Despite Ladner’s Theorem, there are very few natural problems that are:

- Known to be in NP, and
- Not known to be NP-complete, and
- Not known to be in P

Examples:

- Factoring natural numbers
- Graph Isomorphism
- Model Checking the μ-Calculus

Prop: $\text{PRIME} \in \text{NP}$

Proof:

$$m \in \text{PRIME} \iff m < 2 \lor \exists xy \left(1 < x < m \land x \cdot y = m\right)$$

Question: Is $\text{PRIME} \in \text{NP}$?

Fact 15.1 (Fermat’s Little Thm) Let p be prime and $0 < a < p$, then, $a^{p-1} \equiv 1 \pmod{p}$.

$$\mathbb{Z}_n^* = \left\{ a \in \{1, 2, \ldots, n-1\} \mid \gcd(a, n) = 1 \right\}$$

\mathbb{Z}_n^* is the multiplicative group of integers mod n that are relatively prime to n.

Euler’s phi function: $\varphi(n) = |\mathbb{Z}_n^*|$
Prop: If \(n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} \) is the prime factorization of \(n \), then
\[
\varphi(n) = n(p_1 - 1)(p_2 - 1) \cdots (p_k - 1)/(p_1 p_2 \cdots p_k)
\]

Euler’s Thm: For any \(n \) and any \(a \in \mathbb{Z}_n^* \), \(a^\varphi(n) \equiv 1 (\text{mod } n) \).

Fact: Let \(p > 2 \) be prime. Then \(\mathbb{Z}_p^* \) is a cyclic group of order \(p - 1 \). That is,
\[
\mathbb{Z}_p^* = \{ a, a^2, a^3, \ldots, a^{p-1} \}
\]

\(m \in \text{PRIME} \iff \exists a \in \mathbb{Z}_m^* (\text{ord}(a) = m - 1) \)

Pratt’s Thm: \(\text{PRIME} \in \text{NP} \).

Proof: Given \(m \),

1. Guess \(a, 1 < a < m \)
2. Check \(a^{m-1} \equiv 1 \pmod{m} \) by repeated squaring.
3. Guess prime factorization: \(m - 1 = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} \)
4. Check for \(1 \leq i \leq k \), \(a^{m-1/p_i} \not\equiv 1 (\text{mod } m) \)
5. Recursively check that \(p_1, p_2, \ldots, p_k \) are prime.

Divide and Conquer NP Algorithm:

\[
T(n) = O(n^2) + T(n - 1)
\]

\[
T(n) = O(n^3)
\]

Cor: \(\text{PRIME} \) and \(\text{FACTORING} \) are in \(\text{NP} \cap \text{co-NP} \).

Proof: \(\text{PRIME} \): immediately from Pratt’s Thm.

\(\text{FACTORING} \) is the problem of given \(N \), find it’s prime factorization: \(N = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} \).

Think of this as a decision problem by putting the factorization in a standard form, e.g., \(p_1 < p_2 < \cdots < p_k \), and asking if bit \(i \) of the factorization is “1”.

This is in \(\text{NP} \cap \text{co-NP} \) because an NP or co-NP machine can guess the unique prime factorization, check that it is correct, and then read bit \(i \).
More Primality Testing

\(a \in \mathbb{Z}_m^* \) is a **quadratic residue** mod \(m \) iff, \(\exists b \ (b^2 \equiv a \ (\text{mod } m)) \)

For \(p \) prime let,

\[
\left(\frac{a}{p} \right) = \begin{cases}
1 & \text{if } a \text{ is a quadratic residue mod } p \\
-1 & \text{otherwise}
\end{cases}
\]

Generalize to \(\left(\frac{a}{m} \right) \) when \(m \) is not prime,

\[
\left(\frac{a}{mn} \right) = \left(\frac{a}{m} \right) \left(\frac{a}{n} \right)
\]

\[
\left(\frac{a}{m} \right) = \left(\frac{a \% m}{m} \right)
\]

Quadratic Reciprocity Thm: [Gauss] For odd \(a, m, \)

\[
\left(\frac{a}{m} \right) = \begin{cases}
\left(\frac{m}{a} \right) & \text{if } a \equiv 1 \ (\text{mod } 4) \text{ or } m \equiv 1 \ (\text{mod } 4) \\
- \left(\frac{m}{a} \right) & \text{if } a \equiv 3 \ (\text{mod } 4) \text{ and } m \equiv 3 \ (\text{mod } 4)
\end{cases}
\]

\[
\left(\frac{2}{m} \right) = \begin{cases}
1 & \text{if } m \equiv 1 \ (\text{mod } 8) \text{ or } m \equiv 7 \ (\text{mod } 8) \\
-1 & \text{if } m \equiv 3 \ (\text{mod } 8) \text{ or } m \equiv 5 \ (\text{mod } 8)
\end{cases}
\]

