David Kelly was the codirector of that program and has

been making magic ever since, creating summer programs where mathematics as a

creative and cooperative endeavor is taught and shared. These programs more than

anything else taught me the value and pleasure of teaching and research. Larry later

roomed with Ron Fagin as a graduate student at Berkeley, and it was because of

this connection that I learned of Ron’s research connecting logic and complexity.

A few other of my teachers that I would like to thank by name are Shizuo

Kakutani, Angus Macintyre, John Hopcroft, and Juris Hartmanis.

I thank my wife, Susan Landau, who, in part to let me pursue my own obscure

interests, has given up more than anyone should have to. I am delighted that you

finished your book [DL98] first and to such acclaim. Thanks for your love, for your

unswerving integrity, and for your amazing ability to keep moving forward.

viii

Contents

0 Introduction 1

1 Background in Logic 5

1.1 Introduction and Preliminary Definitions 5

1.2 Ordering and Arithmetic . 15

1.2.1 FO(BIT) = FO(PLUS,TIMES) 17

1.3 Isomorphism . 20

1.4 First-Order Queries . 21

2 Background in Complexity 29

2.1 Introduction . 29

2.2 Preliminary Definitions . 30

2.3 Reductions and Complete Problems 34

2.4 Alternation . 43

2.5 Simultaneous Resource Classes 51

2.6 Summary . 52

3 First-Order Reductions 57

3.1 FO ⊆ L . 57

3.2 Dual of a First-Order Query . 59

3.3 Complete problems for L and NL 64

3.4 Complete Problems for P . 67

ix

x CONTENTS

4 Inductive Definitions 75

4.1 Least Fixed Point . 75

4.2 The Depth of Inductive Definitions 81

4.3 Iterating First-Order Formulas 83

5 Parallelism 89

5.1 Concurrent Random Access Machines 90

5.2 Inductive Depth Equals Parallel Time 93

5.3 Number of Variables versus Number of Processors 98

5.4 Circuit Complexity . 102

5.5 Alternating Complexity . 112

5.5.1 Alternation as Parallelism 114

6 Ehrenfeucht-Fraı̈ssé Games 119

6.1 Definition of the Games . 119

6.2 Methodology for First-Order Expressibility 129

6.3 First-Order Properties are Local 134

6.4 Bounded Variable Languages . 135

6.5 Zero-One Laws . 140

6.6 Ehrenfeucht-Fraı̈ssé Games with Ordering 143

7 Second-Order Logic and Fagin’s Theorem 147

7.1 Second-Order Logic . 147

7.2 Proof of Fagin’s Theorem . 150

7.3 NP-Complete Problems . 154

7.4 The Polynomial-Time Hierarchy 157

8 Second-Order Lower Bounds 161

8.1 Second-Order Games . 161

8.2 SO∃(monadic) Lower Bound on Reachability 167

8.3 Lower Bounds Including Ordering 172

CONTENTS xi

9 Complementation and Transitive Closure 177

9.1 Normal Form Theorem for FO(LFP) 177

9.2 Transitive Closure Operators . 182

9.3 Normal Form for FO(TC) . 184

9.4 Logspace is Primitive Recursive 189

9.5 NSPACE[s(n)] = co-NSPACE[s(n)] 191

9.6 Restrictions of SO . 194

10 Polynomial Space 199

10.1 Complete Problems for PSPACE 199

10.2 Partial Fixed Points . 203

10.3 DSPACE[nk] = VAR[k + 1] . 206

10.4 Using Second-Order Logic to Capture PSPACE 210

11 Uniformity and Precomputation 215

11.1 An Unbounded Number of Variables 216

11.1.1 Tradeoffs Between Variables and Quantifier Depth 217

11.2 First-Order Projections . 218

11.3 Help Bits . 224

11.4 Generalized Quantifiers . 225

12 The Role of Ordering 229

12.1 Using Logic to Characterize Graphs 230

12.2 Characterizing Graphs Using Lk 232

12.3 Adding Counting to First-Order Logic 234

12.4 Pebble Games for Ck . 237

12.5 Vertex Refinement Corresponds to C2 239

12.6 Abiteboul-Vianu and Otto Theorems 243

12.7 Toward a Language for Order-Independent P 252

0 CONTENTS

13 Lower Bounds 257

13.1 Håstad’s Switching Lemma . 257

13.2 A Lower Bound for REACHa 263

13.3 Lower Bound for Fixed Point and Counting 271

14 Applications 281

14.1 Databases . 281

14.1.1 SQL . 282

14.1.2 Datalog . 285

14.2 Dynamic Complexity . 287

14.2.1 Dynamic Complexity Classes 289

14.3 Model Checking . 298

14.3.1 Temporal Logic . 299

14.4 Summary . 305

15 Conclusions and Future Directions 307

15.1 Languages That Capture Complexity Classes 307

15.1.1 Complexity on the Face of a Query 310

15.1.2 Stepwise Refinement . 310

15.2 Why Is Finite Model Theory Appropriate? 311

15.3 Deep Mathematical Problems: P versus NP 312

15.4 Toward Proving Lower Bounds 313

15.4.1 Role of Ordering . 314

15.4.2 Approximation and Approximability 314

15.5 Applications of Descriptive Complexity 315

15.5.1 Dynamic Complexity . 315

15.5.2 Model Checking . 316

15.5.3 Abstract State Machines 316

15.6 Software Crisis and Opportunity 317

15.6.1 How can Finite Model Theory Help? 318

Chapter 0

Introduction

In the beginning, there were two measures of computational complexity: time and

space. From an engineering standpoint, these were very natural measures, quan-

tifying the amount of physical resources needed to perform a computation. From

a mathematical viewpoint, time and space were somewhat less satisfying, since

neither appeared to be tied to the inherent mathematical complexity of the compu-

tational problem.

In 1974, Ron Fagin changed this. He showed that the complexity class NP —

those problems computable in nondeterministic polynomial time — is exactly the

set of problems describable in second-order existential logic. This was a remark-

able insight, for it demonstrated that the computational complexity of a problem

can be understood as the richness of a language needed to specify the problem.

Time and space are not model-dependent engineering concepts, they are more fun-

damental.

Although few programmers consider their work in this way, a computer pro-

gram is a completely precise description of a mapping from inputs to outputs. In

this book we follow database terminology and call such a map a query from input

structures to output structures. Typically a program describes a precise sequence of

steps that compute a given query. However, we may choose to describe the query

in some other precise way. For example, we may describe queries in variants of

first- and second-order mathematical logic.

Fagin’s Theorem gave the first such connection. Using first-order languages,

this approach, commonly called descriptive complexity, demonstrated that virtu-

ally all measures of complexity can be mirrored in logic. Furthermore, as we will

see, the most important classes have especially elegant and clean descriptive char-

acterizations.

1

2 CHAPTER 0. INTRODUCTION

Descriptive complexity provided the insight behind a proof of the Immerman-

Szelepcsényi Theorem, which states that nondeterministic space classes are closed

under complementation. This settled a question that had been open for twenty-five

years; indeed, almost everyone had conjectured the negation of this theorem.

Descriptive complexity has long had applications to database theory. A rela-

tional database is a finite logical structure, and commonly used query languages

are small extensions of first-order logic. Thus, descriptive complexity provides a

natural foundation for database theory, and many questions concerning the express-

ibility of query languages and the efficiency of their evaluation have been settled

using the methods of descriptive complexity. Another prime application area of

descriptive complexity is to the problems of Computer Aided Verification.

Since the inception of complexity theory, a fundamental question that has

bedeviled theorists is the P versus NP question. Despite almost three decades of

work, the problem of proving P different from NP remains. As we will see, P versus

NP is just a famous and dramatic example of the many open problems that remain.

Our inability to ascertain relationships between complexity classes is pervasive.

We can prove that more of a given resource, e.g., time, space, nondeterministic

time, etc., allows us to compute strictly more queries. However, the relationship

between different resources remains virtually unknown.

We believe that descriptive complexity will be useful in these and many re-

lated problems of computational complexity. Descriptive complexity is a rich edi-

fice from which to attack the tantalizing problems of complexity. It gives a mathe-

matical structure with which to view and set to work on what had previously been

engineering questions. It establishes a strong connection between mathematics and

computer science, thus enabling researchers of both backgrounds to use their vari-

ous skills to set upon the open questions. It has already led to significant successes.

The Case for Finite Models

A fundamental philosophical decision taken by the practitioners of descriptive

complexity is that computation is inherently finite. The relevant objects — in-

puts, databases, programs, specifications — are all finite objects that can be con-

veniently modeled as finite logical structures. Most mathematical theories study

infinite objects. These are considered more relevant, general, and important to the

typical mathematician. Furthermore, infinite objects are often simpler and better

behaved than their finite cousins. A typical example is the set of natural numbers,

N = {0, 1, 2, . . .}. Clearly this has a simpler and more elegant theory than the set

of natural numbers representable in 64-bit computer words. However, there is a

3

significant danger in taking the infinite approach. Namely, the models are often

wrong! Properties that we can prove about N are often false or irrelevant if we try

to apply them to the objects that computers have and hold. We find that the subject

of finite models is quite different in many respects. Different theorems hold and

different techniques apply.

Living in the world of finite structures may seem odd at first. Descriptive

complexity requires a new way of thinking for those readers who have been brought

up on infinite fare. Finite model theory is different and more combinatorial than

general model theory. In Descriptive complexity, we use finite model theory to

understand computation. We expect that the reader, after some initial effort and

doubt, will agree that the theory of computation that we develop has significant

advantages. We believe that it is more accurate and more relevant in the study of

computation.

I hope the reader has as much pleasure in discovering and using the tools of

Descriptive complexity as I have had. I look forward to new contributions in the

modeling and understanding of computation to be made by some of the readers of

this book.

4 CHAPTER 0. INTRODUCTION

Chapter 1

Background in Logic

Mathematics enables us to model many things abstractly. Group theory, for ex-

ample, abstracts features of such diverse activities as English change ringing and

quantum mechanics. Mathematical logic carries the abstraction one level higher:

it is a mathematical model of mathematics. This book shows that the computa-

tional complexity of all problems in computer science can be understood via the

complexity of their logical descriptions. We begin with a high-level introduction

to logic. Although much of the material is well-known, we urge readers to at least

skim this background chapter as the concentration on finite and ordered structures,

i.e., relational databases, is not standard in most treatments of logic.

1.1 Introduction and Preliminary Definitions

All logic books begin with definitions. We have to introduce the language before

we start to speak. Thus, a vocabulary

τ = 〈Ra1
1 , . . . , R

ar
r , c1, . . . , cs, f

r1
1 , . . . , f

rt
t 〉

is a tuple of relation symbols, constant symbols, and function symbols. Ri is a

relation symbol of arity ai and fj is a function symbol of arity rj . Two important

examples are τg = 〈E2, s, t〉, the vocabulary of graphs with specified source and

terminal nodes, and τs = 〈≤2, S1〉, the vocabulary of binary strings.

A structure with vocabulary τ is a tuple,

A = 〈|A|, RA
1 , . . . , R

A
r , c

A
1 , . . . , c

A
s , f

A
1 , . . . , f

A
t 〉

5

6 CHAPTER 1. BACKGROUND IN LOGIC

s
1 2

t

4 0

3
G t

2 3

4

10

H

s

Figure 1.1: Graphs G and H

whose universe is the nonempty set |A|. For each relation symbol Ri of arity ai
in τ , A has a relation RA

i of arity ai defined on |A|, i.e., RA
i ⊆ |A|ai . For each

constant symbol cj ∈ τ , A has a specified element of its universe cAj ∈ |A|.

For each function symbol fi ∈ τ , fAi is a total function from |A|ri to |A|. A

vocabulary without function symbols is called a relational vocabulary. In this

book, unless stated otherwise, all vocabularies are relational. The notation ||A||
denotes the cardinality of the universe of A.

In the history of mathematical logic most interest has concentrated on infinite

structures. Indeed, many mathematicians consider the study of finite structures

trivial. Yet, the objects computers have and hold are always finite. To study com-

putation we need a theory of finite structures.

Logic restricted to finite structures is rather different from the theory of infinite

structures. We mention infinite structures from time to time, most often when we

comment on whether a given theorem also holds in the infinite case. However,

we concentrate on finite structures. We define STRUC[τ] to be the set of finite

structures of vocabulary τ .

As an example, the graph G = 〈V G, EG, 1, 3〉 defined by,

V G = {0, 1, 2, 3, 4}, EG = {(1, 2), (3, 0), (3, 1), (3, 2), (3, 4), (4, 0)}

is a structure of vocabulary τg consisting of a directed graph with two specified

vertices s and t. G has five vertices and six edges. (See Figure 1.1, which shows

G as well as another graph H which is isomorphic but not equal to G.)

For another example, consider the binary string w = “01101”. We can code

w as the structure Aw = 〈{0, 1, . . . , 4},≤, {1, 2, 4}〉 of vocabulary τs. Here ≤
represents the usual ordering on 0, 1, . . . , 4. Relation Sw = {1, 2, 4} represents

1.1. INTRODUCTION AND PRELIMINARY DEFINITIONS 7

the positions where w is one. (Relation symbols of arity one, such as Sw, are

sometimes called monadic.)

A relational database is exactly a finite relational structure. The following

begins a running example of a genealogical database.

Example 1.2 Consider a genealogical database B0 = 〈U0, F0, P0, S0〉; where U0

is a finite set of people,

U0 = {Abraham, Isaac, Rebekah, Sarah, . . .}

F0 is a monadic relation that is true of the female elements of U0,

F0 = {Sarah, Rebekah, . . .}

P0 and S0 are the binary relations for parent and spouse, respectively, e.g.,

P0 = {〈Abraham,Isaac〉, 〈Sarah,Isaac〉, . . .}

S0 = {〈Abraham,Sarah〉, 〈Isaac,Rebekah〉, . . .}

Thus, B0 is a structure of vocabulary 〈F 1, P 2, S2〉. �

For any vocabulary τ , define the first-order language L(τ) to be the set of

formulas built up from the relation and constant symbols of τ ; the logical relation

symbol =; the boolean connectives ∧,¬; variables: VAR = {x, y, z, . . .}; and

quantifier ∃.

We say that an occurrence of a variable v in ϕ is bound if it lies within the

scope of a quantifier (∃v) or (∀v), otherwise it is free. Variable v is free in ϕ iff it

has a free occurrence in ϕ. For example, the free variables in the following formula

are x and y. We use the symbol “≡” to define or denote equivalence of formulas.

α ≡ [(∃y)(y + 1 = x)] ∧ x < y

In a similar way we sometimes use “⇔” to indicate that two previously defined

formulas or conditions are equivalent.

Bound variables are “dummy” variables and may be renamed to avoid confu-

sion. For example, α is equivalent to the following α′ which also has free variables

x and y,

α′ ≡ [(∃z)(z + 1 = x)] ∧ x < y

8 CHAPTER 1. BACKGROUND IN LOGIC

We write A |= ϕ to mean that A satisfies ϕ, i.e., that ϕ is true in A. Since

ϕ may contain some free variables, we will let an interpretation into A be a map

i : V → |A| where V is some finite subset of VAR. For convenience, for every

constant symbol c ∈ τ and any interpretation i for A, we let i(c) = cA. If τ has

function symbols, then the definition of i extends to all terms via the recurrence,

i(fj(t1, . . . , trj)) = fAj (i(t1), . . . , i(trj)) .

We can be completely precise about the semantics of mathematical logic. In

particular, we can definitively define what it means for a sentence ϕ to be true in a

structure A.

Definition 1.3 (Definition of Truth) Let A ∈ STRUC[τ] be a structure, and let i
be an interpretation into A whose domain includes all the relevant free variables.

We inductively define whether a formula ϕ ∈ L(τ) is true in (A, i):

(A, i) |= t1 = t2 ⇔ i(t1) = i(t2)

(A, i) |= Rj(t1, . . . , taj) ⇔ 〈i(t1), . . . , i(taj)〉 ∈ RA
j

(A, i) |= ¬ϕ ⇔ it is not the case that (A, i) |= ϕ

(A, i) |= ϕ ∧ ψ ⇔ (A, i) |= ϕ and (A, i) |= ψ

(A, i) |= (∃x)ϕ ⇔ (there exists a ∈ |A|)(A, i, a/x) |= ϕ

where (i, a/x)(y) =

{
i(y) if y 6= x
a if y = x

Write A |= ϕ to mean that (A, ∅) |= ϕ. �

Definition 1.3 is our first example of an inductive definition, a device that is

often used by logicians. It deserves a few comments. Note that the equality symbol

(=) is not treated as an ordinary binary relation symbol — the definition insists that

this symbol be interpreted as equality. Many students, on first seeing this definition,

feel that it is circular. It is not. We are defining the meaning of the symbol “=”

in terms of the intuitively well-understood standard equality. In the same way, we

define the meaning of “¬”, “∧”, and “∃” in terms of their intuitive counterparts.

We define the “for all” quantifier as the dual of ∃ and the boolean “or” as the

dual of ∧,

(∀x)ϕ ≡ ¬(∃x)¬ϕ; α ∨ β ≡ ¬(¬α ∧ ¬β)

1.1. INTRODUCTION AND PRELIMINARY DEFINITIONS 9

It is convenient to introduce other abbreviations into our formulas. For ex-

ample, “y 6= z” is an abbreviation for “¬y = z”. Similarly “α → β” is an

abbreviation for “¬α∨β”, and “α↔ β” is an abbreviation for “α→ β ∧ β → α”.

In some sense, the symbols we introduce formally into our language are part of

our low-level “machine language”, and abbreviations are analogous to what com-

puter scientists call macros. Abbreviations are directly translatable into the real

language, and they make formulas more readable. Without abbreviations and the

breaking of formulas into modular descriptions, it would be impossible to commu-

nicate complicated ideas in first-order logic.

