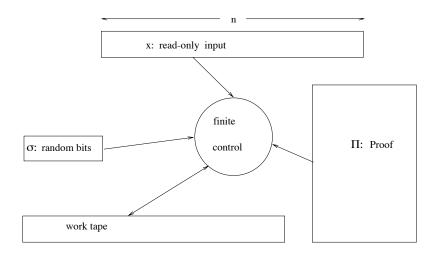
Interactive Proofs



Merlin-Arthur games (MA) [Babai]

Decision problem: D; input string: x

Merlin — Prover — chooses the polynomial-length string Π that **Maximizes** the chances of convincing Arthur that x is an element of D.

Arthur — Verifier — computes the **Average** value of his possible computations on Π , x. Arthur is a polynomial-time, probabilistic Turing machine.

Definition 17.1 We say that **Arthur accepts** *D* iff the following conditions hold:

1. If $x \in D$, there exists a proof Π_x , such that **Arthur** accepts for every random string σ ,

$$Pr_{\sigma}\left[\mathbf{Arthur}^{\Pi_x}(x,\sigma) = Accept\right] = 1$$

2. If $x \notin D$, for every proof Π , Arthur rejects for most of the random strings σ ,

$$Pr_{\sigma}\left[\mathbf{Arthur}^{\Pi}(x,\sigma) = Accept\right] < \frac{1}{2}$$

Proposition 17.2 NP \subseteq MA.

By adding randomness to the verifier, we can greatly restrict its computational power and the number of bits of Π that it needs to look at, while still enabling it to accept all of NP.

Verifier Arthur is (r(n), q(n))-restricted iff Arthur always uses at most O(r(n)) random bits and examines at

most O(q(n)) bits of its proof, Π .

Let PCP[r(n), q(n)] be the set of boolean queries that are accepted by (r(n), q(n))-restricted verifiers.

MAX-3-SAT: given a 3CNF formula, find a truth assignment that maximizes the number of true clauses.

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_4 \lor \overline{x_5}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$$
$$\land (\overline{x_2} \lor x_3 \lor x_5) \land (\overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_4} \lor x_5)$$

Proposition 17.3 MAX-3-SAT has a polynomial-time $\epsilon = \frac{1}{2}$ approximation algorithm.

Proof: Be greedy: choose the literal that occurs most often and make it true; repeat.

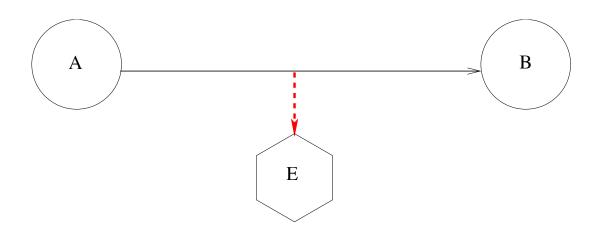
Had Been Open for Years: Assuming NP \neq P is there some ϵ , $0 < \epsilon < 1$, s.t. MAX-3-SAT has no PTIME ϵ -approximation algorithm?

Theorem 17.4 (PCP Theorem [ALMSS) NP = PCP[$\log n, 1$]

Corollary 17.5 *If* $P \neq NP$, *Then* $\exists \epsilon . 0 < \epsilon < 1$, MAX-3-SAT has no ptime, ϵ -approximation algorithm.

Theorem 17.6 ([Hastad]) In the PCP theorem, looking at 3 bits of the proof are necessary and sufficient. Thus, the best possible PTIME approximation ration for MAX-3-SAT is $\frac{1}{8}$ (and this is acheivable).

Cryptography



One-Time Pad: $p \in \{0,1\}^n$; $m \in \{0,1\}^n$

$$E(p,x) = p \oplus x$$

$$D(p,x) = p \oplus x$$

$$D(p,E(p,m)) = p \oplus (p \oplus m) = m$$

p	0	1	1	0	0	1	0	1	0	1
m	0	0	0	0	1	1	1	1	0	0
E(p,m)	0	1	1	0	1	0	1	0	0	1
D(p, E(p, m))	0	0	0	0	1	1	1	1	0	0

Thm: If p is chosen at random and known only to A and B Then E(p,m) provides no information to E about m except perhaps its length.

Better not use p more than once!

Public-Key Cryptography

Idea: [Diffie, Hellman, 1976] Using computational complexity, I may be able to publish a key for sending secret messages to me, that are intractable to decode. Example: Diffie-Hellman key exchange.

Realization: [Rivest, Shamir, Adleman, 1976] This is the Public-Key Algorithm that is used today in the SSL algorithm that lets your browser generate a key to send an order to Amazon.com without, we believe, divulging any useful information about your credit card number, or what you bought.

RSA

B chooses p, q n-bit primes, e, s.t. $GCD(e, \varphi(pq)) = 1$;

B publishes: pq, e; keeps p, q secret.

