
13 Håstad’s Switching Lemma

Recall boolean query PARITY, which is true of boolean strings that have an odd number of ones. Using pebble
games, we have shown that PARITY is not first-order in the absence of the numeric predicate BIT (Chapt. 6).
This theorem is much more subtle with the inclusion of BIT.

Theorem 13.1 PARITY is not first-order expressible: PARITY 6∈ FO.

The known proofs of Theorem 13.1 all prove the stronger result that PARITY is not in the non-uniform class
AC0/poly or, equivalently, PARITY is not first-order, no matter what numeric predicates are available. The proof
we present here is via the Håstad Switching Lemma, following the treatment in [Bea96].

Let f be a boolean function, with boolean variables Vn = {x1, . . . , xn}. A restriction on Vn is a map ρ : Vn →
{0, 1, ?}. The idea is that some of the variables are set to “0” or “1” and the others — those assigned “?” —
remain variables.

Restriction ρ applied to function f results in function f |ρ in which value ρ(xi) is substituted for xi in f , for each
xi such that ρ(xi) 6= ?. Thus, f |ρ is a function of the variables that have been assigned “?”. Let Rr

n be the set of
all restrictions on Vn that map exactly r variables to “?”.

We state and prove the switching lemma using decision trees. Given a formula F in disjunctive normal form
(DNF)1 define the canonical decision tree T (F) for F as follows: Let C1 = `1 ∧ · · · ∧ `i be the first term of F ,
so F = C1 ∨ F ′. The top of T (F) is a complete binary decision tree on the variables in C1. Each leaf of the tree
determines a restriction ρ that assigns the appropriate value to the variables in C1 and assign “?” to all the other
variables. There is a unique leaf that makes C1 true and this should remain a leaf and be labeled “1”. To each
other leaf, determining restriction ρ, we attach the canonical decision tree T (F ′|ρ).

Let h(T) be the height of tree T . We now show that for any formula F in DNF, if F has only small terms, then
when randomly choosing a restriction ρ from Rr

n, with high probability the height of the canonical decision tree
of the resulting formula, h(T (F |ρ)), is small.

It then follows that the negation of F |ρ can also be written in DNF — as the disjunction of the conjunction of each
branch in the tree that leads to “0”. Thus, with high probability, a random restriction switches a DNF formula that
has only small terms to a conjunctive normal form (CNF) formula.

Lemma 13.2 (Håstad Switching Lemma) Let F be a DNF formula on n variables, such that each of its terms
has length at most k. Let p ≤ 1/7, r = pn, and s ≥ 0. Then,

|{ρ ∈ Rr
n |h(T (F |ρ)) ≥ s}|
|Rr

n|
< (7pk)s .

Proof: The proof of Lemma 13.2 is a somewhat intricate counting argument. Let Stars(k, s) be the set of all se-
quences w = (S1, S2, . . . , St) where each Si is a nonempty subset of {1, 2, . . . , k} and the sum of the cardinalities
of the Si’s equals s

Stars(k, s) =
{

(S1, . . . , St)
∣∣ ∅ 6= Si ⊆ {1, . . . , k};

t∑
i=1

|Si| = s
}
.

1A DNF formula is an “or” of “and”s. This is the dual of CNF.

1

We use the following upper bound on the size of Stars(k, s).

Lemma 13.3 For k, s > 0, |Stars(k, s)| ≤ (k/ ln 2)s .

Proof: We show by induction on s that |Stars(k, s)| ≤ γs, where γ is such that (1+1/γ)k = 2. Since (1+1/γ) <
e1/γ , we have γ < k/ ln 2 and thus the lemma will follow.

Suppose that the lemma holds for any s′ < s. Let β ∈ Stars(k, s). Then β = (S1, β
′), where β′ ∈ Stars(k, s− i)

and i = |S1|. Thus,

|Stars(k, s)| =

min(k,s)∑
i=1

(
k

i

)
|Stars(k, s− i)|

Thus, by the induction hypothesis,

|Stars(k, s)| ≤
k∑
i=1

(
k

i

)
γs−i

= γs
k∑
i=1

(
k

i

)
(1/γ)i

= γs[(1 + 1/γ)k − 1] = γs .

�

Let R ⊆ Rr
n be the set of restrictions ρ such that h(T (F |ρ)) ≥ s. We will define a 1:1 map,

α : R→ Rr−s
n × Stars(k, s)× 2s . (13.4)

Once we show that α is one to one, it will follow that

|R|
|Rr

n|
≤ |R

r−s
n |
|Rr

n|
· |Stars(k, s)| · 2s . (13.5)

Observe that |Rr
n| =

(
n
r

)
2n−r, so,

|Rr−s
n |
|Rr

n|
=

(r)(r − 1) · · · (r − s+ 1)

(n− r + s)(n− r + s− 1) · · · (n− r + 1)
· 2s ≤

(
2r

n− r

)s
.

Substituting this into Equation (13.5) and using Lemma 13.3, we have,

|R|
|Rr

n|
≤

(
2r

n− r

)s
· (k/ ln 2)s · 2s

=

(
4rk

(n− r) ln 2

)s
=

(
4pk

(1− p) ln 2

)s
when r = pn. This is less than (7pk)s when p < 1/7, because 28/(6 ln(2)) < 7.

It thus suffices to construct 1:1 map α (Equation (13.4)). Let F = C1 ∨ C2 ∨ · · · . Let ρ ∈ R, and let Ci1 be the
first term of F that is not set to “0” in F |ρ.