We use spacing and parentheses to make the order of operations clear. Our

convention for operator precedence is that “¬”, “∀”, and “∃” have highest prece-

dence, then “∧” and “∨”, and finally, “→” and “↔”. The operatiors “∧” and “∨”

are evaluated left to right, but “→” and “↔” are evaluated right to left . For exam-

ple, the following two formulas are equivalent,

¬R(a) → R(b) ∧R(c) ∨R(d) ↔ R(e)

(¬R(a)) → (((R(b) ∧R(c)) ∨R(d)) ↔ R(e))

A sentence is a formula with no free variables. Every sentence ϕ ∈ L(τ) is

either true or false in any structure A ∈ STRUC[τ].

Example 1.4 We give a few examples of first-order formulas in the language of

graphs:

ϕundir ≡ (∀x)(∀y)(¬E(x, x) ∧ (E(x, y) → E(y, x)))

Formula ϕundir says that the graph in question is undirected and has no loops.

ϕout2 ≡ (∀x)(∃yz)(y 6= z ∧ E(x, y) ∧ E(x, z) ∧

(∀w)(E(x,w) → (w = y ∨ w = z)))

ϕdeg2 ≡ ϕundir ∧ ϕout2

Formula ϕout2 says that every vertex has exactly two edges leaving it. Thus,

ϕdeg2 says that the graph in question is undirected, has no loops, and is regular of

degree two, i.e., every vertex has exactly two neighbors.

10 CHAPTER 1. BACKGROUND IN LOGIC

ϕdist1 ≡ x = y ∨ E(x, y)

ϕdist2 ≡ (∃z)(ϕdist1(x, z) ∧ ϕdist1(z, y))

ϕdist4 ≡ (∃z)(ϕdist2(x, z) ∧ ϕdist2(z, y))

ϕdist8 ≡ (∃z)(ϕdist4(x, z) ∧ ϕdist4(z, y))

Formulas ϕdist1, ϕdist2, and so on say that there is a path from x to y of length

at most 1, 2, 4, and 8, respectively. Note that these formulas have free variables x
and y.

Formulas express properties about their free variables. For example, for a pair

of vertices a, b from the universe of a graph G, the meaning of

(G, a/x, b/y) |= ϕdist8

is that the distance from a to b in G is at most 8.

Sometimes we will make the free variables in a formula explicit, e.g., writing

ϕdist8(x, y) instead of just ϕdist8. This offers the advantage of making substitu-

tions more readable: we can write ϕdist8(a, b) instead of ϕdist8(a/x, b/y). �

Exercise 1.5 For n ∈ N, consider the logical structures

An = 〈{0, 1, . . . , n− 1},PLUSAn ,TIMESAn , 0, 1, n − 1〉

of vocabulary τa = 〈PLUS3,TIMES3, 0, 1,max〉, where PLUS and TIMES are the

arithmetic relations, i.e., for i, j, k < n,

An |= PLUS(i, j, k) ⇔ i+ j = k

An |= TIMES(i, j, k) ⇔ i · j = k

Write formulas in L(τ) that represent the following arithmetic relations,

1. DIVIDES(x, y), meaning that y is a multiple of x.

2. PRIME(x), meaning that x is a prime number.

3. p2(x), meaning that x is a power of 2.

1.1. INTRODUCTION AND PRELIMINARY DEFINITIONS 11

[Hint for (3): x is a power of 2 iff 2 is the only prime divisor of x.] �

Example 1.6 Here are a few formulas in the language of strings. The first describes

the set of strings that have no consecutive “1”s. It uses the abbreviation “x < y”,

meaning “x ≤ y ∧ x 6= y”.

ϕno11 ≡ (∀x)(∀y)(∃z)((S(x) ∧ S(y) ∧ x < y) → (x < z < y ∧ ¬S(z)))

Formula ϕfive1 below says that the given string contains at least five “1”s. To

do so, it uses the abbreviation “distinct”:

distinct(x1, . . . , xk) ≡ (x1 6= x2 ∧ · · · ∧ x1 6= xk ∧ · · · ∧ xk−1 6= xk)

ϕfive1 ≡ (∃uvwxy)(distinct(u, v, w, x, y)∧S(u)∧S(v)∧S(w)∧S(x)∧S(y))

Note that ϕfive1 uses five variables to say that there are five “1”s. Using the

ordering relation, we can reduce the number of variables. The following formula

is equivalent to ϕfive1 but uses only two variables:

(∃x)
(

S(x) ∧ (∃y)
(

x < y ∧ S(y) ∧ (∃x)
(
y < x ∧ S(x) ∧

(∃y)
(
x < y ∧ S(y) ∧ (∃x)y < x ∧ S(x)

))))

Read the above sentence carefully. A good way to think of it is that we have

two fingers and are trying to count the number of “1”s in a string. We put finger x
down on the first “1”. Then we put finger y down on the next “1” to the right. Now

we don’t need x anymore so we can move it to the next “1” to the right of y, and

so on.

We will see later that the number of variables is an important descriptive re-

source. Note that the standard semantics of first-order logic (Definition 1.3) allows

us to requantify variables. Each quantifier (∃x) or (∀x) bounds only the free oc-

currences of x within its scope. We will see in Theorem 6.31 that every first-order

sentence in L(τs) — i.e., every sentence about strings — is equivalent to a sentence

with only three distinct variables. �

12 CHAPTER 1. BACKGROUND IN LOGIC

Exercise 1.7 Prove that if interpretations i and i′ agree on all the free variables in

ϕ then

(A, i) |= ϕ ⇔ (A, i′) |= ϕ

[Hint: by induction on ϕ using Definition 1.3.] �

Exercise 1.8 Let (∃!x)α(x) mean that there exists a unique x such that α. Show

how to write (∃!x)α(x) using the usual quantifiers ∀,∃. �

As another example, let τab = 〈≤2, A1, B1〉 consist of an ordering relation

and two monadic relation symbols A and B, each serving the same role as the

symbol S in τs. Let A ∈ STRUC[τab], and let n = ||A||. Then A is a pair of binary

strings A,B, each of length n. These binary strings represent natural numbers,

where we think of the bit zero as most significant and bit n− 1 as least significant.

Here A(i) is true iff bit i of A is “1”.

The following sentence expresses the ordering relation on such natural num-

bers represented in binary.

LESS(A,B) ≡ (∃x)(B(x) ∧ ¬A(x) ∧ (∀y.y < x)(A(y) → B(y)))

The above sentence uses a very useful abbreviation, that of restricted quanti-

fiers,

(∀x.α)ϕ ≡ (∀x)(α → ϕ); (∃x.α)ϕ ≡ (∃x)(α ∧ ϕ)

In the next proposition we show that addition is first-order expressible. Addi-

tion of natural numbers represented in binary is one of the most basic computations.

We will see in Theorem 5.2 that the first-order queries characterize the problems

computable in constant parallel time. Thus the following may be thought of as an

addition algorithm that runs in constant parallel time.

Proposition 1.9 Addition of natural numbers, represented in binary, is first-order

expressible.

Proof We use the well-known “carry-look-ahead” algorithm. In order to express

addition, we first express the carry bit,

ϕcarry(x) ≡ (∃y.x < y)[A(y) ∧B(y) ∧ (∀z.x < z < y)A(z) ∨B(z)]

1.1. INTRODUCTION AND PRELIMINARY DEFINITIONS 13

The formula ϕcarry(x) holds if there is a position y to the right of x where

A(y) and B(y) are both one (i.e. the carry is generated) and for all intervening po-

sitions z, at least one of A(z) and B(z) holds (that is, the carry is propagated). Let

⊕ be an abbreviation for the commutative and associative “exclusive or” operation.

We can express ϕadd as follows,

α⊕ β ≡ α↔ ¬β

ϕadd(x) ≡ A(x)⊕B(x)⊕ ϕcarry(x)

Note that the formula ϕadd(x) has the free variable x. Thus, ϕadd is a descrip-

tion of n bits: one for each possible value of x. �

An important relation between two structures of the same type is that one may

be a substructure of the other. A is a substructure of B if the universe of A is a

subset of the universe of B and the relations and constants on A are inherited from

B.

Definition 1.10 (Substructure) Let A and B be structures of the same vocabulary

τ = 〈Ra1
1 , . . . , R

ar
r , c1, . . . , cs〉. We say that A is a substructure of B, written

A ≤ B, iff the following conditions hold,

1. |A| ⊆ |B|

2. For i = 1, 2, . . . , r, RA
i = RB

i ∩ |A|ai

3. For j = 1, 2, . . . , s, cAj = cBj . �

See Figure 1.11 where A and B are substructures of G. Note that C is not a

substructure of G for two reasons: it doesn’t contain the constant t and the induced

edge from vertex 1 to vertex 2 is missing.

Exercise 1.12 Let A ∈ STRUC[τ] be a structure and let α(x) be a formula such

that A |= (∃x)α(x). Assume also that for every constant symbol c in τ , A |= α(c).
Let B be the substructure of A with universe

|B| =
{
a ∈ |A|

∣
∣ A |= α(a)

}

Let ϕ be a sentence in L(τ). Define the restriction of ϕ to α to be the sentence ϕα,

the result of changing every quantifier (∀y) or (∃y) in ϕ to the restricted quantifier

(∀y.α(y)) or (∃y.α(y)) respectively. Prove the following,

14 CHAPTER 1. BACKGROUND IN LOGIC

s
1 2

t

4 0

3
G

s
1 2

t

4

3

s
1 2

t
3

s
1 2

A

B C
Figure 1.11: A and B but not C are substructures of G.

A |= ϕα ⇔ B |= ϕ �

We say that ϕ is universal iff it can be written in prenex form — i.e. with

all quantifiers at the beginning — using only universal quantifiers. Similarly, we

say that ϕ is existential iff it can be written in prenex form with only existential

quantifiers.

The following “preservation theorems” provide a good way of proving that a

formula is existential or universal.

Exercise 1.13 Prove the following preservation theorems. Let A ≤ B be structures

and ϕ a first-order sentence.

1. Suppose ϕ is existential. If A |= ϕ then B |= ϕ.

2. Suppose ϕ is universal. If B |= ϕ then A |= ϕ.

[Hint: by induction on ϕ using Definition 1.3.] �

1.2. ORDERING AND ARITHMETIC 15

1.2 Ordering and Arithmetic

A logical structure such as a graph does not need to have an ordering on its ver-

tices. However, if we use a computer to store or manipulate this graph, it must be

encoded in some way that imposes an ordering on the vertices. In order to discuss

computation in general, it is necessary to assume that the universes of our struc-

tures are ordered. This section introduces the issue of ordering and explains what

we will assume about the ordering of structures in the remainder of this book.

When we code an input to a computer, we do so as a string of characters.

There is always an ordering here: the first character, the second character, and so

on. Indeed the concept of ordering is deeply embedded in the concepts of string

and of computation.

For this reason, the binary relation symbol “≤” plays a special role in descrip-

tive complexity. When “≤” is an element of τ , and A ∈ STRUC[τ], then A must

interpret ≤ as a total ordering on its universe. In this case, we also place constant

symbols 0, 1,max in τ and insist that these be interpreted as the minimum, second,

and maximum elements under the ≤ ordering. In order for formulas in first-order

logic to express general computation, they need access to a total ordering of the

universe. The requirement of a total ordering in descriptive complexity is analo-

gous to the assumption of the Axiom of Choice in set theory.

Let A ∈ STRUC[τ] be an ordered structure. Let n = ||A||. Let the elements

of |A| in increasing order be a0, a1, . . . , an−1. Then there is a 1:1 correspondence

i 7→ ai, i = 0, 1, . . . n − 1. We usually identify the elements of the universe with

the set of natural numbers less than n. In a computer these would be represented

as ⌈log n⌉-bit words, and the operations plus, times, and even picking out bit j of

such a word would all be wired in. The following numeric relations are useful:

1. PLUS(i, j, k) meaning i+ j = k

2. TIMES(i, j, k) meaning i× j = k

3. BIT(i, j) meaning bit j in the binary representation of i is 1

In the definition of BIT we will take bit 0 to be the low order bit, so BIT(i, 0)
holds iff i is odd. We will see in Chapter 11 that adding BIT (or equivalently

PLUS and TIMES) to our vocabularies makes the set of first-order definable bool-

ean queries a more robust complexity class.

When working with very weak reductions or proving normal form theorems,

we will sometimes use the successor relation SUC in lieu of or in addition to ≤.

Of course, SUC is first-order definable from ≤.

16 CHAPTER 1. BACKGROUND IN LOGIC

SUC(x, y) ≡ (x < y) ∧ (∀z)(¬(x < z ∧ z < y))

The symbols ≤,PLUS,TIMES,BIT,SUC, 0, 1,max are called numeric rela-

tion and constant symbols. They depend only on the size of the universe. We call

the remainder of τ the input relation and constant symbols. We will see in Chapter

5 that the choice of numeric relations for weak languages such as FO corresponds

to the definition of uniformity for complexity classes defined by uniform sequences

of circuits. The numeric relations and constants are not explicitly given in the input

since they are easily computable as functions of the size of the input. Whenever

any of the numeric relation or constant symbols occur, they are required to have

their standard meanings.

Proviso 1.14 (Ordering Proviso) From now on, unless stated otherwise, we as-

sume that the numeric relations and constants: ≤, PLUS,TIMES, BIT,SUC,

0, 1,max are present in all vocabularies. When we define vocabularies, we do not

explicitly mention or show these symbols unless they are not present. In Chapter 6

we prove lower bounds on what can be expressed in some first-order language. We

use the notation L(wo≤) to indicate language L without any of the numeric rela-

tions. We will write L(wo BIT) to indicate language L, including ordering, but not

arithmetic, i.e., only the numeric relations ≤ and SUC and the constants 0, 1,max

are included.

The following proviso is useful. It eliminates the trivial and sometimes an-

noying case of the structure with only one element which would thus satisfy the

equation 0 = 1. We assume this proviso unless otherwise noted. (The only time

we do not assume the existence of boolean constants is in Section 6.5.)

Proviso 1.15 (Boolean Constants) From now on, we assume that all structures

have at least two elements. In particular, we will assume that we have two unequal

constants denoted by 0 and 1.

Next, we define what it means to have a boolean variable in a first-order for-

mula. Boolean variables allow a more robust measure of the number of first-order

variables needed to express a query. When we measure the number of first-order

variables needed, we discount the (bounded) number of boolean variables.

Definition 1.16 A boolean variable in a first-order formula is a variable that is

restricted to being either 0 or 1. Here 0 is identified with false and 1 is identified

1.2. ORDERING AND ARITHMETIC 17

with true. We typically use the letters b, c, d, e for boolean variables. We use the

following abbreviations:

bool(b) ≡ b ≤ 1

(∃b) ≡ (∃b.bool(b))

(∀b) ≡ (∀b.bool(b))

�

1.2.1 FO(BIT) = FO(PLUS,TIMES)

In the remainder of this section we prove that adding BIT to first-order logic is

equivalent to adding PLUS and TIMES. In order to prove this, we also need to

prove the Bit Sum Lemma which is interesting in its own right. The proofs in this

subsection are very technical and may safely be skipped at first reading.

Theorem 1.17 Let τ be a vocabulary that includes ordering. Then

1. If BIT ∈ τ then PLUS and TIMES are first-order definable.

2. If PLUS,TIMES ∈ τ then BIT is first-order definable.

Proof To prove (1), we have essentially seen in Proposition 1.9 that PLUS is ex-

pressible using BIT. To prove that TIMES is expressible we first need the follow-

ing:

Lemma 1.18 (Bit Sum Lemma) Let BSUM(x, y) be true iff y is equal to the

number of ones in the binary representation of x. BSUM is first-order expressible

using ordering and BIT.

Proof The bit-sum problem is to add a column of log n 0’s and 1’s. The idea

is to keep a running sum. Since the sum of log n 1’s requires at most log log n
bits to record, we maintain running sums of log log n bits each. With one exis-

tentially quantified variable, we can guess log n/ log log n of these. Thus, to ex-

press BSUM(x, y) we existentially quantify s — the log log n · (log n/ log log n)
bits of running sums. In the following example, n = 216, so x and y each

18 CHAPTER 1. BACKGROUND IN LOGIC

have 16 bits. To assert BSUM(0110110110101101, 1010) we would guess s =
0010010101111010 as our partial sum bit string.

0
1
1
0 0010
1
1
0
1 0101
1
0
1
0 0111
1
1
0
1 1010 BSUM(0110110110101101, 1010)

Next we say that for all i where i ≤ log n/ log log n, running sum i, plus the

number of 1’s in segment (i+ 1) is equal to the running sum (i+ 1).

Thus, it suffices to express the bit sum of a segment of length log log n. This

we can do by keeping a running sum at every position because this requires only

log log log n · log log n, which is less than log n for sufficiently large n. �

We next show that TIMES is first-order expressible using BIT. TIMES is

equivalent to the addition of log n log n-bit numbers,

A = A1 +A2 + · · · +Alog n

The first trick we employ is to split each Ai into a sum of two numbers, Ai =
Bi +Ci, so that Bi and Ci have blocks of log log n bits separated by log log n 0’s.

We compute the sum of the Bi’s and of the Ci’s. In this way, we insure that no

carries extend more than log log n bits. Finally, we add the two sums with a single

use of PLUS. In the following, let ℓ = ⌈log log n⌉.

Bi = ai,1 · · · ai,ℓ 0 · · · 0 · · · ai,logn+1−ℓ · · · ai,logn
+ Ci = 0 · · · 0 ai,ℓ+1 · · · ai,2ℓ · · · 0 · · · 0

Ai = ai,1 · · · ai,ℓ ai,ℓ+1 · · · ai,2ℓ · · · ai,logn+1−ℓ · · · ai,logn

1.2. ORDERING AND ARITHMETIC 19

Position 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0

Z 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0

I 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0

Table 1.19: Encoding of an arithmetic fact: 215 = 32, 768.