Using Euclid's algorithm, B computes d, k, s.t.

$$ed + k\varphi(pq) = 1$$

[Break message into pieces shorter than 2n bits]

$$\begin{array}{cccc} E_B(x) & \equiv & x^{\mathrm{e}} & (\bmod{pq}) \\ D_B(x) & \equiv & x^{\mathrm{d}} & (\bmod{pq}) \\ D_B(E_B(m)) & \equiv & (m^e)^d & (\bmod{pq}) \\ & \equiv & m^{1-k\varphi(pq)} & (\bmod{pq}) \\ & \equiv & m \cdot (m^{\varphi(pq)})^{-k} & (\bmod{pq}) \\ & \equiv & m & (\bmod{pq}) \\ & \equiv & E_B(D_B(m)) & (\bmod{pq}) \end{array}$$

For sufficiently large n, $[n \ge 300 \text{ bits is fine in } 2005]$,

It is widely believed that: $E_B(m)$ divulges no useful information about m to anyone not knowing p, q, or d.

Message signing:

Let m = "B promises to give A \$10 by 5/17/05."

Let $m' = m \circ r$ where r is nonce or current date and time

It is widely believed that: $D_B(m')$ could be produced only by B. Thus it can be used as a contract signed by B.

Useful for proving authenticity

Interactive Proofs

[Goldwasser, Micali, Rackoff], [Babai]

Decision problem: D; input string: x

Two players:

Prover — Merlin is computationally all-powerful. Wants to convince Verifier that $x \in D$.

Verifier — **Arthur**: probabilistic polynomial-time TM. Wants to know the truth about whether $x \in D$.

Input =
$$x$$
; $n = |x|$; $t = n^{O(1)}$

0. Arthur has x Merlin has x

1. flip σ_1 , compute $m_1 \longrightarrow$

 $\leftarrow m_2$

3. flip σ_3 , compute $m_3 \longrightarrow$

 $\leftarrow m_4$

: : :

2t. $\longleftrightarrow m_{2t}$

2t + 1. flip σ_{2t+1} , accept or reject

Definition 17.7 $D \in AM$ iff there is a PTIME interactive protocol

1. If $x \in D$, then there exists a strategy for Merlin

 $Prob{Arthur accepts } x} = 1$

2. If $x \notin D$, then for all strategies for Merlin

 $Prob{Arthur accepts } x$ < $\frac{1}{2}$

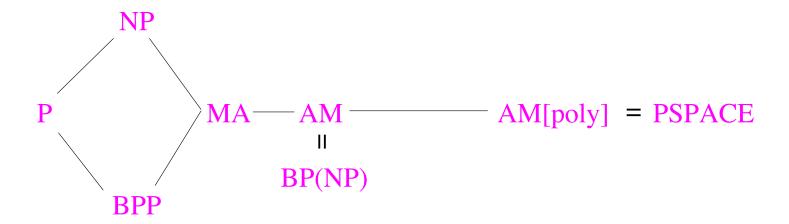
Observation 17.8 As for BPP, by iterating we can make probability of error exponentially small.

Definition 17.9 MA is the set of decision problems admitting two step proofs where Merlin moves first.

AM is the set of decision problems admitting two step proofs where Arthur moves first. For $k \geq 2$,

$$AM[k] = \underbrace{Arthur Merlin Arthur \cdots}_{k}$$

Fact 17.10 [Babai] For all $k \ge 2$, AM[k] = AM.



Fact 17.11 [Goldwasser, Sipser] The power of interactive proofs is unchanged if M knowns A's coin tosses. For all k,

$$IP[k] = AM[k]; IP = AM[n^{O(1)}]$$

(Originally, **Arthur**'s coin tosses were public, but Verifier's were secret. Now it's whichever is more convenient.)

Graph Isomorphism \in NP; Is it in co-NP? Consider the following AM game, where **Arthur** keeps his coin tosses secret:

Input =
$$G_0, G_1, n = ||G_0|| = ||G_1||$$

0. Arthur has G_0, G_1 Merlin has G_0, G_1

1. flip
$$\kappa : \{1, \dots, r\} \to \{0, 1\}$$

flip $\pi_1, \dots, \pi_r \in S_n$
 $\pi_1(G_{\kappa(1)}), \dots, \pi_r(G_{\kappa(r)}) \longrightarrow$

$$\longleftarrow m_2 \in \{0,1\}^r$$

3. accept iff $\kappa = m_2$

The above game shows:

Proposition 17.12 Prop: $Graph Isomorphism \in co$ -AM

Proof: If $G_0 \not\cong G_1$, then **Arthur** will accept with probability 1.

If $G_0 \cong G_1$, then **Arthur** will accept with probability $\leq 2^{-r}$.

Corollary 17.13 *If Graph Isomorphism is* NP-complete then PH collapses.