Thus, we can calculate \(\left(\frac{a}{m} \right) \) efficiently. For example,

\[
\left(\frac{107}{351} \right) = - \left(\frac{351}{107} \right) = - \left(\frac{30}{107} \right)
\]
\[
= - \left(\frac{2}{107} \right) \left(\frac{15}{107} \right) = - \left(\frac{107}{15} \right)
\]
\[
= - \left(\frac{2}{15} \right) = -1
\]

\(107 \equiv 351 \equiv 15 \equiv 3 \ (\text{mod } 4) \)

\(107 \equiv 3 \ (\text{mod } 8); \quad 15 \equiv 7 \ (\text{mod } 8) \)
Fact:[Gauss] For p prime, $a \in \mathbb{Z}_p^*$, \(\left(\frac{a}{p} \right) \equiv a^{p-1} \pmod{p} \).

Fact: If m not prime then,

\[
\left| \left\{ a \in \mathbb{Z}_m^* \mid \left(\frac{a}{m} \right) \equiv a^{\frac{m-1}{2}} \pmod{m} \right\} \right| < \frac{m-1}{2}
\]

Solovay-Strassen Primality Algorithm:

1. Input is odd number m
2. For $i := 1$ to k do {
3. choose $a < m$ at random
4. if $\text{GCD}(a, m) \neq 1$ return (“not prime”)
5. if \(\left(\frac{a}{m} \right) \neq a^{\frac{m-1}{2}} \pmod{m} \) return (“not prime”)
6. }
7. return (“probably prime”)

Thm:

- If m is prime then Solovay-Strassen(m) returns “probably prime”.
- If m is not prime, then the probability that Solovay-Strassen(m) returns “probably prime” is less than $1/2^k$.

Cor: PRIME \in “Truly Feasible”

Fact: [Agrawal, Kayal, and Saxena, 2002] PRIME \in P

Def: A decision problem S is in BPP (Bounded Probabilistic Polynomial Time) iff there is a probabilistic, polynomial-time algorithm A such that for all inputs w,

- if $(w \in S)$ then $\text{Prob}(A(w) = 1) \geq \frac{2}{3}$
- if $(w \notin S)$ then $\text{Prob}(A(w) = 1) \leq \frac{1}{3}$
Prop: If $S \in \text{BPP}$ then there is a probabilistic, polynomial-time algorithm A' such that for all n and all inputs w of length n,

\[
\begin{align*}
\text{if } (w \in S) \text{ then } \text{Prob}(A'(w) = 1) &\geq 1 - \frac{1}{2^n} \\
\text{if } (w \notin S) \text{ then } \text{Prob}(A'(w) = 1) &\leq \frac{1}{2^n}
\end{align*}
\]

Proof: Iterate A polynomially many times and answer with the majority. Probability the mean is off by $\frac{1}{3}$ decreases exponentially with n — Chernoff bounds.

Is BPP equal to P???

Probably, because pseudo-random number generators are good.

Is randomness ever useful?

Colonel Kelly:

Which base to inspect?

If we randomize, then our opponent cannot know what we will do.
Fact 15.2 Consider a random walk in a connected undirected graph G. Let $T(i)$ be the expected number of steps until we have reached all vertices, assuming we start at vertex i. Then, $T(i) \leq 2m(n-1)$, where $n = |V|$, $m = |E|$.

Corollary 15.3 UREACH \in BPL.

Definition 15.4 A universal traversal sequence for graphs on n nodes, is a sequence of instructions, $q = a_1a_2a_3\cdots a_t \in \{1,\ldots, n-1\}^*$, such that for any undirected graph on n nodes, if we start at s in G and follow q, then we will visit every vertex in the connected component of s. □

Fact 15.5 Undirected graphs with n vertices have universal traversal sequences of length $O(n^3)$.

Fact 15.6 (Reingold, 2004) UREACH \in L

Proof idea: derandomization of universal traversal sequences using expander graphs. □

Corollary 15.7 Symmetric-L = L