In this way, we have reduced the problem of adding log n log n-bit numbers

to that of adding log n log log n-bit numbers. We can simultaneously guess the

sums of each of the log log n columns in a single variable, c. Using BSUM and

a universal quantifier we can verify that each section of c is correct. Finally, we

can add the log log n numbers in c maintaining all the running sums as in the last

paragraph of the proof of the Bit Sum Lemma.

2. In this direction, we want to show that BIT is first-order expressible using

PLUS and TIMES. We do this with a series of definitions. First, let p2(y) mean

that y is a power of 2. (See Exercise 1.5).

Next, define BIT′(x, y) to mean that for some i, y = 2i and BIT(x, i),

BIT′(x, y) ≡ p2(y) ∧ (∃uv)(x = 2uy + y + v ∧ v < y)

Using BIT′ we can copy a sequence of bits. For example, the following formula

says that if y = 2i and z = 2j , then bits i+ j..i of x are the same as bits j..0 of c:

COPY(x, y, z, c) ≡ (∀u.p2(u) ∧ u ≤ z)(BIT′(x, yu) ↔ BIT′(c, u))

Finally, to express BIT, we would like to express the relation 2i = y. We

express this using the following recurrence,

2i = y ⇔ (∃j)(∃z.2j = z)(i = 2j + 1 ∧ y = 2z2 ∨ i = 2j ∧ y = z2)(1.20)

We can guess three variables, Y,Z, I , that simultaneously include all but a

bounded number of the log i computations indicated by Equation (1.20), namely

all those such that i > 2 log i. This is done as follows: Place a “1” in positions

i, j, etc., of Y . Place the binary encoding of i starting at position i of I , the binary

encoding of j starting at position j of I and so on. Finally, place a “1” in Z at the

end of each of the binary encodings of exponents.

Using a universal quantifier we say that the variables Y,Z, and I encode all

the relevant and sufficiently large computations of Equation (1.20). Table 1.19

20 CHAPTER 1. BACKGROUND IN LOGIC

shows the encodings Y,Z, and I for the proposition that 215 = 32, 768. Note

that I records the exponent 15, which is 1111 in binary, starting at position 15; 7

which is 111 in binary, starting at position 7; and 3 which is 11 in binary, starting at

position 3. We leave the details of actually writing the relevant first-order formula

as an exercise. �

1.3 Isomorphism

When we impose an ordering on the universe of a structure, we have essentially

labeled its elements 0, 1, and so on. It becomes interesting and important to know

when we have used this ordering in an essential way. For this we need the concept

of isomorphism. Two structures are isomorphic iff they are identical except perhaps

for the names of the elements of their universes:

Definition 1.21 (Isomorphism of Unordered Structures) Let A and B be struc-

tures of vocabulary τ = 〈Ra1
1 , . . . , R

ar
r , c1, . . . , cs〉. We say that A is isomorphic to

B, written, A ∼= B, iff there is a map f : |A| → |B| with the following properties:

1. f is 1:1 and onto.

2. For every input relation symbol Ri and for every ai-tuple of elements of |A|,
e1, . . . , eai ,

〈e1, . . . , eai〉 ∈ RA
i ⇔ 〈f(e1), . . . , f(eai)〉 ∈ RB

i

3. For every input constant symbol ci, f(c
A
i) = cBi

The map f is called an isomorphism. �

As an example, see graphs G and H in Figure 1.1 which are isomorphic using

the map that adds one mod five to the numbers of the vertices of G.

Note that we have defined isomorphisms so that they need only preserve the

input symbols, not the ordering and other numeric relations. If we included the

ordering relation then we would have A ∼= B iff A = B. To be completely pre-

cise, we should call the mapping f defined above an “isomorphism of unordered

structures” and say that A and B are “isomorphic as unordered structures”. (Note

also that, since “unordered string” does not make sense, neither does the concept

of isomorphism for strings. By a strict interpretation of Definition 1.21, two strings

1.4. FIRST-ORDER QUERIES 21

would be isomorphic as unordered structures iff they had the same number of each

symbol.)

The following proposition is basic.

Proposition 1.22 Suppose A and B are isomorphic. Then for all sentences ϕ ∈
L(τ − {≤}), A and B agree on ϕ.

Exercise 1.23 Prove Proposition 1.22. [Hint: do this by induction using Definition

1.3.] �

1.4 First-Order Queries

As mentioned in the introduction, we use the concept of query as the fundamental

paradigm of computation:

Definition 1.24 A query is any mapping I : STRUC[σ] → STRUC[τ] from struc-

tures of one vocabulary to structures of another vocabulary, that is polynomially

bounded. That is, there is a polynomial p such that for all A ∈ STRUC[σ],
||I(A)|| ≤ p(||A||). A boolean query is a map Ib : STRUC[σ] → {0, 1}. A boolean

query may be thought of as a subset of STRUC[σ] — the set of structures A for

which Ib(A) = 1.

An important subclass of queries are the order-independent queries. (In database

theory the term “generic” is often used instead of “order-independent”.) Let I be

a query defined on STRUC[σ]. Then I is order-independent iff for all isomor-

phic structures A,B ∈ STRUC[σ], I(A) ∼= I(B). For boolean queries, this last

condition translates to I(A) = I(B). �

From our point of view, the simplest kind of query is a first-order query. As

an example, any first-order sentence ϕ ∈ L(τ) defines a boolean query Iϕ on

STRUC[τ] where Iϕ(A) = 1 iff A |= ϕ.

For example, let DIAM[8] be the query on graphs that is true of a graph iff its

diameter is at most eight. This is a first-order query given by the formula,

DIAM[8] ≡ (∀xy)ϕdist8

where ϕdist8, meaning that there is a path from x to y of length at most eight, was

written in Example 1.4.

22 CHAPTER 1. BACKGROUND IN LOGIC

As another example, consider the query Iadd, which, given a pair of natural

numbers represented in binary, returns their sum. This query is defined by the first-

order formula ϕadd from Proposition 1.9. More explicitly, let A = 〈|A|,≤, A,B〉
be any structure in STRUC[τab]. A is a pair of natural numbers each of n = ||A||
bits. Their sum is given by Iadd(A) = 〈|A|, S〉 where,

S =
{
a ∈ |A|

∣
∣ (A, a/x) |= ϕadd

}
(1.25)

The first-order query Iadd : STRUC[τab] → STRUC[τs] maps structure A to

another structure with the same universe, i.e., |A| = |Iadd(A)|. The following is a

general definition of a k-ary first-order query. Such a query maps any structure A
to a structure whose universe is a first-order definable subset of all k-tuples from

|A|. Each relation Ri over I(A) is a first-order definable subset of |I(A)|ai . The

constants of I(A) are first-order definable elements of |A|k.

Definition 1.26 (First-Order Queries) Let σ and τ be any two vocabularies where

τ = 〈Ra1
1 , . . . , R

ar
r , c1, . . . , cs〉, and let k be a fixed natural number. We want to

define the notion of a first-order query,

I : STRUC[σ] → STRUC[τ] .

I is given by an r+ s+1-tuple of formulas, ϕ0, ϕ1, . . . , ϕr, ψ1, . . . , ψs, from

L(σ). For each structure A ∈ STRUC[σ], these formulas describe a structure

I(A) ∈ STRUC[τ],

I(A) = 〈|I(A)|, R
I(A)
1 , . . . , RI(A)

r , c
I(A)
1 , . . . , cI(A)

s 〉 .

The universe of I(A) is a first-order definable subset1 of |A|k,

|I(A)| =
{
〈b1, . . . , bk〉

∣
∣ A |= ϕ0(b

1, . . . , bk)
}

Each relation R
I(A)
i is a first-order definable subset of |I(A)|ai ,

R
I(A)
i =

{
(〈b11, . . . , b

k
1〉, . . . , 〈b

1
ai
, . . . , bkai〉) ∈ |I(A)|ai

∣
∣ A |= ϕi(b

1
1, . . . , b

k
ai
)
}
.

Each constant symbol c
I(A)
j is a first-order definable element of |I(A)|,

c
I(A)
j = the unique 〈b1, . . . , bk〉 ∈ |I(A)| such that A |= ψj(b

1, . . . , bk) .

1Usually we will take ϕ0 ≡ true, thus letting |I(A)| = |A|k , cf. Remark 1.32.

1.4. FIRST-ORDER QUERIES 23

When we need to be formal, we let a = max{ai | 1 ≤ i ≤ r} and let the

free variables of ϕi be x11, . . . x
k
1, . . . , x

1
ai
, . . . , xkai . The free variables of ϕ0 and

the ψj’s are x11, . . . , x
k
1 .

If the formulas ψj have the property that for all A ∈ STRUC[σ],
∣
∣
{
〈b1, . . . , bk〉 ∈ |A|k

∣
∣ (A, b1/x11, · · · , b

k/xk1) |= ϕ0 ∧ ψj

}∣
∣ = 1

then we write I = λx1
1...x

k
a
〈ϕ0, . . . , ψs〉 and say that I is a k-ary first-order query

from STRUC[σ] to STRUC[τ].

It is often possible to name constant c
I(A)
j explicitly as a k-tuple of constants,

〈t1, . . . , tk〉. In this case, we may simply write this tuple in place of its correspond-

ing defining formula,

ψj ≡ x11 = t1 ∧ · · · ∧ xk1 = tk .

As another example, in a 3-ary query I , the numerical constants 0, 1, and max

will be mapped to the following:

0I(A) = 〈0, 0, 0〉; 1I(A) = 〈0, 0, 1〉; maxI(A) = 〈max,max,max〉

A first-order query is either boolean, and thus defined by a first-order sen-

tence, or is a k-ary first-order query, for some k.

Let FO be the set of first-order boolean queries. Let Q(FO) be the set of all

first-order queries. �

Example 1.27 Consider the genealogical database from Example 1.2. The follow-

ing pair of formulas define a unary query, Isa = λxy〈true, ϕsibling, ϕaunt〉, from

genealogical databases to structures of vocabulary 〈SIBLING2,AUNT2〉:

ϕsibling(x, y) ≡ (∃fm)(x 6= y ∧ f 6= m ∧ P (f, x) ∧ P (f, y) ∧ P (m,x) ∧ P (m, y))

ϕaunt(x, y) ≡ (∃ps(P (p, y) ∧ ϕsibling(p, s)

∧ (s = x ∨ S(x, s))) ∧ F (x)

Codd defined a database query language as “complete” if it could express all

first-order queries. As we will see, many queries of interest are not first-order. One

such example is the ancestor query on genealogical databases (Exercise 6.46). �

As another example, the first-order query Iadd (Equation (1.25)) is a unary

query, i.e., k = 1, given by Iadd = λx〈true, ϕadd〉. In this case, ϕ0 = true means

that the universe of Iadd(A) is equal to the universe of A.

24 CHAPTER 1. BACKGROUND IN LOGIC

We will see later that Q(FO) is a very robust class of queries. For now, the

reader should check the following proposition, which says that first-order queries

are closed under composition.

Proposition 1.28 Let I1 : STRUC[σ] → STRUC[τ] be a k-ary first-order query

and let I2 : STRUC[τ] → STRUC[υ] be an m-ary first-order query. Then I2 ◦ I1 :
STRUC[σ] → STRUC[υ] is an mk-ary first-order query.

Exercise 1.29 Consider the following binary first-order query from graphs to graphs:

I = λx,y,x′,y′〈true, α, 〈0, 0〉, 〈max,max〉〉, where

α(x, y, x′, y′) ≡ (x = x′ ∧ E(y, y′)) ∨ (SUC(x, y) ∧ x′ = y′ = y)

Recall that part of the meaning of this query is that given a structure A ∈
STRUC[τg], with n = ||A||,

|I(A)| =
{
〈i, j〉

∣
∣ i, j ∈ |A|

}
; sI(A) = 〈0, 0〉; tI(A) = 〈n− 1, n − 1〉 .

1. Show that I has the following interesting property: For all undirected graphs

G,

(G is connected) ⇔ (t is reachable from s in I(G))

2. Recall that a graph is strongly connected iff for every pair of vertices g and

h, there is a path in G from g to h. Modify I to be a 3-ary query I ′ such that

for all directed graphs G,

(G is strongly connected) ⇔ (t is reachable from s in I ′(G)) .

[Hint: I almost works, but we need to also make sure that there is a path in

G from max to 0.] �

Exercise 1.30 Show that the set of first-order queries is closed under composition,

i.e., prove Proposition 1.28. �

Exercise 1.31 The first-order query Iadd defined in Equation (1.25) has the defect

that it ignores the possibility that the sum of two n-bit numbers might be n+1 bits.

Show how to define a more robust first-order query that returns the always correct

n+ 1-bit sum. Going further, show how to define the first-order query that always

returns the correct sum and has no superfluous leading 0’s. �

1.4. FIRST-ORDER QUERIES 25

Remark 1.32 If I is a first-order query on ordered structures, then it must include

first-order definitions of the numeric relations and constants. Unless we state oth-

erwise, the ordering on I(A) will be the lexicographic ordering of k-tuples ≤k

inherited from A: ≤1=≤ and inductively,

〈x1, . . . , xk〉 ≤
k 〈y1, . . . , yk〉 ≡ x1 < y1 ∨ (x1 = y1 ∧

〈x2, . . . , xk〉 ≤
k−1 〈y2, . . . , yk〉)

In the following exercise, you are asked to write the definition of the remaining

numeric relations and constants, assuming that ϕ0 ≡ true. For the first-order

queries in this book, we usually limit ourselves to the case that ϕ0 ≡ true. If not,

we must express the new numeric relations explicitly.

Exercise 1.33 Let I be a first-order query on ordered structures. The successor and

bit relations must be defined.

1. Give the formulas defining 0, 1, and max the minimum, second, and maxi-

mum elements of the new universe under the lexicographical ordering. Note

that if ϕ0 ≡ true, then the resulting constants are just k-tuples of constants:

0I(A) = 〈0, . . . , 0〉; 1I(A) = 〈0, . . . , 0, 1〉; maxI(A) = 〈max, . . . ,max〉

However, in the more general case you must use quantifiers to say that the

given element is the minimum, second, maximum in the lexicographical or-

dering.

2. Assuming that ϕ0 ≡ true, write a quantifier-free formula defining the new

SUC relation.

3. Assuming that ϕ0 ≡ true, write the formula defining the new BIT relation.

[Hint: by Theorem 1.17 you may define addition and multiplication on k-

tuples.]

�

Without the assumption that ϕ0 ≡ true, BIT need not be first-order definable

in the image structures. For example, if σ = τs and ϕ0(x) ≡ S(x), then the par-

ity of the universe of I(A) is not first-order expressible in A (Theorem 13.1). If

BIT were definable in I(A) then so would the parity of its universe. For this rea-

son, when we define first-order reductions, we restrict our attention to very simple

formulas, ϕ0, that define the universe of the image structure.

26 CHAPTER 1. BACKGROUND IN LOGIC

Historical Notes and Suggestions for Further Reading

There are many excellent introductions to logic. We especially recommend [End72]

and [EFT94]. The recent books on finite model theory [EF95], [LR96] and [Ott97]

complement this book. For history of logic, it is wonderful to go back to some of

the original sources, carefully translated and annotated in [vH67].

The definition of semantics for first-order logic (Definition 1.3) is usually at-

tributed to Tarski [Tar36].

Lemma 1.18 was originally proved by Barrington, Immerman, and Straubing

in [BIS88]. We got part 2 of Theorem 1.17 from Lindell [L], who says that the

result comes from page 299 of Hajek and Pudlak [HP93]. However, on page 406

of [HP93] the result is attributed to Bennett [Ben62]. See also [DDLW98], where

Dawar, Lindell, and Weinstein prove that ordering is definable when the only given

numeric predicate is BIT. It follows that Theorem 1.17 remains valid when order-

ing is not given because ordering is easily definable from PLUS.

Exercise 1.12 is from [vD94].

See [CH80a] for perhaps the first study of the set of order-independent, com-

putable queries.

One very important topic in a standard course on first-order logic that is omit-

ted here is the study of proofs. In particular, the following two theorems are basic

and appear in every standard logic book. They were originally proved by Gödel in

his Ph.D. thesis [Göd30].

Theorem 1.34 (Completeness Theorem for First-Order Logic) There is a com-

plete recursive axiomatization for the set of formulas valid in all — finite and infi-

nite — structures.

Theorem 1.35 (Compactness Theorem for First-Order Logic) Let Γ be a set of

first-order formulas with the property that every finite subset of Γ has a (perhaps

infinite) model. Then Γ has a (perhaps infinite) model.

These theorems fail when we restrict our attention to finite structures. From

the Completeness Theorem it follows that the set of valid formulas for first-order

logic is recursively enumerable (r.e.), and VALID is in fact r.e.-complete. Thus, the

set of satisfiable formulas is not r.e. For finite structures, Trahtenbrot’s Theorem

says that the reverse is true: The set of formulas satisfiable in a finite structure is

1.4. FIRST-ORDER QUERIES 27

r.e.-complete, so the set of formulas valid in all finite structures is not r.e., and thus

not axiomatizable [Tra50].

For a finite alphabet, Σ = {σ1, . . . , σr}, consider the vocabulary τΣ =

〈S1
σ1
, . . . , S1

σr
〉. The set STRUC[τΣ] consists of the set of non-empty words of vo-

cabulary Σ. Languages without BIT are well-studied for these vocabularies. The

following two theorems are fundamental:

Theorem 1.36 The set of boolean queries expressible in second-order, monadic

logic, without BIT, over the vocabularies τΣ consist exactly of the regular lan-

guages. In symbols,

SO(monadic)(wo BIT) = Regular .

Theorem 1.37 The set of boolean queries expressible in first-order logic, without

BIT, over the vocabularies τΣ consist exactly of the star-free regular languages. In

symbols,

FO(wo BIT) = star-free Regular .