2

Let b be the first s steps of the lexicographically first branch in T (F |ρ) that has length at least s. Let V1 be the
set of variables in Ci1|ρ. Let a1 be the assignment to V1 that makes Ci1|ρ true. Let b1 be the initial segment of b
that assigns values to V1. If b ends before all the values of V1 are defined, then let b1 = b, and shorten a1 so that it
assigns values only to the variables that b1 does. See Figure 13.6.

Define the set S1 ⊆ {1, 2, . . . , k} to include those j such that the j th variable in Ci1 is set by a1. S1 is nonempty.
Note that from Ci1 and S1 we can reconstruct a1.

If b 6= b1, then (b − b1) is a path in T (F |ρb1). Let Ci2 be the first term of F not set to “0” by ρb1. As above,
we generate b2, a2, and S2. Repeat this until the whole branch b is used up. We have b = b1b2 · · · bt, and let
a = a1a2 · · · at. Define the map δ : {1, . . . , s} → {0, 1} such that δ(j) = 1 if a and b assign the same value at
their step j, and δ(j) = 0 if a and b assign different values to variable j. We finally define the map α as,

α(ρ) = 〈ρa, (S1, S2, . . . , St), δ〉 .

From α(ρ) we can reconstruct ρ as follows: Ci1 is the first clause that evaluates to “1” using ρa. From Ci1 and
S1 we reconstruct a1. Then, using δ, we can compute the restriction ρ′ = ρb1a2 · · · at. Next, Ci2 is the first clause
evaluating to “1” using ρ′. From this and S2, we can compute a2, and so on. Thus α is 1:1. This completes the
proof of Håstad’s Switching Lemma. �

A striking consequence of the switching lemma is that AC0 circuits have restrictions on which they are constant
even though many variables are assigned to “?”:

Theorem 13.7 LetC be an unbounded fan-in circuit with n inputs, having size s and depth d. Let r ≤ n/(14d(log s)d−1)
−(log(s)− 1). Then there is a restriction ρ ∈ Rr

n for which C|ρ is constant.

Proof: We show inductively from the leaves up, that there is a restriction that turns all the gates into DNF or CNF
formulas all of whose terms have length at most log s.

Assume that level one of the circuit — the nodes sitting above the inputs and their negations — consists of “or”
gates. Thus, each of these gates g is a DNF formula whose maximum term size is one. By Lemma 13.2, with
p = 1/14, n1 = n/14, k = 1, we have,

|{ρ ∈ Rn1
n |h(T (g|ρ)) ≥ log s}| < (2)− log s · |Rn1

n | .

Since there are at most s gates at level one, the number of restrictions ρ such that h(T (g|ρ)) ≥ log s for some g is
less than,

s · (2)− log s · |Rn1
n | = |Rn1

n | .

Thus, there is at least one restriction ρ1 ∈ Rn1
n under which all the gates at level one are CNF formulas with terms

of size less than log s. It follows that the “and” gates at level two are CNF formulas with terms of size less than
log s.

Let g2 = g|ρ1 be any such gate. Using Lemma 13.2, with k = log s, p = 1/(14 log s), n2 = n1/(14 log s), we
have,

|{ρ ∈ Rn2
n1
|h(T (g2|ρ)) ≥ log s}| < (2)− log s · |Rn2

n1
| .

3

1

1

1

a
b

a b

a b

a b

s

1
1

2 2

3 3

t
t

Figure 13.6: Decision tree T (F |ρ) with path of length s, b = b1b2 · · · bt.
4

Thus, there is a restriction ρ2 ∈ Rn2
n1

under which every gate at level two is a DNF formula all of whose terms
have length less than log s.

Repeating this argument through all d levels, we have a restriction ρ = ρ1ρ2 · · · ρd ∈ Rn
nd

such that the height
T (C|ρ) of the decision tree of the root of the circuit is less than log s. Observe that nd = n/(14d(log s)d−1). Let b
be the restriction corresponding to any branch of the decision tree. It follows that C|ρb is constant and has at least
r = nd − (log(s)− 1) inputs. �

Suppose that circuit C in Theorem 13.7 computes the parity of its n inputs. Then any restriction of C also
computes the parity of its remaining inputs. Thus, if 1 ≤ r in Theorem 13.7, then C must not compute PARITY.
It follows that if C is a size s, depth d circuit computing parity on n inputs, then the following inequalities hold,

1 > n/(14d(log s)d−1)− (log(s)− 1)

log s > n/(14d(log s)d−1)

(log s)d > n/(14d)

s > 2
1
14
n

1
d .

We thus have the following lower bound on the number of iterations of a first-order quantifier block needed to
compute PARITY. This corollary is optimal by Exercise ??.

We use the “big omega” notation for lower bounds. The “equation” f(n) = Ω(g(n)) is equivalent to g(n) =
O(f(n)). It means that for almost all values of n, f(n) is at least some constant multiple of g(n).

Corollary 13.8 If PARITY ∈ FO[s(n)], then s(n) = Ω(log n/ log log n), and this holds even in the presence of
arbitrary numeric predicates.

Exercise 13.9 Show that PARITY is first-order reducible to REACH. Conclude that the same lower bound as in
Corollary 13.8 holds for REACH. �

References

[Bea96] P. Beame, “A Switching Lemma Primer,” manuscript, http://www.cs.washington.edu/homes/beame/papers.html.

5

	Håstad's Switching Lemma

