Theorem 15.1 BPP $\subseteq \Sigma_2^p \cap \Pi_2^p$

Proof: It suffices to show that BPP $\subseteq \Sigma_2^p$ because BPP = co-BPP.

Let $L \in BPP$. Let M be the BPP machine accepting L with error probabilities 2^{-n} for inputs of length n.

Fix
$$x \in \{0,1\}^n$$
 and let $S_x = \{r \in \{0,1\}^m \mid M(x,r) = 1\}$

If $x \in L$ Then $|S_x| \ge 2^m (1 - 2^{-n})$

If $x \notin L$ Then $|S_x| \leq 2^{m-n}$.

We will show that we can distinguish these two cases in Σ_2^p .

Let
$$k = \lceil \frac{m}{n} \rceil + 1$$
.

For
$$u \in \{0,1\}^m$$
, let $S + u = \{w \oplus u \mid w \in S\}$

For $u_1, \ldots, u_k \in \{0, 1\}^m$, consider the event:

$$\bigcup_{i=1}^k (S_x + u_i) = \{0,1\}^m$$

Claim 1. If $x \notin L$ then $\forall u_1, \dots u_k \in \{0, 1\}^m$, \star does not hold.

Proof: There aren't enough elements k copies of S_x to cover $\{0,1\}^m$: $k2^{m-n} < 2^m$.

Claim 2. If $x \in L$ then $\exists u_1, \dots u_k \in \{0, 1\}^m, \star$ holds.

Proof: We show that for $u_1, \ldots u_r$ chosen randomly and independently, $\text{Prob}(\star) > 0$.

For $r \in \{0,1\}^m$, let B_r be the event $r \not\in \bigcup_{i=1}^k (S_x + u_i)$.

 $B_r = \bigcap_{i=1}^k B_r^i$ where B_r^i is the event $r \not\in S + u_i$, or equivalently, the event $r \oplus u_i \not\in S_x$.

 $\operatorname{Prob}(B_r^i) \le 2^{-n}$

 $\operatorname{Prob}(B_r) \le 2^{-nk} < 2^{-m}$

Thus, $Prob(\star) > 0$

$$x \in L \iff \exists u_1 \dots u_k \in \{0, 1\}^m \ \forall r \in \{0, 1\}^m \ r \in \bigcup_{i=1}^k (S_x + u_i)$$

 $\iff \exists u_1 \dots u_k \in \{0, 1\}^m \ \forall r \in \{0, 1\}^m \ \bigvee_{i=1}^k (M(x, r \oplus + u_i) = 1)$