Theorem 1.36 is due to Büchi [Büc60] and Theorem 1.37 is due to Mc-

Naughton and Papert, [MP71]. From the point of view of this book, the languages

without BIT are slightly too weak to provide a robust view of computation. A good

reference for these results and other relations between logic and automata theory is

[Str94] by Straubing.

28 CHAPTER 1. BACKGROUND IN LOGIC

Chapter 2

Background in Complexity

Computational Complexity measures the amount of computational resources, such

as time and space, that are needed, as a function of the size of the input, to com-

pute a query. This chapter introduces the reader to complexity theory. We define

the complexity measures and complexity classes that we study in the rest of the

book. We also explain some of their basic properties, complete problems, and

inter-relationships.

2.1 Introduction

In the 1930’s many models of computation were invented, including Church’s

lambda calculus, Gödel’s recursive functions, Markov algorithms and Turing ma-

chines. It is very striking that these interesting and apparently different models —

all independent efforts to precisely define the intuitive notion of “mechanical proce-

dure” — were proved equivalent. This leads to the universally accepted “Church’s

thesis”, which states that the intuitive concept of what can be “automatically com-

puted” is appropriately captured by the Turing machine (and all its variants).

If one appropriately measures the complexity of computation in a Markov

algorithm, a lambda expression, a recursive function, or a Turing machine, one

obtains equivalent values. A consequence of this is that efficiency is not model-

dependent, but is in fact a fundamental concept.

We get the same theory of complexity whether we approach it via Turing

machines or any of these other models. As we will see in this book, descriptive

complexity gives definitions of complexity that are equivalent to those of all the

29

30 CHAPTER 2. BACKGROUND IN COMPLEXITY

above models. Different formalisms lend themselves to different ways of think-

ing and working. We find that the insights gained from the descriptive approach

to complexity offer a different point of view from more traditional machine-based

complexity. In particular, there are well understood methods in logic for ascertain-

ing what can and cannot be expressed in a given language. We will introduce some

of these methods in Chapter 6.

In Descriptive complexity, we measure the difficulty of describing queries. We

will see that natural measures of descriptive complexity such as depth of nesting

of quantifiers and number of variables correspond closely to natural notions of

complexity in Turing machines.

2.2 Preliminary Definitions

We assume that the reader is familiar with the Turing machine. We start from there

and present a survey of computational complexity theory.

We write M(w)↓ to mean that Turing machine M accepts input w, and we

write L(M) to denote the language accepted by M ,

L(M) =
{
w ∈ {0, 1}∗

∣
∣ M(w)↓

}
.

Instead of just accepting or rejecting, Turing machines may compute functions

from binary strings to binary strings. We use T (w) to denote the binary string that

Turing machine T leaves on its write-only output tape when it is started with the

binary string w on its input tape. If T does not halt on input w, then T (w) is

undefined.

Everything that a Turing machine does may be thought of as a query from

binary strings to binary strings. In order to make Descriptive complexity rich and

flexible it is useful to consider queries that use other vocabularies. To relate such

queries to Turing machine complexity, we fix a scheme that encodes the structures

of vocabulary τ as boolean strings. To do this, for each τ , we define an encoding

query,

binτ : STRUC[τ] → STRUC[τs]

Recall that τs = 〈S1〉 is the vocabulary of boolean strings. The details of the

encoding are not important, but it is useful to know that for each τ , binτ and its

inverse are first-order queries (Exercise 2.3).

Definition 2.1 (The binary encoding of structures: bin(A)) Let τ =
〈Ra1

1 , . . . , R
ar
r , c1, . . . , cs〉 be a vocabulary, and let A = 〈{0, 1, . . . , n −

2.2. PRELIMINARY DEFINITIONS 31

1}, RA
1 ...R

A
r , c

A
1 ...c

A
s 〉 be an ordered structure of vocabulary τ . The relation RA

i

is a subset of |A|ai . We encode this relation as a binary string binA(Ri) of length

nai where “1” in a given position indicates that the corresponding tuple is in RA
i .

Similarly, for each constant cAj , its number is encoded as a binary string binA(cj)
of length ⌈log n⌉.

The binary encoding of the structure A is then just the concatenation of the

bit strings coding its relations and constants,

binτ (A) = binA(R1)binA(R2) · · · binA(Rr)binA(c1) · · · binA(cs)

We do not need any separators between the various relations and constants

because the vocabulary τ and the length of binτ (A) determines where each section

belongs. Observe that the length of binτ (A) is given by

n̂τ = ||binτ (A)|| = na1 + · · ·+ nar + s⌈log n⌉ (2.2)

Note: We do not bother to include any numeric predicates or constants in

binτ (A) since they can be easily recomputed. However, the coding binτ (A) does

presuppose an ordering on the universe. There is no way to code a structure as

a string without an ordering. Since a structure determines its vocabulary, in the

sequel we usually write bin(A) instead of binτ (A) for the binary encoding of A ∈
STRUC[τ]. Here bin is the union of binτ over all vocabularies τ . In the special

case where τ includes no input relations symbols, we pretend that there is a unary

relation symbol that is always false. For example, if τ = ∅, then bin(A) = 0||A||.

We do this to insure that the size of bin(A) is at least as large as ||A||. �

When τ = τs, the map binτs maps strings to strings. The reader should check

from the above definition that in this case, binτs is the identity map and thus n̂τs =
n.

In complexity theory, n is usually reserved for the length of the input. How-

ever, in this book, n is used to denote the size of the input structure, n = ||A||.
When the inputs are structures of vocabulary τ , the length of the input is n̂τ . For

the case of binary strings, these two sizes coincide because n̂τs = n. When τ
is understood, we write n̂ for n̂τ . Observe that n and n̂ are always polynomially

related.

There are two requirements of a coding function such as “bin”. First, it must

be computationally very easy to encode and decode. Secondly, the coding must be

fairly space efficient, e.g., coding in unary would not be acceptable. In the next

32 CHAPTER 2. BACKGROUND IN COMPLEXITY

exercise, the reader is asked to show that both the encoding and decoding of bin

are first-order expressible.

Exercise 2.3 Show that for any vocabulary τ , the queries binτ : STRUC[τ] →
STRUC[τs] and its inverse bin−1

τ : STRUC[τs] → STRUC[τ] are first-order

queries. More explicitly, let τ = 〈Ra1
1 , . . . , R

ar
r , c1, . . . , cs〉.

1. Construct a first-order query βτ that is equal to the mapping binτ .

2. Construct a first-order query δσ : STRUC[τs] → STRUC[τ], such that for all

A ∈ STRUC[τ], δσ(binτ (A)) = A . The query δ should be unary, that is,

k = 1 in the definition of k-ary first-order query (Definition 1.26). �

Using the encoding bin, we define what it means for a Turing machine to

compute a query:

Definition 2.4 Let I : STRUC[σ] → STRUC[τ] be a query. Let T be a Turing

machine. Suppose that for all A ∈ STRUC[σ], T (bin(A)) = bin(I(A)). Then we

say that T computes I . �

We use the notation DTIME[t(n)] to denote the set of boolean queries that

are computable by a deterministic, multi-tape Turing machine in O(t(n)) steps for

inputs of universe size n.1 Similarly we use NTIME[t(n)], DSPACE[s(n)], and

NSPACE[s(n)] to denote nondeterministic time, deterministic space and nondeter-

ministic space, respectively. We assume that the reader is familiar with the fol-

lowing classical complexity classes: L = DSPACE[log n], NL = NSPACE[log n],
P = polynomial time =

⋃∞
k=1 DTIME[nk], NP = nondeterministic polynomial

time =
⋃∞

k=1 NTIME[nk], PSPACE = polynomial space =
⋃∞

k=1 DSPACE[nk]=
⋃∞

k=1 NSPACE[nk], and EXPTIME = exponential time =
⋃∞

k=1 DTIME[2n
k
]. To

talk about space s(n), for s(n) < n̂, the Turing machine is assumed to have a

read-only input tape of length n̂ and some number of work tapes of total length

O(s(n)).

In the definition of complexity classes, we consider only boolean queries. This

is in order to be consistent with the standard definitions of complexity classes as

sets of decision problems, i.e., boolean queries. For any complexity class C, we

use the notation Q(C) to denote the set of all queries that are computable in the

complexity class C. Since C just consists of boolean queries, what does it mean for

1The usual definition in complexity theory writes t(n) as the function t′(n̂), a polynomially-

related function of the length of the encoding of the input. We use n to be the size of the universe of

the input structure and measure all sizes in this uniform way.

2.2. PRELIMINARY DEFINITIONS 33

a general query to be “computable in C”? It means that each bit of bin(I(A)) is

uniformly computable in C from bin(A). In other words,

Definition 2.5 (Q(C), the Queries Computable in C) Let I : STRUC[σ] →
STRUC[τ] be a query. We say that I is computable in C iff the boolean query Ib is

an element of C, where

Ib =
{
(A, i, a)

∣
∣ The ith bit of bin(I(A)) is “a”

}
. (2.6)

Let Q(C) be the set of all queries computable in C:

Q(C) = C ∪
{
I
∣
∣ Ib ∈ C

}
�

For each of the above resources (deterministic and nondeterministic time and

space) there is a hierarchy theorem saying that more of the given resource enables

us to compute more boolean queries (see Exercise 2.8). These theorems are proved

by diagonalization arguments.

We say that a function s : N → N is space constructible (resp. time con-

structible) iff there is a deterministic Turing machine running in space O(s(n)),
(resp. time O(s(n))) that on input 0n, i.e., n in unary, computes s(n) in bi-

nary. This is the same thing as saying that s′ ∈ Q(DSPACE[s(n)]), resp. s′ ∈
Q(DTIME[s(n)]) where s′ is the function that on input 0n computes s(n) in bi-

nary.

Every reasonable function is constructible, as is every function one finds in

this book. Many theorems in this book need to assume that the time and space

bounds in question are constructible.

Exercise 2.7

1. Show that the following functions are time constructible: n, n2, ⌈n log n⌉,

2n.

2. Show that the following are space constructible: n, n2, ⌈n log n⌉, 2n, ⌈log n⌉.

�

Exercise 2.8 Prove the Space Hierarchy Theorem: For all space constructible

s(n) ≥ log n, if limn→∞(t(n)/s(n)) = 0, then DSPACE[t(n)] is strictly con-

tained in DSPACE[s(n)].

34 CHAPTER 2. BACKGROUND IN COMPLEXITY

[Hint: this is a diagonalization argument, but you have to be careful. On input

M , the diagonalization program marks off s(|M |) tape cells and then simulates

machine M on input M . If M(M) exceeds the given space or loops, then it should

accept. Otherwise, do the opposite of what M would do.] �

When comparing different resources, we are able to prove much less. For

example, by Savitch’s Theorem (Theorem 2.32), for s(n) ≥ log n,

DSPACE[s(n)] ⊆ NSPACE[s(n)] ⊆ DSPACE[(s(n))2] ;

However, we know only the trivial relationships between nondeterministic and de-

terministic time:

DTIME[t(n)] ⊆ NTIME[t(n)] ⊆ DTIME[2O(t(n))] .

Consider the following series of containments. It follows from Savitch’s The-

orem and the Space Hierarchy Theorem that NL is not equal to PSPACE; but even

now, more than twenty-five years after the introduction of the classes P and NP, no

other inequalities, including that L is not equal to NP, are known.

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

2.3 Reductions and Complete Problems

There are several ways to compare the complexity of boolean queries. Perhaps

the most natural is the Turing reduction. Complexity in this model is defined via

oracles. Let A and B be boolean queries that may be difficult to compute. An

oracle for B is a mythical device that when given a structure B will answer in unit

time whether or not B satisfies query B.

Turing gave his original definition of oracles for the case of unsolvable prob-

lems. After proving that the halting problem, K , is undecidable, he considered the

question of what can be decided by a Turing machine that had an oracle for K . In

complexity theory, we use oracles for computable but difficult sets. Such an oracle

can speed up some computations.

We say that A is Turing reducible to B if it is easy to compute query A given

an oracle for B. The following makes this definition more precise.

Definition 2.9 An oracle Turing machine is a Turing machine equipped with an

extra tape called the query tape. Let M be an oracle Turing machine and B be any

2.3. REDUCTIONS AND COMPLETE PROBLEMS 35

boolean query. We write MB to denote the oracle Turing machine M equipped

with an oracle for set B. MB may write on its query tape like any other tape. At

any time, MB may enter the “query state”. Assume that the string w = bin(A) is

written on the query tape when MB enters the query state. At the next step, “1”

will appear on the query tape if A ∈ B and “0” otherwise. Thus, MB may answer

any membership question “Does A satisfy B?” in linear time: the time to copy the

string bin(A) to its query tape.

Given two boolean queries A,B and a complexity class C, we say that A is

C-Turing reducible to B iff there exists an oracle Turing machine M such that

MB runs in complexity class C and L(MB) = A. We denote this by A ≤T
C B.

The superscript “T ” stands for Turing reduction. An important example is the

polynomial-time Turing reduction, ≤T
p . �

Example 2.10 As an example of a Turing reduction, define the boolean query

CLIQUE to be the set of pairs 〈G, k〉 such thatG is a graph having a complete sub-

graph of size k. The vocabulary for CLIQUE is τgk = 〈E2, k〉. As usual, we can

identify the universe of a structure A ∈ STRUC[τgk] with the set {0, 1, . . . , n−1},

where n = ||A|| is the number of vertices of A, and the constant k thus repre-

sents not only a vertex, but a number between 0 and n− 1. (We will see later that

CLIQUE is an NP-complete problem.)

Define the query MAX-CLIQUE(G) to be the size of a largest clique in

graph G. We show that the boolean version of MAX-CLIQUE is polynomial-

time Turing reducible to CLIQUE. In symbols, this would be written,

MAX-CLIQUEb ≤
T
p CLIQUE .

Where MAX-CLIQUEb is defined as in Equation (2.6),

MAX-CLIQUEb =
{
(G, i, a)

∣
∣ bit i of MAX-CLIQUE(G) is “a”

}
.

The reduction is as follows. Given (G, i, a), perform binary search using an

oracle for CLIQUE to determine the size s of the maximum clique for G. This

is done by asking if (G,n/2) ∈ CLIQUE. If yes, ask about (G, 3n/4), if no,

ask about (G,n/4). After log n queries to the oracle, s has been computed. Now

accept iff bit i of s is “a”. �

A simpler and more popular kind of reduction in complexity theory is the

many-one reduction. (In descriptive complexity, we use first-order reductions.

These are first-order queries that are at the same time many-one reductions.)

36 CHAPTER 2. BACKGROUND IN COMPLEXITY

Definition 2.11 (Many-One Reduction) Let C be a complexity class, and let

A ⊆ STRUC[σ] and B ⊆ STRUC[τ] be boolean queries. Suppose that the query

I : STRUC[σ] → STRUC[τ] is an element of Q(C) with the property that for all

A ∈ STRUC[σ],
A ∈ A ⇔ I(A) ∈ B

Then I is a C-many-one reduction from A to B. We say that A is C-many-one

reducible to B, in symbols, A ≤C B. For example, when I is a first-order query

(Definition 1.26), it is a first-order reduction (≤fo), when I ∈ Q(L), it is a logspace

reduction (≤log); and when I ∈ Q(P), it is a polynomial-time reduction (≤p). �

Observe that a many-one reduction is a particularly simple kind of Turing

reduction: To decide whether A is an element of A, compute I(A) and ask the

oracle whether I(A) is an element of B. Many-one reductions are simpler than

Turing reductions, and they seem to suffice in most situations.

Example 2.12 We give a first-order reduction from PARITY to MULTb. PARITY

is the boolean query on binary strings that is true iff the string has an odd number

of ones. We will see later that PARITY is not first-order (Theorem 13.1). MULT,

the multiplication query, maps a pair of boolean strings of length n to their product:

a boolean string of length 2n. Let τab = 〈A1, B1〉 be the vocabulary of structures

that are a pair A,B of boolean strings. Then MULT: STRUC[τab] → STRUC[τs].
Since reductions map boolean queries to boolean queries, we actually deal with the

boolean version of MULT. MULTb is a boolean query on structures of vocabulary

τabcd = 〈A1, B1, c, d〉 that is true iff bit c of the product of A and B is “d”.

Recall that τs = 〈S1〉 is the vocabulary of boolean strings. The first-order

reduction IPM : STRUC[τs] → STRUC[τabcd] is given by the following formulas:

ϕA(x, y) ≡ y = max ∧ S(x)

ϕB(x, y) ≡ y = max

IPM ≡ λxy〈true, ϕA, ϕB , 〈0,max〉, 〈0, 1〉〉

Observe that the effect of this reduction is to line up all the bits of string A
into column n− 1 of the generated product. (See Figure 2.13.) It follows that

A ∈ PARITY ⇔ IPM (A) ∈ MULTb

as desired. Thus, PARITY ≤fo MULTb. It follows that if MULT were first-order,

then PARITY would be as well. We will see later that PARITY is not first-order

(Theorem 13.1), so we can conclude that MULT is not first order. �

2.3. REDUCTIONS AND COMPLETE PROBLEMS 37

n n n︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

A 0 . . . 0 s0 0 . . . 0 s1 . . . 0 . . . 0 sn−1

B × 0 . . . 0 1 0 . . . 0 1 . . . 0 . . . 0 1

0 . . . 0 s0 0 . . . 0 . . .

0 . . . 0 s1 0 . . . 0 . . .

0 . . . 0
... 0 . . . 0 . . .

0 . . . 0 sn−1 0 . . . 0 . . .

. . . P . . .

Figure 2.13: First-order reduction of PARITY to MULT

When C is a weak complexity class such as FO or L, the intuitive meaning of

A ≤C B is that the complexity of problem A is less than or equal to the complexity

of problem B. The intuitive meaning of A being complete for C is that A is a

hardest query in C and in fact every query in C can be rephrased as an instance of

A; more precisely,

Definition 2.14 (Completeness for a Complexity Class) Let A be a boolean

query, let C be a complexity class, and let ≤r be a reducibility relation. We say that

A is complete for C via ≤r iff

1. A ∈ C, and,

2. for all B ∈ C, B ≤r A.

In this book, when we say that a problem is complete for a complexity class and

we do not say under what reduction, then we mean via first-order reductions ≤fo.

It will follow from Theorem 3.1 that if a problem is complete via first-order reduc-

tions, then it is complete via logspace and polynomial-time reductions. �

For reasons that are not well understood, naturally occurring problems tend

to be complete for important complexity classes such as P, NP, and NL. Com-

pleteness was originally defined via reductions such as polynomial-time many-one

reductions (≤p) and later, logspace reductions (≤log). However, problems complete

via ≤p and ≤log tend to remain complete via ≤fo.

Most natural complexity classes include a large number of interesting com-

plete problems. Here are a few boolean queries that are complete for their respec-

tive complexity classes. We state these problems very informally here, just to give

38 CHAPTER 2. BACKGROUND IN COMPLEXITY

the reader an idea. More details on these problems and completeness proofs or

references are provided later in the text.

Complete for L:

• CYCLE: Given an undirected graph, does it contain a cycle?

• REACHd: Given a directed graph, is there a deterministic path from vertex

s to vertex t? (A deterministic path is such that for every edge (u, v) on the

path, there is only one edge in the graph from u.)

Complete for NL:

• REACH: Given a directed graph, is there a path from vertex s to vertex t?

• 2-SAT: Given a boolean formula in conjunctive normal form with only two

literals per clause, is it satisfiable?

Complete for P:

• CIRCUIT-VALUE-PROBLEM (CVP): Given an acyclic boolean circuit,

with inputs specified, does its output gate have value one?

• NETWORK-FLOW: Given a directed graph, with capacities on its edges,

and a value V , is it possible to achieve a steady-state flow of value V through

the graph?

Complete for NP:

• SAT: Given a boolean formula, is it satisfiable?

• 3-SAT: Given a boolean formula in conjunctive normal form with only three

literals per clause, is it satisfiable?

• CLIQUE: Given an undirected graph and a value k, does the graph have a

complete subgraph with k vertices?

Complete for PSPACE:

• QSAT: Given a quantified boolean formula, is it satisfiable?

2.3. REDUCTIONS AND COMPLETE PROBLEMS 39

• HEX, GEOGRAPHY, GO: Given a position in the generalized versions of

the games hex, geography, or go, is there a forced win for the player whose

move it is?

Exercise 2.15

1. Show that the relations ≤fo,≤log, and ≤p are transitive.

2. Let ≤r be a transitive, many-one reduction, and let A be complete for com-

plexity class C via ≤r. Let T be any boolean query. Show that T is complete

for C via ≤r iff the following two conditions hold:

T ∈ C and A ≤r T

�

Exercise 2.16

1. Show the the value ⌈log n⌉ is first-order expressible.

2. Define the majority query as follows:

MAJ =
{
A ∈ STRUC[τs]

∣
∣ string A contains more than ||A||/2 “1”s

}

Modify the reduction in Example 2.12 to show that MAJ ≤fo MULTb.

�

To prove a natural problem complete for a complexity class, one usually re-

duces another natural complete problem to it as in Exercise 2.15, part (2). Proving

that the first natural complete problem is complete is more subtle, and we defer

these proofs to later chapters. The following exercise, however, introduces an un-

natural but universal kind of complete problem.

Exercise 2.17 Consider the following boolean query over strings from {0, 1,#}⋆.

Utime =
{
M#w#r

∣
∣ M(w)↓ in r steps

}

Show that Utime is complete for P via first-order, many-one reductions (≤fo).

Hint: you must show that Utime ∈ P and that for any problem B ∈ P, B ≤fo

40 CHAPTER 2. BACKGROUND IN COMPLEXITY

Utime. The latter is the easier part in this case: let MB be a polynomial-time Turing

machine that accepts B; then the first-order reduction mapsw toMB#w#
r, where

r is sufficiently large. �

We next describe the problem SAT, which we will see later is NP-complete

via first-order reductions (Theorem 7.16).

Example 2.18 SAT is the set of boolean formulas in conjunctive normal form

(CNF) that admit a satisfying assignment, i.e., a way to set each boolean variable

to true or false so that the whole formula evaluates to true. For example, consider

the following boolean formulas:

ϕ0 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5)

ϕ1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

∧ (x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x4 ∨ x5)

Here the notation v means ¬v. The reader should verify that ϕ0 ∈ SAT and

ϕ1 6∈ SAT.

It is easy to see that SAT is in NP. In linear time, a nondeterministic algorithm

can write down a “0” or a “1” for each boolean variable. Then it can deterministi-

cally check that each clause has been assigned at least one “1”, and if so, accept.

A boolean formula ϕ that is in CNF may be thought of as a set of clauses,

each of which is a disjunction of literals. Recall that a literal is an atomic formula

— in this case a boolean variable — or its negation. Thus, a natural way to encode

ϕ is via the structure Aϕ = 〈A,P,N〉.

The universe A is a set of clauses and variables. The relation P (c, v) means

that variable v occurs positively in clause c and N(c, v) means that v occurs neg-

atively in c. We can think of every element of the universe as a variable and a

clause. Thus, n = ||Aϕ|| is equal to the maximum of the number of variables and

the number of clauses occurring in ϕ. If v is really a variable but not a clause, we

can harmlessly make it the clause (v ∨ v) by adding the pair (v, v) to the relations

P and N . For example, a structure coding ϕ0 in this way is:

Aϕ0 = 〈{1, 2, 3, 4, 5}, P,N〉

P = {(1, 1), (1, 3), (2, 4), (3, 2), (3, 5), (4, 4), (5, 5)}

N = {(1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (5, 5)}

�

2.3. REDUCTIONS AND COMPLETE PROBLEMS 41

We next show that SAT ≤fo CLIQUE. It then follows from Theorem 7.16

that CLIQUE is also NP-complete.

Example 2.19 We show that SAT is first-order reducible to CLIQUE. Let A be

a boolean formula in CNF with clauses C = {c1, . . . , cn} and variables V =
{v1, . . . , vn}.

Let L = {v1, . . . , vn, v1, . . . , vn}. Define the instance of the clique problem

g(A) = (V g(A), Eg(A), k) as follows:

V g(A) = (C × L) ∪ {w0}

Eg(A) =
{
(〈c1, ℓ1〉, 〈c2, ℓ2〉)

∣
∣ c1 6= c2 and ℓ1 6= ℓ2

}
∪

{
(w0, 〈c, ℓ〉), (〈c, ℓ〉, w0)

∣
∣ ℓ occurs in c

}
(2.20)

kg(A) = n+ 1 = ||A||+ 1

The graph g(A) is an n × n array of vertices containing a row for every

clause in A and a column for every literal in L, plus a top vertex wo. (See Figure

2.21). There are edges between vertices 〈c1, ℓ1〉 and 〈c2, ℓ2〉 iff c1 6= c2, i.e., the

points come from different clauses; and, ℓ1 6= ℓ2, i.e., literals ℓ1 and ℓ2 are not the

negations of each other. The other edges in the graph are between w0 and those

〈c, ℓ〉 such that literal ℓ occurs in clause c.

Observe that a clique of size n + 1 must involve w0 and one vertex from

each clause. This corresponds to a satisfying assignment, because no literal and its

negation can be in a clique. Conversely, any satisfying assignment to A determines

an n+1-clique consisting of w0 together with one literal per clause that is assigned

“true”. It follows that mapping g is indeed a many-one reduction,

(A ∈ SAT) ⇔ (g(A) ∈ CLIQUE) (2.22)

We now give the rather technical details of writing g as a first-order query, g =
λx1x2x3y1y2y3〈ϕ0, ϕ1, ψ1〉. We encode the vertices as triples 〈x1, x2, x3〉, where x1

corresponds to the clause, x2 to the variable, and x3 = 1 means the variable is

positive and x3 = 2 means the variable is negative. Vertex w0 is 〈1, 1, 3〉, the only

triple with x3 > 2. See Figure 2.21, which shows part of g(A) for a formula A
whose first clause is (x1 ∨ x2 ∨ xn). The numeric formula ϕ0, which describes the

universe of g(A), is the following,

ϕ0 ≡ (x3 ≤ 2) ∨ (x1x2x3 = 113)

42 CHAPTER 2. BACKGROUND IN COMPLEXITY

C1

C

C

2

n

1x 1x x x x x2 2 n n

w

111 112 121

211 212 221 222

122

0 113

1n1 1n2

2n1 2n2

nn1 nn2n22n21n11 n12

Figure 2.21: SAT ≤fo CLIQUE, C1 = (x1 ∨ x2 ∨ xn)

2.4. ALTERNATION 43

To define the edge relation, let

ϕ′
1(x̄, ȳ) ≡ α1 ∨ (α2 ∧ P (y

1, y2)) ∨ (α3 ∧N(y1, y2))

α1 ≡ x1 6= y1 ∧ x3 < 3 ∧ y3 < 3 ∧ (x2 = y2 → x3 = y3)

α2 ≡ x3 = 3 ∧ y3 = 1

α3 ≡ x3 = 3 ∧ y3 = 2

Next, let ϕ1 be the symmetric closure of ϕ′
1,

ϕ1(x
1, x2, x3, y1, y2, y3) ≡ ϕ′

1(x
1, x2, x3, y1, y2, y3)∨ϕ′

1(y
1, y2, y3, x1, x2, x3)

Notice that ϕ1 is a direct translation of Equation (2.20). We are thinking of the

elements of the ordered universe as 1, 2, . . . , n instead of the usual 0, 1, . . . n − 1.

For this reason, the number n + 1 which would usually by 011 in lexicographic

order, is instead 122. Formula ψ1 identifies k as n+ 1:

ψ1(x
1, x2, x3) ≡ x1x2x3 = 122

It follows that we have correctly encoded the desired first-order reduction g,

and Equation (2.22) holds as desired. �

Exercise 2.23 Construct sets S and T such that S is polynomial-time, Turing

reducible to T , but S is not polynomial-time, many-one reducible to T , i.e., S ≤T
p

T , S 6≤p T .

[Hint: construct S and T systematically so that for all w, w ∈ S iff (0w ∈
T)⊕ (1w ∈ T) and systematically satisfy the conditions,

Ci ≡

(
Turing machine Mi running in time i · ni does

not compute a many-one reduction from S to T .

)

If you are careful, you can carry out this construction so that S and T are in

ETIME = DTIME[2O(n)].] �

2.4 Alternation

The concept of a nondeterministic acceptor of a boolean query has a long and rich

history, going back to various kinds of nondeterministic automata. On the other

44 CHAPTER 2. BACKGROUND IN COMPLEXITY

hand, it is important to remember that these are fictitious machines which cannot

be built. We elaborate on the unreasonableness of nondeterministic machines.

ForA ⊆ STRUC[τ] a boolean query, define its complementA = STRUC[τ]−
A. Given a complexity class C, one can define the complementary class as follows,

co-C =
{
A

∣
∣ A ∈ C

}

For example, since SAT is in NP, its complementary problem SAT = UN-

SAT is in co-NP. The question whether NP is closed under complementation, i.e.,

is NP equal to co-NP? is open. Most people believe that these classes are different.

Notice that if one could really build an NP machine, then one could also build a

co-NP machine: All that is needed is a single gate to invert the former machine’s

answer. Thus from a very practical point of view, the complexity of a problem A
and its complement, A are identical.

One way to imagine a realization of an NP machine is via a parallel or bi-

ological machine with many processors. At each step, each processor pi creates

two copies of itself and sets them to work on two slightly different problems. If

either of these offspring ever accepts, i.e., says “yes” to pi, then pi in turn says

“yes” to its parent. These “yes”es travel up a binary tree to the root and the whole

nondeterministic process accepts. In such a view of nondeterminism, in time t(n)
we can build about 2t(n) processors. However, we do not make very good use of

them. Their pattern of communication is very weak. Each processor can compute

only the “or” of its children. Thus, the whole computation is one big “or” of its

leaves.

There is a natural way to generalize the concept of nondeterminism so that it

is closed under complementation and makes better use of its processors. Namely,

we can let the processors compute either the “or” or the “and” of their children.

This leads to the notion of alternation. An alternating Turing machine has both

“or” states like a nondeterministic Turing machine and “and” states.

We now formally define and study alternating machines. We will see that in

many ways the concept of alternation is more robust than the concept of nondeter-

minism.

Definition 2.24 An alternating Turing machine is a Turing machine whose states

are divided into two groups: the existential states and the universal states. Recall

that a configuration of any Turing machine — also called an instantaneous descrip-

tion (ID) — consists of the machine’s state, work-tape contents, and head positions.

The notion of when such a machine accepts an input is defined by induction: The

alternating Turing machine in a given configuration c accepts iff

2.4. ALTERNATION 45

1. c is in a final accepting state, or

2. c is in an existential state and there exists a next configuration c′ that accepts,

or

3. c is in a universal state, there is at least one next configuration, and all next

configurations accept.

Note that this is a generalization of the notion of acceptance for a nonde-

terministic Turing machine, which is an alternating Turing machine all of whose

states are existential.

Turing machines have an awkward way of accessing their tapes, which makes

it difficult for them to do anything in sublinear time. Since alternating Turing

machines can sensibly use sublinear time, it is more reasonable to use machines

that have a more random access nature. As a compromise, from now on we assume

that our Turing machines have a random access read-only input. This works as

follows: there is an index tape, which can be written and read like other tapes.

Whenever the value v, written in binary, appears on the index tape, the read head

automatically scans bit v of the input. �

Define the complexity classes ASPACE[s(n)] and ATIME[t(n)] to be the set

of boolean queries accepted by alternating Turing machines using a maximum of

O(s(n)) tape cells, respectively a maximum of O(t(n)) time steps in any compu-

tation path on an input of length n. The main relationships between alternating and

deterministic complexity are given by the following theorem.

Theorem 2.25 For s(n) ≥ log n, and for t(n) ≥ n,

∞⋃

k=1

ATIME[(t(n))k] =

∞⋃

k=1

DSPACE[(t(n))k]

ASPACE[s(n)] =

∞⋃

k=1

DTIME[ks(n)]

In particular, ASPACE[log n] = P, and alternating polynomial time is equal to

PSPACE.

Figure 2.26 shows the computation graph of an alternating machine. We as-

sume for convenience that such machines have a unique accepting and a unique

rejecting configuration and that each configuration has at most two possible next

46 CHAPTER 2. BACKGROUND IN COMPLEXITY

t

t(n)

s

E

A

E

Figure 2.26: Computation graph of an alternating Turing machine

moves. The start configuration is labeled “s” and the accept configuration is la-

beled “t”. We also assume that these machines have clocks that uniformly cause

the machines to shut off at a fixed time that is a function of the length of the input.

Shutting off means entering the reject configuration unless the machine is already

in the accept configuration.

Observe Figure 2.26. The letters “E” and “A” below the vertices indicate

whether the corresponding configurations are existential or universal. If they were

all existential, then this would be a nondeterministic computation. The time t(n)
measures the depth of the computation graph. It is convenient to think of alternat-

ing Turing machines as a parallel model in which at each branching move an extra

processor is created, and these two processors take the two branches. Eventually

these two processors complete their tasks and report their answers to their parent. If

the parent was existential, then it reports “accept” iff either of its children accept.

If the parent is universal, then it reports “accept” iff both of its children accept.

Notice that in time t(n) potentially 2O(t(n)) processors are created. For purely

nondeterministic machines these processors have a very poor system of communi-

cation: each parent can perform only the “or” of its children. The ability to perform

2.4. ALTERNATION 47

“and”s as well as “or”s lets alternating machines make more extensive use of their

extra processors. We will see in Chapter 4 that alternating time t(n) corresponds

to a reasonable notion of parallel time t(n) when 2O(t(n)) processors are available.

As we will see, we can allow at most polynomially many processors by restricting

the alternating machines to use no more than logarithmic space. The space used by

an alternating machine is the maximum amount of space used in any path through

its computation graph.

Before we prove some simulation results concerning alternating Turing ma-

chines, we give some examples of their use. The first example involves the circuit

value problem (CVP). We will see in Exercise 3.28 that CVP is complete for P.

Definition 2.27 A boolean circuit is a directed, acyclic graph (DAG),

C = (V,E,G∧, G∨, G¬, I, r) ∈ STRUC[τc]; τc = 〈E2, G1
∧, G

1
∨, G

1
¬, I

1, r〉

Internal node w is an and-gate if G∧(w) holds, an or-gate if G∨(w) holds, and

a not-gate if G¬(w) holds. The nodes v with no edges entering them are called

leaves, and the input relation I(v) represents the fact that the leaf v is on. Often we

will be given a circuit C , and separately we will be given its input relation I .

Define the Circuit Value Problem (CVP) to consist of those circuits whose

root gate r evaluates to one. Define the monotone, circuit value problem (MCVP)

to be the subset of CVP in which no negation gates occur. �

Exercise 2.28 Show that a boolean circuit can be evaluated in linear time.

[Hint: do this bottom up: from the leaves to the root. Each edge should be

processed only once. By “linear time” we mean time O(n + m) on a random-

access machine (RAM). We assume that the edges of the input circuit are given

as an adjacency list; m is the number of edges. Such machines correspond better

to real computers than do multi-tape Turing machines. There is a polynomial-size

memory and anO(log n)-bit word size. Here we assume that the edges of the input

circuit are given as and adjacency list, m is the number of edges.] �

Proposition 2.29 MCVP is recognizable in ASPACE[log n].

Proof Let G be a monotone boolean circuit as in Definition 2.27. Define the pro-

cedure “EVAL(a)”, where a is a vertex of G, as follows:

1. if I(a) then accept

48 CHAPTER 2. BACKGROUND IN COMPLEXITY

2. else if a has no outgoing edges then reject

3. if G∧(a) then in a universal state choose a child b of a

4. else in an existential state choose a child b of a

5. Return (EVAL(b))

The machine M simply calls EVAL(r). Observe that EVAL(a) returns “ac-

cept” iff gate a evaluates to one. Furthermore, the space used by EVAL is just the

space to name two vertices a, b. Thus, M is an ASPACE[log n] machine accepting

MCVP, as desired. Observe that the alternating time required for this computation

is the depth of circuit G — the length of the longest path in G starting at r. Recall

that we have said that all alternating machines have timers. In this case, an appro-

priate time limit would be n = ||G||, which is an upper bound on the length of the

longest path. �

Another boolean query that is well suited for alternating computation is the

quantified satisfiability problem:

Definition 2.30 The quantified satisfiability problem (QSAT) is the set of true for-

mulas of the following form:

Ψ = (Q1x1)(Q2x2) · · · (Qrxr)ϕ

where ϕ is a boolean formula and each Qi’s is each either ∀ or ∃, and x1, . . . xr are

the boolean variables occurring in ϕ. �

Observe that for any boolean formula ϕ on variables x,

ϕ ∈ SAT ⇔ (∃x)ϕ ∈ QSAT and ϕ 6∈ SAT ⇔ (∀x)¬ϕ ∈ QSAT

Thus QSAT logically contains SAT and SAT.

Proposition 2.31 QSAT is recognizable in ATIME[n].

Proof Construct an alternating machine A that works as follows. To evaluate the

sentence

Φ ≡ (∃x1)(∀x2) · · · (Qrxr)α(x)

in an existential state, A writes down a boolean value for x1, in a universal state it

writes a bit for x2, and so on. NextA must evaluate the quantifier-free boolean for-

mula α on these chosen values. This is especially easy for an alternating machine:

2.4. ALTERNATION 49

for each “∧” in α, A universally chooses which side to evaluate and for each “∨”,

A existentially chooses. Thus A only has to read one of the chosen bits xi and

accept iff it is true and occurs positively, or false and occurs negatively. Observe

that A runs in linear time and accepts the sentence Φ iff Φ is true. �

The next theorem explains the relationship between alternating time and de-

terministic and nondeterministic space.

Theorem 2.32 Let s(n) ≥ log n be space constructible. Then,

NSPACE[s(n)] ⊆ ATIME[s(n)2] ⊆ DSPACE[s(n)2]

Proof For the first inclusion, let N be an NSPACE[s(n)] Turing machine. Let

w be an input to N . Let Gw denote the computation graph of N on input w.

Note that N accepts w iff there is a path from s to t in Gw. We construct an

ATIME[s(n)2] machine A that accepts the same language as N . A does this by

calling the subroutine, P (d, x, y), which accepts iff there is a path in Gw of length

at most 2d from x to y. For d > 0, P is defined as follows:

P (d, x, y) ≡ (∃z)(P (d− 1, x, z) ∧ P (d− 1, z, y))

P works by existentially choosing a middle configuration z, universally choos-

ing the first half or the second half, and then checking that the appropriate path of

length 2d−1 exists. Thus, the time T (d) taken to compute P (d, x, y) is the time to

write down a new, middle configuration plus the time to compute P (d − 1, x′, y′).
The number of bits in a configuration of Gw is O(s(n)) where n = |w|. Thus,

T (d) = O(s(n)) + T (d− 1) = O(d · s(n))

The length of the maximum useful path in Gw is bounded by the number of config-

urations ofN on input w, i.e. 2cs(n) for an appropriate value of c. Thus, on input w,

A calls P (cs(n), s, t) and receives its answer in time O(cs(n)s(n)) = O(s(n)2),
as desired.

For the second inclusion, let A be an ATIME[t(n)] machine. On input w,

A’s computation graph — pictured in Figure 2.26 — has depth O(t(n)) and size

2O(t(n)). A deterministic Turing machine can systematically search this entire and-

or graph using space O(t(n)). This is done by keeping a string of length O(t(n)):
c1c2 . . . cr ⋆ . . . ⋆ denoting that we are currently simulating step r of A’s computa-

tion, having made choices c1 . . . cr on all of the existential and universal branches

up until this point. The rest of the simulation will report an answer as to whether

choices c1 . . . cr will lead to acceptance. This is done as follows:

If one of the following conditions holds:

50 CHAPTER 2. BACKGROUND IN COMPLEXITY

1. cr = 1, or

2. answer = “yes” and step r was existential, or

3. answer = “no” and step the r was universal,

then let cr = ⋆ and report answer back to step r − 1. Otherwise, set cr = 1
and continue. Note, that we do not have to store intermediate configurations of

the simulation because the sequence c1c2 . . . cr ⋆ . . . ⋆ uniquely determines which

configuration of A to go to next. �

An immediate corollary is that NSPACE[s(n)] is contained in DSPACE[s(n)2].
This is Savitch’s theorem (Theorem 2.32), and it is the best known simulation of

nondeterministic space by deterministic space. It is unknown whether equality

holds in either or both of the inclusions of Theorem 2.32. Another corollary of

Theorem 2.32 is the first part of Theorem 2.25.

We complete the proof of Theorem 2.25 by showing that ASPACE[s(n)] is

DTIME[O(1)s(n)]. One direction of this is obvious: an ASPACE[s(n)] machine

has O(1)s(n) possible configurations. Thus, its entire computation graph is of size

O(1)s(n) and thus may be traversed in DTIME[O(1)s(n)]. The same traversal al-

gorithm as in the second half of the proof of Theorem 2.32 works in this case.

In the other direction, we are given a DTIME[ks(n)] machine M . Let w be an

input to M and let n = |w|. We can view M ’s computation as a ks(n)× ks(n) table

— see Figure 2.34. Cell (t, p) of this table contains the symbol that is in position p
of M ’s tape at time t of the computation. Furthermore, if M ’s head was at position

p at time t, then this cell should also include M ’s state at time t.

Define an alternating procedure C(t, p, a) that accepts iff the contents of cell

p at time t in M ’s computation on input w is symbol a. C(0, p, a) holds iff a is the

correct symbol in position p of M ’s initial configuration on input w. This means

that position 1 contains 〈q0, w1〉 where q0 is M ’s start state, and w1 is the first

symbol of w. Similarly, for 2 ≤ p ≤ n, C(0, p, a) holds iff a = wp.

Inductively, C(t+1, p, a) holds iff the three symbols a−1, a0, a1 in tape posi-

tions p−1, p, p+1 lead to an “a” in position p in one step of M ’s computation. We

denote this symbolically as (a−1, a0, a1)
M
→ a. This condition can be read directly

from M ’s transition table.

C(t+ 1, p, a) ≡ (∃a−1, a0, a1)
(

(a−1, a0, a1)
M
→ a ∧

(∀i ∈ {−1, 0, 1})(C(t, p + i, ai))
)

(2.33)

2.5. SIMULTANEOUS RESOURCE CLASSES 51

Space

1 2 p n T (n)

Time 0 〈q0, w1〉 w2 · · · wn b · · · b
1 w1 〈q1, w2〉 · · · wn b · · · b

...
...

...
...

t a−1 a0 a1

t+ 1 a
...

...
...

...

T (n) 〈qf , 0〉 · · · · · · · · ·

Figure 2.34: A DTIME[T(n)] computation on input w1w2 · · ·wn

See Figure 2.34 which shows values of C(t, p, ⋆) for a DTIME[T (n)] Turing

machine. In the present case, T (n) = ks(n).

Formula 2.33 can be evaluated by an alternating machine using the space to

hold the values of t and p. This is O(log ks(n)) = O(s(n)). Note that M accepts

w iff C(ks(n), 1, af) holds, where af is the contents of the first cell of M ’s accept

configuration. For example, we can use af = 〈qf , 0〉, where qf isM ’s accept state.

This completes the proof of Theorem 2.25.

2.5 Simultaneous Resource Classes

Let the classes ASPACE-TIME[s(n), t(n)] (resp. ATIME-ALT[t(n), a(n)]) be

the sets of boolean queries accepted by alternating machines simultaneously us-

ing space s(n) and time t(n) (resp. time t(n) and making at most a(n) alterna-

tions between existential and universal states, and starting with existential. Thus

ATIME-ALT[nO(1), 1] = NP). Two more important complexity classes may now

be defined using these simultaneous alternating classes. Define the polynomial-

time hierarchy (PH) to be the set of boolean queries accepted in polynomial time

by alternating Turing machines making a bounded number of alternations between

existential and universal states:

PH =

∞⋃

k=1

ATIME-ALT[nk, k] . (2.35)

52 CHAPTER 2. BACKGROUND IN COMPLEXITY

Also define NC (Nick’s Class) to be the set of boolean queries accepted by alter-

nating Turing machines in log n space and poly log time:

NC =
∞⋃

k=1

ASPACE-TIME[log n, logk n] (2.36)

See Theorem 5.33 for the more usual definition of NC as the class of boolean

queries accepted by a parallel random access machine using polynomially much

hardware in poly log parallel time.

2.6 Summary

We conclude this section with a list of the complexity classes defined so far. These

will be a main focus for much of what follows:

L ⊆ NL ⊆ NC ⊆ P ⊆ NP ⊆ PH ⊆ PSPACE (2.37)

The above containments are easy to prove. (It is a good exercise for the reader

to now show how to simulate each of these complexity classes by the next larger

one.)

On the other hand, despite intense effort, there is very little known about the

strictness of the above inclusions. It has not yet been proved that L is not equal

to PH, or that P is not equal to PSPACE. It would probably be safe to assume the

strictness of each of the inequalities in Equation (2.37) as an axiom and go on with

the rest of one’s life.

The fact that we cannot prove these inequalities reveals just the tip of the

iceberg of what we do not know concerning the computational complexity of im-

portant computational problems. As an example, for the thousands of known NP

complete problems, the best known algorithms to get an exact solution are all ex-

ponential time in the worst case. However, we have no proof that these are not

computable in linear time.

See Figure 2.38 for a view of the computability and complexity world. The

classes in the diagram that have not yet been defined will be described later in the

text. The intuitive idea behind this diagram is that there is a set of boolean queries

called “truly feasible”. These are the queries that can be computed exactly with

an “affordable” amount of time and hardware, on all “reasonably sized” instances.

2.6. SUMMARY 53

Arithmetic Hierarchy FO(N) r.e. completeco-r.e. complete

r.e. FO∃(N)co-r.e. FO∀(N)

Recursive

Primitive Recursive

SO(LFP) SO[2n
O(1)

] EXPTIME

FO[2n
O(1)

] FO(PFP) SO(TC) SO[nO(1)] PSPACE

PTIME Hierarchy SO NP completeco-NP complete

NP SO∃co-NP SO∀

NP ∩ co-NP

P complete

P

FO[nO(1)]

FO(LFP) SO(Horn)

FO[(log n)O(1)] NC“truly

feasible”FO[log n] AC1

sAC1FO(CFL)

NLFO(TC) SO(Krom)

LFO(DTC)

NC1FO(REGULAR)

ThC0FO(COUNT)

AC0FO LOGTIME Hierarchy

Figure 2.38: The World of Descriptive and Computational Complexity.

54 CHAPTER 2. BACKGROUND IN COMPLEXITY

The truly feasible queries are a proper subset of P.2 Many important problems that

we need to solve are not truly feasible. For example, they may be NP-complete,

EXPTIME-complete, or even r.e.-complete. The theory of algorithms and com-

plexity helps us determine whether the problem we need to solve is feasible, and if

not, how to choose a limited set of instances of the problem — or easier versions

of them — that are feasible.

As the reader will learn, the theory of complexity via Turing machines is iso-

morphic to descriptive complexity, i.e., the theory of complexity via logic formu-

las. We will give descriptive characterizations of almost all of the classes in Figure

2.38. For example, the logarithmic-time hierarchy is equal to the set of first-order

boolean queries (LH = FO, Theorem 5.30). The polynomial-time hierarchy is the

set of second-order boolean queries (PH = SO, Theorem 7.21). The arithmetic

hierarchy is an analogous but much larger class defined to be the set of boolean

queries that are describable in the first-order theory of the natural numbers.

The descriptive characterizations of complexity classes in this book are all

constructive. Efficient algorithms can be automatically translated into efficient

descriptions and vice versa. The descriptive approach has added significant new

insights and brought new methods to bear on the basic problems in complexity.

Descriptive complexity affords an elegant and simple view of complexity. We hope

that the reader will use this and perhaps other approaches to add a few more pieces

to the puzzle.

Historical Notes and Suggestions for Further Reading

The reader is referred to [Pap94] for much more information on computational

complexity. See also [BDG88] for more detail on “structural complexity” and

[Str94] for a combination of algebraic, logical, and automata-theoretic approaches

to complexity theory.

Chandra and Harel [CH80a] introduced the general notion of queries as in

Definition 1.24. We got the idea for using queries as the general paradigm of

computation from a lecture by Phokion Kolaitis.

Alternating machines were defined and Theorem 2.25 was proved indepen-

dently by Kozen and by Chandra and Stockmeyer [CKS81]. Kozen titled his de-

scription of these machines, “Parallelism in Turing Machines”, which is very apt

2Those readers who believe that the class BPP properly contains P should change this sentence

to, “. . . a proper subset of BPP.”

2.6. SUMMARY 55

(cf. Theorem 5.33); but Chandra and Stockmeyer coined the name “alternating

Turing machine”.

The QSAT boolean query was so named in [Pap94] because it is a natural gen-

eralization of SAT. Previously, it had been called the quantified boolean formula

problem (QBF).

Many-one reductions have their name for an historical reason: to contrast

them with 1:1 reductions in which the corresponding mapping is a 1:1 function.

Exercise 2.16 was suggested by Jose Balcázar, cf. [CSV84].

Nick’s class (NC) was originally defined by Nick Pippenger; see [Coo85].

56 CHAPTER 2. BACKGROUND IN COMPLEXITY

Bibliography

[AV91] S. Abiteboul and V. Vianu, “Generic Computation And Its Complexity,”

32nd IEEE Symposium on FOCS (1991), 209-219.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, 1995,

Addison-Wesley.

[AVV97] S. Abiteboul, M.Y. Vardi, and V. Vianu, “Fixpoint Logics, Relational

Machines, and Computational Complexity,” J. Assoc. Comput. Mach.

44(1) (1997), 30 – 56.

[Agr01] M. Agrawal, “The First-Order Isomorphism Theorem,” Foundations of

Software Technology and Theoretical computer Science, (2001), 58-69.

[AAI97] M. Agrawal, E. Allender, R. Impagliazzo, T. Pitassi and S. Rudich, “Re-

ducing the Complexity of Reductions,” ACM Symp. Theory Of Comput.

(1997), 730–738.

[AHU74] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of

Computer Algorithms, Addison- Wesley (1974).

[Ajt83] M. Ajtai, “Σ1
1 Formulae on Finite Structures,” Annals of Pure and Ap-

plied Logic 24 (1983), 1-48.

[Ajt87] M. Ajtai, “Recursive Construction for 3-Regular Expanders,” 28th

IEEE Symp. on Foundations of Computer Science (1987), 295-304.

[Ajt89] M. Ajtai, “First-Order Definability on Finite Structures,” Annals of Pure

and Applied Logic (1989), 211-225.

[AF90] M. Ajtai and R. Fagin, “Reachability is Harder for Directed than for

Undirected Graphs,” J. Symb. Logic, 55 (1990), 113-150.

319

320 BIBLIOGRAPHY

[AFS97] M. Ajtai, R. Fagin, and L. Stockmeyer, “The Closure of Monadic NP,”

IBM Research Report RJ 10092 (1997). The closure of monadic NP,

with Miklos Ajtai and Larry Stockmeyer. J. Computer and System Sci-

ences 60, June 2000, pp. 660-716. (Special issue for selected papers

from the 1998 ACM Symp. on Theory of Computing).

[AG87] M. Ajtai and Y. Gurevich, “Monotone versus Positive,” J. Assoc. Com-

put. Mach. 34 (1987), 1004–1015.

[AKL79] R. Aleliunas, R. Karp, R. Lipton, L. Lovász, and C. Rackoff, “Random

Walks, Universal Traversal Sequences, and the Complexity of Maze

Problems,” IEEE Found. of Comp. Sci. Symp. (1979), 218-233.

[ABI97] E. Allender, N. Immerman, J. Balcázar,“A First-Order Isomorphism

Theorem,” SIAM J. Comput. 26(2) (1997), 557-567.

[ACF94] B. Alpern, L. Carter, E. Feig, and T. Selker, “The Uniform Memory

Hierarchy Model of Computation,” Algorithmica, 12(2-3) (1994), 72–

109.

[AG94] G. Almasi and A. Gottlieb, Highly Parallel Computing (Second Edi-

tion) 1994, Benjamin-Cummings.

[ASE92] N. Alon, J. Spencer, and P. Erdős, The Probabilistic Method, 1992, John

Wiley and Sons, Inc.

[ADN95] H. Andréka, I. Düntsch, and I. Németi, “Expressibility of Properties of

Relations,” J. Symbolic Logic 60(3) (1995), 970 - 991.

[AF97] S. Arora and R. Fagin, “On Winning Strategies in Ehrenfeucht-Fraı̈ssé

Games,” Theoret. Comp. Sci. 174(1-2) (1997), 97-121.

[ALMSS] S. Arora, C. Lund, R. Motwani, M.Sudan, and M. Szegedy, “Proof Veri-

fication and the Hardness of Approximation Problems,” J. Assoc. Com-

put. Mach. 45(3) (1998), 501-555.

[AS92] S. Arora and S. Safra, “Probabilistic Checking of Proofs: a New Char-

acterization of NP,” J. Assoc. Comput. Mach. 45(1) (1998), 70-122.

A preliminary version appeared in IEEE Found. of Comp. Sci. Symp.

(1992), 2-13.

[Ba81] L. Babai, “Moderately Exponential Bound for Graph Isomorphism,”in

Proc. Int. Conf. Fundamentals of Computation Theory (1981),

Springer LNCS, 34 – 50.

BIBLIOGRAPHY 321

[BK80] L. Babai and L. Kučera, Canonical Labelling of Graphs in Linear Av-

erage Time,” 20th IEEE Symp. on Foundations of Computer Science

(1980), 39-46.

[BL83] L. Babai and E. Luks, “Canonical Labelling of Graphs,” 15th ACM

STOC Symp., (1983), 171-183.

[BDG88] J. Balcázar, J. Dı́as, and J. Gabarró, Structural Complexity, Vols. I

and II, EATCS Monographs on Theoretical Computer Science, 1988,

Springer-Verlag.

[BI97] D.M. Barrington and N. Immerman, “Time, Hardware, and Unifor-

mity,” in Complexity Theory Retrospective II, L. Hemaspaandra and

A. Selman, editors, 1997, Springer-Verlag, 1-22.

[BIS88] D.M. Barrington, N. Immerman, and H. Straubing, “On Uniformity

Within NC1,” Third Annual Structure in Complexity Theory Symp.

(1988), 47-59.

[BBI97] D.M. Barrington, J. Buss, and N. Immerman, “Capturing Deterministic

Space via Number of Variables,” in preparation.

[Bar77] J. Barwise, “On Moschovakis Closure Ordinals,” J. Symb. Logic 42

(1977), 292-296.

[Bea86] P. Beame, “Limits on the Power of Concurrent-Write Parallel Ma-

chines,” 18th ACM STOC (1986), 169-176.

[Bea96] P. Beame, “A Switching Lemma Primer,” manuscript,

http://www.cs.washington.edu/homes/beame/papers.html.

[Ben62] J. Bennett, “On Spectra” (1962), Ph.D. thesis, Princeton University.

[BGK85] A. Blass, Y. Gurevich and D. Kozen, “A Zero–One Law for Logic With

a Fixed Point Operator,” Information and Computation 67 (1985), 70-

90.

[Bol82] Béla Bollobás, Random Graphs, Academic Press (1982).

[BH92] R. Boppana and M. Halldórsson, ”Approximating Maximum Indepen-

dent Sets by Excluding Subgraphs,” BIT 32(2) (1992), 180-196.

[BS90] R. Boppana and M. Sipser, “The Complexity of Finite Functions,”

in Handbook of Theoretical Computer Science, Vol. A 1990, Jan van

Leeuwen, ed., Elsevier, Amsterdam and M.I.T. Press, Cambridge, MA.

322 BIBLIOGRAPHY

[B82] E. Börger, “Decision Problems in Predicate Logic,” in Logic Collo-

quium ’82, G. Lolli, G. Longo and A. Marcia (editors) North-Holland,

1984, 263 – 301.

[BCD88] A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo, and M. Tompa,

“Two Applications of Complementation via Inductive Counting,” Third

Annual Structure in Complexity Theory Symp. (1988), 116-125.

[BCH86] P. Beame, S. Cook, H.J. Hoover, “Log Depth Circuits for Division and

Related Problems,” SIAM J. Comput. 15:4 (1986), 994-1003.

[BCP83] A. Borodin, S. Cook, and N. Pippenger, “Parallel Computation for

Well-Endowed Rings and Space-Bounded Probabilistic Machines,” In-

formation and Control, 58 (1983), 113-136.

[Bra96] J. Bradfield, “On the Expressivity of the Modal Mu-Calculus,”

Symp. Theoretical Aspects Comp. Sci. (1996).

[Büc60] R. Büchi, “Weak Second-Order Arithmetic and Finite Automata,” Zeit.

Math. Logik. Grund. Math. 6 (1960), 66-92.

[CFI92] J.-Y. Cai, M. Fürer, N. Immerman, “An Optimal Lower Bound on the

Number of Variables for Graph Identification,” Combinatorica 12 (4)

(1992) 389-410.

[CH80a] Ashok Chandra and David Harel, “Computable Queries for Relational

Databases,” JCSS 21(2) (1980), 156-178.

[CH80b] Ashok Chandra and David Harel, “Structure and Complexity of Re-

lational Queries,” IEEE Found. of Comp. Sci. Symp. (1980), 333-347.

Also appeared in a revised as [CH82]

[CH82] A. Chandra and D. Harel, “Structure and Complexity of Relational

Queries,” JCSS 25 (1982), 99-128.

[CKS81] A. Chandra, D. Kozen, and L. Stockmeyer, “Alternation,” JACM, 28,

No. 1, (1981), 114-133.

[CSV84] A. Chandra, L. Stockmeyer and U. Vishkin, “Constant Depth Re-

ducibility,” SIAM J. of Comp. 13, No. 2, 1984, (423-439).

[CE81] E. Clarke and E.A. Emerson, “Design and Synthesis of Synchronization

Skeletons Using Branching Time Temporal Logic,” in Proc. Workshop

on Logic of Programs, LNCS 131, 1981, Springer-Verlag, 52-71.

BIBLIOGRAPHY 323

[Coh66] P. Cohen, Set Theory and the Continuum Hypothesis, 1966, Benjamin.

[Co88] K. Compton, “0-1 laws in logic and combinatorics,” in NATO Adv.

Study Inst. on Algorithms and Order, I. Rival, editor, 1988, D. Reidel,

353–383.

[Coo71] S. Cook, “The Complexity of Theorem Proving Procedures,” Proc.

Third Annual ACM STOC Symp. (1971), 151-158.

[Coo85] S. Cook, “A Taxonomy of Problems with Fast Parallel Algorithms,”

Information and Control 64 (1985), 2-22.

[Cop94] D. Coppersmith, “A Left Coset Composed of n-cycles,” Research Re-

port RC19511 IBM (1994).

[Cou90] B. Courcelle, “The Monadic Second-Order Logic of GraphsI: Rec-

ognizable Sets of Finite Graphs,” Information and Computation 85

(1990), 12 - 75.

[Cou97] B. Courcelle, “On the Expression of Graph Properties in Some Frag-

ments of Monadic Second-Order Logic,” in Descriptive Complexity and

Finite Models, N. Immerman and Ph. Kolaitis, eds., 1997, American

Mathematical Society, 33 - 62.

[Da84] E. Dahlhaus, “Reduction to NP-Complete Problems by Interpretations,”

in Logic and Machines: Decision Problems and Complexity, Börger,

Rödding, and Hasenjaeger eds., Lecture Notes In Computer Science

171, Springer-Verlag (1984), 357-365.

[Daw93] A. Dawar, “Feasible Computation Through Model Theory,” PhD Dis-

sertation, University of Pennsylvania (1993).

[DGH98] A. Dawar, G. Gottlob, L. Hella, “Capturing Relativized Complexity

Classes without Order,” to appear in Mathematical Logic Quarterly.

[DH95] Anuj Dawar and Lauri Hella, “The Expressive Power of Finitely Many

Generalized Quantifiers,” Information and Computation 123(2) (1995),

172-184.

[DDLW98] A. Dawar, K. Doets, S. Lindell, and S. Weinstein, “Elementary Prop-

erties of the Finite Ranks,” /it Mathematical Logic Quarterly 44 (1998),

349-353.

324 BIBLIOGRAPHY

[DLW95] A. Dawar, S. Lindell, and S. Weinstein, “Infinitary logic and inductive

definability over finite structures,” Information and Computation , 119

(1995), 160-175.

[DGS86] L. Denenberg, Y. Gurevich and S. Shelah, ”Definability by Constant-

Depth Polynomial-Size Circuits”, Information and Control 70 (1986),

216-240.

[deR84] M. de Rougemont, “Uniform Definability on Finite Structures with

Successor,” 16th ACM STOC Symp., (1984), 409-417.

[DL98] W. Diffie and S. Landau, Privacy on the Line: the Politics of Wiretap-

ping and Encryption, MIT Press, 1998.

[DS95] G. Dong, J. Su, “Space-Bounded FOIES,” ACM Symp. Principles

Database Systems (1995), 139 -150.

[DS93] G. Dong, J. Su, “Incremental and Decremental Evaluation of Transitive

Closure by First-Order Queries,” Information and Computation , 120(1)

(1995), 101-106. Preliminary results presented at the 1993 Australian

Computer Science Conference.

[EF95] H.-D. Ebbinghaus, J. Flum, Finite Model Theory 1995, Springer 1995.

[EFT94] H.-D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical Logic, 2nd

edition 1994, Springer-Verlag.

[Ehr61] A. Ehrenfeucht, “An Application of Games to the Completeness Prob-

lem for Formalized Theories,” Fund. Math. 49 (1961), 129-141.

[End72] H. Enderton, A Mathematical Introduction to Logic, Academic Press,

1972.

[ES74] P. Erdős and J. Spencer, Probabilistic Methods in Combinatorics, 1974,

Academic Press.

[Ete95] K. Etessami, “Counting Quantifiers, Successor Relations, and Loga-

rithmic Space,” IEEE Structure in Complexity Theory Symp. (1995),

2-11.

[Ete95a] K. Etessami, “Ordering and Descriptive Complexity” Ph.D. thesis,

1995, UMass, Amherst.

[EI95] K. Etessami and N. Immerman, “Reachability and the Power of Local

Ordering,” Theoret. Comp. Sci. 148(2) (1995), 261-279.

BIBLIOGRAPHY 325

[EI95a] K. Etessami and N. Immerman, “Tree Canonization and Transitive Clo-

sure,” to appear in Information and Computation . A preliminary ver-

sion appeared in IEEE Symp. Logic In Comput. Sci. (1995), 331-341.

[Fag73] R. Fagin, “Contributions to the Model Theory of Finite Structures”,

Ph.D. Thesis (1973), U. C. Berkeley.

[Fag74] R. Fagin, “Generalized First-Order Spectra and Polynomial-Time Rec-

ognizable Sets,” in Complexity of Computation, (ed. R. Karp), SIAM-

AMS Proc. 7 (1974), 43-73.

[Fag75] R. Fagin, “Monadic generalized spectra,” Zeitschr. f. math. Logik und

Grundlagen d. Math. 21 (1975), 89-96.

[Fag76] R. Fagin, “Probabilities on Finite Models,” J. Symbol. Logic 41, No. 1

(1976),50-58.

[Fag93] R. Fagin, “Finite-Model Theory – a Personal Perspective,” Theo-

ret. Comp. Sci. 116 (1993), 3-31.

[Fag97] R. Fagin, “Easier Ways to Win Logical Games,” in Descriptive Com-

plexity and Finite Models, N. Immerman and Ph. Kolaitis, eds., 1997,

American Mathematical Society, 1 - 32.

[FSV95] R. Fagin, L. Stockmeyer, and M.Y. Vardi, “On monadic NP vs. monadic

co-NP,” Information and Computation 120(1) (1995), 78-92.

[FV98] T. Feder and M.Y. Vardi, “The Computational Structure of Monotone

Monadic SNP and Constraint Satisfaction: A Study through Datalog

and Group Theory,” (1998).

[Fel50] W. Feller, An Introduction to Probability Theory and Its Applications,

Vol. 1, 1950, John Wiley, New York.

[FRW84] F. Fich, Prabhakar Ragde, and, Avi Wigderson (1984), “Relations Be-

tween Concurrent-Write Models of Parallel Computation,” Third ACM

Symp. on Principles of Distributed Computing, 179-189.

[FW78] S. Fortune and J. Wyllie, “Parallelism in Random Access Machines,”

ACM Symp. Theory Of Comput. (1978), 114-118.

[Fra54] R. Fraı̈ssé, “Sur les Classifications des Systems de Relations,” Publ.

Sci. Univ. Alger I (1954).

326 BIBLIOGRAPHY

[Fur87] M. Fürer, “A Counterexample In Graph Isomorphism Testing – Ex-

tended Abstract,” manuscript (October, 1987).

[FSS84] M. Furst, J.B. Saxe, and M. Sipser, “Parity, Circuits, and the

Polynomial-Time Hierarchy,” Math. Systems Theory, 17 (1984), 13-27.

[Gab81] D. Gabbay, “Expressive Functional Completeness in Tense Logic,” in:

Aspects of Philosophical Logic, 1981, ed. Monnich, D. Reidel, Dor-

drecht, 91-117.

[Gai81] H. Gaifman, “On Local and Non-Local Properties,” Proc. Herbrand

Logic Colloq. (1981), 105-135.

[GH97] F. Gire and H. Hoang, “An Extension of Fixpoint Logic with a

Symmetry-Based Choice Construct,” Information and Computation

144(1) (1998), 40-65.

[Göd30] Gödel, K., “Die Vollständigkeit der Axiome des Logischen Funktio-

nenkalküls,” Monatshefte für Mathematik und Physik 37 (1930), 349 -

360, (English translation in [vH67]).

[Go82] L. Goldschlager, ”A Universal Interconnection Pattern for Parallel

Computers,” JACM, October 1982.

[Go77] L. Goldschlager, “The Monotone and Planar Circuit Value Problems

are Log Space Complete for P,” SIGACT News 9(2) (1977).

[Grä92] E. Grädel, “Capturing Complexity Classes by Fragments of Second Or-

der Logic,” Theoret. Comp. Sci. 101 (1992), 35-57.

[Grä92a] E. Grädel, “On Transitive Closure Logic,” Computer Science Logic

(1992), LNCS, Springer, 149–163.

[GM95] E. Grädel and G. McColm, “On the Power of Deterministic Transitive

Closures,” Information and Computation 119 (1995), 129-135.

[GM96] E. Grädel and G. McColm, “Hierarchies in Transitive Closure Logic,

Stratified Datalog and Infinitary Logic,” Annals of Pure and Applied

Logic 77 (1996), 166–199.

[GO93] E. Grädel and M. Otto, “Inductive Definability with Counting on Finite

Structures,” Computer Science Logic 1993, LNCS 702, Springer, 231–

247.

BIBLIOGRAPHY 327

[Gra84] E. Grandjean, “The Spectra of First-Order Sentences and Computa-

tional Complexity,” SIAM J. of Comp. 13, No. 2 (1984), 356-373.

[Gra85] E. Grandjean, “Universal quantifiers and time complexity of Random

Access Machines,” Math. Syst. Th. (1985), 171-187.

[Gra89] E. Grandjean, “First-order spectra with one variable,” to appear in J.

Comput. Syst. Sci.

[Gro95] M. Grohe, “Complete Problems for Fixed-Point Logics,” J. Symbolic

Logic 60 (1995), 517-527.

[Gro96] M. Grohe, “Equivalence in Finite-Variable Logics is Complete for

Polynomial Time,” IEEE Found. of Comp. Sci. Symp. (1996).

[Gro96a] M. Grohe, “Arity Hierarchies,” Annals of Pure and Applied Logic 82

(1996), 103-163.

[Gro97] M. Grohe, “Large Finite Structures With Few Lk-Types,” IEEE

Symp. Logic In Comput. Sci. (1997).

[GS98] M. Grohe and T. Schwentick, “Locality of order-invariant first-order

forumlas. MFCS’98, 437-445. Full version to appear in ACM TOCL.

[Gro97a] M. Grohe, “Canonization for Lk-Invariants is Hard,” Annual Confer-

ence of the European Association for Computer Science Logic (1997),

M. Nielsen and W. Thomas, eds., 185-200.

[Gro97b] M. Grohe, “Fixed-Point Logics on Planar Graphs,” manuscript (1997).

[Gur83] Y. Gurevich, ”Algebras of feasible functions,” IEEE Found. of

Comp. Sci. Symp. (1983), 210-214.

[Gur84] Y. Gurevich, “Toward Logic Tailored for Computational Complexity,”

Computation and Proof Theory (M.M. Richter et. al., eds.). Springer-

Verlag Lecture Notes in Math. 1104 (1984), 175-216.

[Gur88] Y. Gurevich, “Logic and the Challenge of Computer Science,” in Cur-

rent Trends in Theoretical Computer Science, ed. E. Börger, Computer

Science Press (1988), 1-57.

[Gur91] Y. Gurevich, “ Evolving Algebras: A Tutorial Introduction,” Bulletin of

EATCS, 43 (1991), 264-284.

328 BIBLIOGRAPHY

[Gur93] Y. Gurevich, ”Evolving Algebras 1993: Lipari Guide”, Specification

and Validation Methods, ed. E. Börger, Oxford University Press, 1995,

9–36.

[GS85] Y. Gurevich and S. Shelah, “Fixed-Point Extensions of First-Order

Logic,” Annals of Pure and Applied Logic 32 (1986), 265–280.

[GS96] Y. Gurevich and S. Shelah, “On Finite Rigid Structures,” J. Symbolic

Logic 61(2) (1996), 549 - 562.

[HP93] P. Hajek and P. Pudlak, Metamathematics of First-Order Arithmetic,

1993, Springer, Berlin.

[Ha65] W. Hanf, “Model-Theoretic Methods in the Study of Elementary

Logic,” in J. Addison, L. Henkin, and A. Tarski, eds., The Theory of

Models, 1965, North Holland, 105-135.

[HIM78] J. Hartmanis, N. Immerman, and S. Mahaney, “One-Way Log Tape Re-

ductions,” IEEE Found. of Comp. Sci. Symp. (1978), 65-72.

[Has86] J. Hastad, “Almost Optimal Lower Bounds for Small Depth Circuits,”

18th ACM STOC Symp., (1986), 6-20.

[He96] L. Hella, “Logical Hierarchies in PTIME,” Information and Computa-

tion 129(1) (1996), 1-19.

[HKL97] L. Hella, Ph. Kolaitis, and K. Luosto, “How to Define a Linear Order on

Finite Models,”Annals of Pure and Applied Logic 87 (1997), 241-267.

[HKL96] L. Hella, Ph. Kolaitis, and K. Luosto, “Almost Everywhere Equiva-

lence of Logics in Finite Model Theory,” Bulletin of Symbolic Logic

2(4) (1996), 422 - 443.

[HLN97] L. Hella, L. Libkin, and J. Nurmonen, “Notions of locality and their

logical characterizations over finite models,” manuscript.

[Hil85] D. Hillis, The Connection Machine 1985, MIT Press.

[Hon82] J.-W. Hong, “On Some Deterministic Space Complexity Problems,”

SIAM J. Comput. 11 (1982), 591-601.

[Ho86] J.-W. Hong, Computation: Computability, Similarity, and Duality,

1986, John Wiley & Sons.

BIBLIOGRAPHY 329

[HT72] J. Hopcroft and R. Tarjan, “Isomorphism of Planar Graphs,” in Com-

plexity of Computer Computations, R. Miller and J.W. Thatcher, eds.,

(1972), Plenum Press, 131-152.

[HU79] J. Hopcroft and J. Ullman, Introdution to Automata Theory, Languages,

and Computation, Addison-Wesley (1979).

[I79] N. Immerman, “Length of Predicate Calculus Formulas as a New Com-

plexity Measure,” 20th IEEE FOCS Symp. (1979), 337-347. Revised

version: “Number of Quantifiers is Better than Number of Tape Cells,”

JCSS 22(3), June 1981, 65-72.

[I80] N. Immerman, “Upper and Lower Bounds for First Order Express-

ibility,”21st IEEE FOCS Symp. (1980), 74-82. Revised version: JCSS

25(1) (1982), 76-98.

[I82] N. Immerman, “Relational Queries Computable in Polynomial Time,”

14th ACM STOC Symp. (1982), 147-152. Revised version: Information

and Control, 68 (1986), 86-104.

[I83] N. Immerman, “Languages Which Capture Complexity Classes,” 15th

ACM STOC Symp. (1983), 347-354. Revised version: “Languages That

Capture Complexity Classes,” SIAM J. Comput. 16(4) (1987), 760-778.

[I87] N. Immerman, “Expressibility as a Complexity Measure: Results and

Directions,” Second Structure in Complexity Theory Conf. (1987), 194-

202.

[I88] N. Immerman, “Nondeterministic Space is Closed Under Complemen-

tation,” SIAM J. Comput. 17(5) (1988), 935-938. Also appeared in Third

Structure in Complexity Theory Conf. (1988), 112-115.

[I89] N. Immerman, “Descriptive and Computational Complexity,”in Com-

putational Complexity Theory, ed. J. Hartmanis, Lecture Notes for

AMS Short Course on Computational Complexity Theory, Proc. Symp.

in Applied Math. 38, American Mathematical Society (1989), 75-91.

[I89a] N. Immerman, “Expressibility and Parallel Complexity,” SIAM J. of

Comput. 18 (1989), 625-638.

[I91] N. Immerman, “DSPACE[nk] = VAR[k+1],” Sixth IEEE Structure in

Complexity Theory Symp. (July, 1991), 334-340.

330 BIBLIOGRAPHY

[IKL95] N. Immerman, Ph. Kolaitis, and J. Lynch, “A Tutorial on Finite Model

Theory,” DIMACS, August, 1995.

[IK87] N. Immerman and D. Kozen, “Definablitity with Bounded Number of

Bound Variables,” Second LICS Symp. (1987), 236-244.

[IL95] N. Immerman, S. Landau, “The Complexity of Iterated Multiplication,”

Information and Computation 116(1) (1995), 103-116.

[IL90] N. Immerman and E. Lander, “Describing Graphs: A First-Order Ap-

proach to Graph Canonization,” in Complexity Theory Retrospective,

Alan Selman, ed., Springer-Verlag (1990), 59-81.

[IPS96] N. Immerman, S. Patnaik and D. Stemple, “The Expressiveness of a

Family of Finite Set Languages,” Theoretical Computer Science 155(1)

(1996), 111-140. A preliminary version appeared in Tenth ACM Sym-

posium on Principles of Database Systems (1991), 37-52.

[IV97] N. Immerman and M.Y. Vardi, “Model Checking and Transitive Clo-

sure Logic,” Proc. 9th Int’l Conf. on Computer-Aided Verification

(1997), Lecture Notes in Computer Science, Springer-Verlag, 291 -

302.

[JL77] N. Jones and W. Laaser, “Complete Problems for Deterministic Poly-

nomial Time,” Theoret. Comp. Sci. 3 (1977), 105-117.

[JLL76] N. Jones, E. Lien and W. Laaser, “New Problems Complete for Nonde-

terministic Logspace,” Math. Systems Theory 10 (1976), 1-17.

[JS74] N. Jones and A. Selman, “Turing Machines and the Spectra of First-

Order Formulas,” J. Symbolic Logic 39 (1974), 139-150.

[Ka79] R. Karp, “Probabilistic Analysis of a Canonical Numbering Algo-

rithm for Graphs,” Relations between combinatorics and other parts of

mathematics, Proceedings of Symposia in Pure Mathematics 34, 1979,

American Mathematical Society, 365 - 378.

[KL82] R. Karp and R. Lipton, “Turing Machines That Take Advice,” Ensiegn.

Math. 28 (1982), 192-209.

[KV95] Ph. Kolaitis and J. Väänänen, “Generalized Quantifiers and Pebble

Games on Finite Structures,” Annals of Pure and Applied Logic, 74(1)

(1995), 23–75.

BIBLIOGRAPHY 331

[KV98] Ph. Kolaitis and M.Y. Vardi, “Conjunctive-Query Containment and

Constraint Satisfaction,” ACM Symp. Principles Database Systems

(1998).

[KV92a] Ph. Kolaitis and M.Y. Vardi, “0-1 Laws for Fragments of Second-Order

Logic: an Overview,” in Y. Moschovakis, editor, Logic From Computer

Science 1992, Springer-Verlag, 265–286.

[Ku87] L. Kučera, “Canonical Labeling of Regular Graphs in Linear Average

Time,” 28th IEEE FOCS Symp. (1987), 271-279.

[Kur64] S. Kuroda, “Classes of Languages and Linear-Bounded Automata,” In-

formation and Control 7 (1964), 207-233.

[Kur94] R. Kurshan, Computer-Aided Verification of Coordinating Processes,

1994, Princeton University Press, Princeton, NJ.

[L75] R. Ladner, “The Circuit Value Problem is log space complete for P,”

SIGACT News, 7(1) (1975), 18 – 20.

[LR96] R. Lassaigne and M. de Rougemont, Logique et Complexité, 1996, Her-

mes.

[LJK87] K.J. Lange, B. Jenner, and B. Kirsig, “The Logarithmic Hierarchy Col-

lapses: AΣL
2 = AΠL

2 ,” 14th ICALP (1987).

[Lei87] D. Leivant, “Characterization of Complexity Classes in Higher-Order

Logic,” Second Structure in Complexity Theory Conf. (1987), 203–217.

[Lei89] D. Leivant, “Descriptive Characterizations of Computational Complex-

ity,” J. Comput. Sys. Sci. 39 (1989), 51-83.

[LP81] H. Lewis and C. Papadimitriou, Elements of the Theory of Computation

1982, Prentice-Hall.

[LP82] H. Lewis and C. Papadimitriou, “Symmetric Space Bounded Computa-

tion,” Theoret. Comput. Sci. 19 (1982),161-187.

[LV93] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and

its Applications, 1993, Springer-Verlag, New York.

[L92] S. Lindell, “A purely logical characterization of circuit uniformity,” 7th

Structure in Complexity Theory Conf. (1992), 185-192.

332 BIBLIOGRAPHY

[L] S. Lindell, ”How to define exponentiation from addition and multipla-

tion in first-order logic on finite structures,” manuscript.

[Lin66] P. Lindström, ”First Order Predicate Logic with Generalized Quanti-

fiers,” Theoria, 32 (1966), 186 195.

[LG77] L. Lovász and P. Gács, “Some Remarks on Generalized Spectra,”

Zeitchr. f. math, Logik und Grundlagen d. Math, 23 (1977), 547-554.

[Luk82] E. Luks, ”Isomorphism of Graphs of Bounded Valence Can be Tested

in Polynomial Time,” J. Comput. Sys. Sci. 25 (1982), pp. 42-65.

[Lyn82] J. Lynch, “Complexity Classes and Theories of Finite Models,” Math.

Sys. Theory 15 (1982), 127-144.

[MP94] J. Makowsky, Y. Pnueli, “Arity versus alternation in Second-Order

Logic,” in Logical Foundations of Computer Science, A. Nerode,

Y. Matiyasevich eds., Springer LNCS 813 1994, 240 - 252.

[McM93] K. McMillan, Symbolic Model Checking, 1993, Kluwer.

[MP71] R. McNaughton and S. Papert, Counter-Free Automata, 1971, MIT

Press, Cambridge, MA.

[Man89] U. Manber, Introduction to Algorithms: A Creative Approach, Addison-

Wesley, (1989).

[MT97] O. Matz and W. Thomas, “The Monadic Quantifier Alternation Hierar-

chy Over Graphs is Infinite,” IEEE Symp. Logic In Comput. Sci. (1997),

236-244.

[MI94] J.A. Medina and N. Immerman, “A Syntactic Characterization of NP-

Completeness,” IEEE Symp. Logic In Comput. Sci. (1994), 241-250.

[MI96] J.A. Medina and N. Immerman, “A Generalization of Fagin’s Theo-

rem,” IEEE Symp. Logic In Comput. Sci. (1996), 2 – 12.

[MSV94] P. Miltersen, S. Subramanian, J. Vitter, and R. Tamassia, “Complex-

ity Models for Incremental Computation,” Theoret. Comp. Sci. (130:1)

(1994), 203-236.

[Mos74] Y. Moschovakis, Elementary Induction on Abstract Structures, North

Holland (1974).

BIBLIOGRAPHY 333

[Mos80] Y. Moschovakis, Descriptive set theory, 1980, North-Holland Pub. Co.,

Amsterdam, 637 p.

[NT95] N. Nisan and A. Ta-Shma, “Symmetric Logspace is Closed Under

Complement,” Chicago J. Theoret. Comp. Sci. (1995).

[O01] M. Otto, “Two Variable first-Order Logic Over Ordered Domains,”

J. Symbolic Logic 66(2) (2001), 685-702.

[Ott96] M. Otto, “The Expressive Power of Fixed-Point Logic with Counting,”

J. Symbolic Logic 61(1) (1996), 147 - 176

[Ott97] M. Otto, Bounded Variable Logics and Counting: A Study in Finite

Models, 1997, Lecture Notes in Logic, vol. 9, Springer-Verlag.

[Pap94] C. Papadimitriou, Computational Complexity 1994, Addison-Wesley.

[Pap85] C. Papadimitriou, “A Note on the Expressive Power of Prolog,” EATCS

Bulletin 26 (1985), 21-23.

[PY91] C. Papadimitriou and M. Yannakakis, “Optimization, Approximation,

and Complexity Classes,” J. Comput. Sys. Sci. , 43 (1991), 425-440.

[PI94] S. Patnaik and N. Immerman, “Dyn-FO: A Parallel, Dynamic Complex-

ity Class,” J. Comput. Sys. Sci. 55(2) (1997), 199-209. A preliminary

version appeared in ACM Symp. Principles Database Systems (1994),

210-221.

[Poi82] B. Poizat, ”Deux ou trois choses que je sais de Ln” JSL 47 (1982),

641-658.

[R96] G. Ramalingam Bounded Incremental Computation, 1996, Springer

LNCS 1089.

[Raz87] A. Razborov, “Lower Bounds on the Size of Bounded Depth Networks

Over a Complete Basis With Logical Addition,” Matematischi Zametki

41 (1987), 598-607 (in Russian). English translation in Mathematical

Notes of the Academy of Sciences of the USSR 41, 333-338.

[Rei87] J. Reif, “On Threshold Circuits and Polynomial Computation,” Second

Annual Structure in Complexity Theory Symp. (1987), 118-123.

[Rei05] O. Reingold, “Undirected ST-Connectivity in Log-Space”, ACM

Symp. Theory Of Comput. 2005, 376 - 385.

334 BIBLIOGRAPHY

[RS72] D. Rödding and H. Schwichtenberg, “Bemerkungen zum Spektralprob-

lem,” Zeitschrift fr̈ math. Logik und Grundlagen der Mathematik 18

(1972), 1-12.

[Ros82] J. Rosenstein, Linear Orderings, 1982, Academic Press.

[Ruz81] L. Ruzzo, “On Uniform Circuit Complexity,” J. Comp. Sys. Sci., 21,

No. 2 (1981), 365-383.

[Sav70] W. Savitch, “Relationships Between Nondeterministic and Determinis-

tic Tape Complexities,” J. Comput. System Sci. 4 (1970), 177-192.

[Sav73] W. Savitch, “Maze Recognizing Automata and Nondeterministic Tape

Complexity,” J. Comput. Sys. Sci. 7 (1973), 389-403.

[Sch97] N. Schweikardt, “The Monadic Quantifier Alternation Hierarchy over

Grids and Pictures,” Annual Conference of the European Association

for Computer Science Logic (1997), M. Nielsen and W. Thomas, eds.,

383-397.

[Sch94] T. Schwentick, “Graph Connectivity and Monadic NP,” IEEE Found. of

Comp. Sci. Symp. (1994), 614-622.

[Sch97a] T. Schwentick, “Padding and the Expressive Power of Existential

Second-Order Logics,” Annual Conference of the European Associa-

tion for Computer Science Logic (1997), M. Nielsen and W. Thomas,

eds., 399-412.

[SB98] T. Schwentick and K. Barthelmann, “Local Normal Forms for First-

Order Logic with Applications to Games and Automata,” to appear in

Symp. Theoretical Aspects Comp. Sci. (1998).

[See95] D. Seese, “FO-Problems and Linear Time Computability,” Tech Report,

Institut für Informatik und Formale Beschreibungsverfahren, Univer-

sität Karlsruhe, Germany (1995).

[Sip83] M. Sipser, ”Borel Sets and Circuit Complexity,” 15th Symp. on Theory

of Computation (1983), 61-69.

[Smo87] R. Smolensky, “Algebraic Methods in the Theory of Lower Bounds for

Boolean Circuit Complexity,” 19th ACM STOC (1987), 77-82.

[Spe93] J. Spencer, “Zero-One Laws With Variable Probability,” J. Symbolic

Logic 58 (1993), 1–14.

BIBLIOGRAPHY 335

[Ste94] I. Stewart, “On completeness for NP via projection translations,” Math.

Syst. Theory 27 (1994), 125–157.

[Ste91] I. Stewart, “Comparing the Expressibility of Languages Formed Using

NP-Complete Operators”, J. Logic and Computation 1(3) (1991), 305-

330.

[Sto77] L. Stockmeyer, “The Polynomial-Time Hierarchy,” Theoretical Comp.

Sci. 3 (1977), 1-22.

[SV84] L. Stockmeyer and U. Vishkin, “Simulation of Parallel Random Access

Machines by Circuits,” SIAM J. of Comp. 13, No. 2 (1984), 409-422.

[Str94] H. Straubing, Finite Automata, Formal Logic, and Circuit Complexity,

1994, Birkhäuser.

[Sze88] R. Szelepcsényi, “The Method of Forced Enumeration for Nondeter-

ministic Automata,” Acta Informatica 26 (1988), 279-284.

[Tar36] A. Tarksi, “Der Wahrheitsbegriff in den Formalisierten Sprachen,” Stu-

dia Philosophica 1 (1936).

[Tar55] A. Tarksi, “A Lattice-Theoretical Fixpoint Theorem and its Applica-

tions,” Pacific. J. Math., 55 (1955), 285-309.

[Tho86] S. Thomas, “Theories With Finitely Many Models,” J. Symbolic Logic,

51, No. 2 (1986), 374-376.

[Tra50] B. Trahtenbrot, “The Impossibility of an Algorithm for the Decision

Problem for Finite Domains,” Doklady Academii Nauk SSSR, n.s., vol

70 (1950), 569-572 (in Russian).

[Tur84] G. Turán, “On the Definability of Properites of Finite Graphs,” Discrete

Math. 49 (1984), 291-302.

[TPP97] A. Turk, S. Probst, and G. Powers, “Verification of a Chemical Pro-

cess Leak Test Procedure,” in Computer Aided Verification, 9th Inter-

national Conf., O. Grumberg, ed. 1997, Springer, 84-94.

[Tys97] J. Tyszkiewicz, “The Kolmogorov Expression Complexity of Logics,”

Information and Computation 135(2) (1997), 113-136.

[Vaa99] . Väänänen, ed., Generalized Quantifiers and Computation, Ninth Eu-

ropean Summer School in Logic, Language, and Information, 1997,

Springer LNCS 1754.

336 BIBLIOGRAPHY

[Val82] L. Valiant, “Reducibility By Algebraic Projections,” L’Enseignement

mathématique, 28, 3-4 (1982), 253-68.

[vD94] D. van Dalen, Logic and Structure, Third Edition, 1994, Springer-

Verlag.

[vH67] J. van Heijenoort, From Frege to Gödel: A Source Book in Mathemati-

cal Logic, 1879 - 1931 1967, Harvard University Press.

[Var82] M.Y. Vardi, “Complexity of Relational Query Languages,” 14th Sym-

posium on Theory of Computation (1982), 137-146.

[Wei76] B. Weisfeiler, ed., On Construction and Identification of Graphs, Lec-

ture Notes in Mathematics 558, Springer, 1976.

[Wra76] C. Wrathall, “Complete Sets and the Polynomial Hierarchy,” Theoret.

Comp. Sci. 3 (1976).

[Yao85] A. Yao ,“Separating the Polynomial-Time Hierarchy by Oracles,” 26th

IEEE Symp. on Foundations of Comp. Sci. (1985), 1-10.

	Introduction
	Background in Logic
	Introduction and Preliminary Definitions
	Ordering and Arithmetic
	FO(BIT) = FO(PLUS,TIMES)

	Isomorphism
	First-Order Queries

	Background in Complexity
	Introduction
	Preliminary Definitions
	Reductions and Complete Problems
	Alternation
	Simultaneous Resource Classes
	Summary

